Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Int Soc Sports Nutr ; 18(1): 54, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238308

RESUMO

BACKGROUND: Recent studies in rodents indicate that a combination of exercise training and supplementation with nicotinamide adenine dinucleotide (NAD+) precursors has synergistic effects. However, there are currently no human clinical trials analyzing this. OBJECTIVE: This study investigates the effects of a combination of exercise training and supplementation with nicotinamide mononucleotide (NMN), the immediate precursor of NAD+, on cardiovascular fitness in healthy amateur runners. METHODS: A six-week randomized, double-blind, placebo-controlled, four-arm clinical trial including 48 young and middle-aged recreationally trained runners of the Guangzhou Pearl River running team was conducted. The participants were randomized into four groups: the low dosage group (300 mg/day NMN), the medium dosage group (600 mg/day NMN), the high dosage group (1200 mg/day NMN), and the control group (placebo). Each group consisted of ten male participants and two female participants. Each training session was 40-60 min, and the runners trained 5-6 times each week. Cardiopulmonary exercise testing was performed at baseline and after the intervention, at 6 weeks, to assess the aerobic capacity of the runners. RESULTS: Analysis of covariance of the change from baseline over the 6 week treatment showed that the oxygen uptake (VO2), percentages of maximum oxygen uptake (VO2max), power at first ventilatory threshold, and power at second ventilatory threshold increased to a higher degree in the medium and high dosage groups compared with the control group. However, there was no difference in VO2max, O2-pulse, VO2 related to work rate, and peak power after the 6 week treatment from baseline in any of these groups. CONCLUSION: NMN increases the aerobic capacity of humans during exercise training, and the improvement is likely the result of enhanced O2 utilization of the skeletal muscle. TRIAL REGISTRATION NUMBER: ChiCTR2000035138 .


Assuntos
Suplementos Nutricionais , Tolerância ao Exercício/fisiologia , Mononucleotídeo de Nicotinamida/administração & dosagem , Consumo de Oxigênio/fisiologia , Condicionamento Físico Humano/métodos , Corrida/fisiologia , Adulto , Ciclismo , Composição Corporal , Método Duplo-Cego , Teste de Esforço/métodos , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , NAD , Mononucleotídeo de Nicotinamida/metabolismo , Condicionamento Físico Humano/estatística & dados numéricos , Placebos/administração & dosagem , Fatores de Tempo
2.
Am J Physiol Endocrinol Metab ; 321(1): E176-E189, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34121447

RESUMO

Almost 40% of adults worldwide are classified as overweight or obese. Exercise is a beneficial intervention in obesity, partly due to increases in mitochondrial activity and subsequent increases in nicotinamide adenine dinucleotide (NAD+), an important metabolic cofactor. Recent studies have shown that increasing NAD+ levels through pharmacological supplementation with precursors such as nicotinamide mononucleotide (NMN) improved metabolic health in high-fat-diet (HFD)-fed mice. However, the effects of combined exercise and NMN supplementation are unknown. Thus, here we examined the combined effects of NMN and treadmill exercise in female mice with established obesity after 10 wk of diet. Five-week-old female C57BL/6J mice were exposed to a control diet (n = 16) or HFD. Mice fed a HFD were either untreated (HFD; n = 16), received NMN in drinking water (400 mg/kg; HNMN; n = 16), were exposed to treadmill exercise 6 days/wk (HEx; n = 16), or were exposed to exercise combined with NMN (HNEx; n = 16). Although some metabolic benefits of NMN have been described, at this dose, NMN administration impaired several aspects of exercise-induced benefits in obese mice, including glucose tolerance, glucose-stimulated insulin secretion from islets, and hepatic triglyceride accumulation. HNEx mice also exhibited increased antioxidant and reduced prooxidant gene expression in both islets and muscle, suggesting that altered redox status is associated with the loss of exercise-induced health benefits with NMN cotreatment. Our data show that NMN treatment impedes the beneficial metabolic effects of exercise in a mouse model of diet-induced obesity in association with disturbances in redox metabolism.NEW & NOTEWORTHY NMN dampened exercise-induced benefits on glucose handling in diet-induced obesity. NMN administration alongside treadmill exercise enhanced the ratio of antioxidants to prooxidants. We suggest that NMN administration may not be beneficial when NAD+ levels are replete.


Assuntos
Glucose/metabolismo , Mononucleotídeo de Nicotinamida/administração & dosagem , Obesidade/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Dieta Hiperlipídica , Suplementos Nutricionais , Feminino , Glucose/farmacologia , Intolerância à Glucose/terapia , Secreção de Insulina/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NAD/metabolismo , Mononucleotídeo de Nicotinamida/efeitos adversos , Obesidade/etiologia , Obesidade/terapia , Triglicerídeos/metabolismo
3.
Science ; 372(6547): 1224-1229, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33888596

RESUMO

In rodents, obesity and aging impair nicotinamide adenine dinucleotide (NAD+) biosynthesis, which contributes to metabolic dysfunction. Nicotinamide mononucleotide (NMN) availability is a rate-limiting factor in mammalian NAD+ biosynthesis. We conducted a 10-week, randomized, placebo-controlled, double-blind trial to evaluate the effect of NMN supplementation on metabolic function in postmenopausal women with prediabetes who were overweight or obese. Insulin-stimulated glucose disposal, assessed by using the hyperinsulinemic-euglycemic clamp, and skeletal muscle insulin signaling [phosphorylation of protein kinase AKT and mechanistic target of rapamycin (mTOR)] increased after NMN supplementation but did not change after placebo treatment. NMN supplementation up-regulated the expression of platelet-derived growth factor receptor ß and other genes related to muscle remodeling. These results demonstrate that NMN increases muscle insulin sensitivity, insulin signaling, and remodeling in women with prediabetes who are overweight or obese (clinicaltrial.gov NCT03151239).


Assuntos
Suplementos Nutricionais , Resistência à Insulina , Músculo Esquelético/metabolismo , Mononucleotídeo de Nicotinamida/administração & dosagem , Sobrepeso/metabolismo , Estado Pré-Diabético/metabolismo , Idoso , Composição Corporal , Método Duplo-Cego , Feminino , Humanos , Insulina/administração & dosagem , Insulina/metabolismo , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , NAD/sangue , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Obesidade/metabolismo , Pós-Menopausa , RNA-Seq , Transdução de Sinais
4.
Cell Metab ; 31(3): 564-579.e7, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130883

RESUMO

Nicotinamide adenine dinucleotide (NAD), a cofactor for hundreds of metabolic reactions in all cell types, plays an essential role in metabolism, DNA repair, and aging. However, how NAD metabolism is impacted by the environment remains unclear. Here, we report an unexpected trans-kingdom cooperation between bacteria and mammalian cells wherein bacteria contribute to host NAD biosynthesis. Bacteria confer resistance to inhibitors of NAMPT, the rate-limiting enzyme in the amidated NAD salvage pathway, in cancer cells and xenograft tumors. Mechanistically, a microbial nicotinamidase (PncA) that converts nicotinamide to nicotinic acid, a precursor in the alternative deamidated NAD salvage pathway, is necessary and sufficient for this protective effect. Using stable isotope tracing and microbiota-depleted mice, we demonstrate that this bacteria-mediated deamidation contributes substantially to the NAD-boosting effect of oral nicotinamide and nicotinamide riboside supplementation in several tissues. Collectively, our findings reveal an important role of bacteria-enabled deamidated pathway in host NAD metabolism.


Assuntos
Amidas/metabolismo , Vias Biossintéticas , Mamíferos/microbiologia , Mycoplasma/fisiologia , NAD/metabolismo , Administração Oral , Animais , Linhagem Celular Tumoral , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Metabolismo Energético , Feminino , Microbioma Gastrointestinal , Humanos , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Nicotinamidase/metabolismo , Mononucleotídeo de Nicotinamida/administração & dosagem , Mononucleotídeo de Nicotinamida/química , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Compostos de Piridínio/metabolismo
5.
Redox Biol ; 24: 101192, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31015147

RESUMO

Adjustment of cerebral blood flow (CBF) to neuronal activity via neurovascular coupling (NVC) has an essential role in maintenance of healthy cognitive function. In aging increased oxidative stress and cerebromicrovascular endothelial dysfunction impair NVC, contributing to cognitive decline. There is increasing evidence showing that a decrease in NAD+ availability with age plays a critical role in a range of age-related cellular impairments but its role in impaired NVC responses remains unexplored. The present study was designed to test the hypothesis that restoring NAD+ concentration may exert beneficial effects on NVC responses in aging. To test this hypothesis 24-month-old C57BL/6 mice were treated with nicotinamide mononucleotide (NMN), a key NAD+ intermediate, for 2 weeks. NVC was assessed by measuring CBF responses (laser Doppler flowmetry) evoked by contralateral whisker stimulation. We found that NVC responses were significantly impaired in aged mice. NMN supplementation rescued NVC responses by increasing endothelial NO-mediated vasodilation, which was associated with significantly improved spatial working memory and gait coordination. These findings are paralleled by the sirtuin-dependent protective effects of NMN on mitochondrial production of reactive oxygen species and mitochondrial bioenergetics in cultured cerebromicrovascular endothelial cells derived from aged animals. Thus, a decrease in NAD+ availability contributes to age-related cerebromicrovascular dysfunction, exacerbating cognitive decline. The cerebromicrovascular protective effects of NMN highlight the preventive and therapeutic potential of NAD+ intermediates as effective interventions in patients at risk for vascular cognitive impairment (VCI).


Assuntos
Circulação Cerebrovascular , Disfunção Cognitiva , Suplementos Nutricionais , Endotélio Vascular/metabolismo , Acoplamento Neurovascular , Mononucleotídeo de Nicotinamida/administração & dosagem , Fatores Etários , Animais , Comportamento Animal , Biomarcadores , Disfunção Cognitiva/tratamento farmacológico , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo
6.
Sci Rep ; 7(1): 15063, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118320

RESUMO

Maternal overnutrition increases the risk of long-term metabolic dysfunction in offspring. Exercise improves metabolism partly by upregulating mitochondrial biogenesis or function, via increased levels of nicotinamide adenine dinucleotide (NAD+). We have shown that the NAD+ precursor, nicotinamide mononucleotide (NMN) can reverse some of the negative consequences of high fat diet (HFD) consumption. To investigate whether NMN can impact developmentally-set metabolic deficits, we compared treadmill exercise and NMN injection in offspring of obese mothers. Five week old lean and obese female C57BL6/J mice were mated with chow fed males. Female offspring weaned onto HFD were given treadmill exercise for 9 weeks, or NMN injection daily for 18 days. Maternal obesity programmed increased adiposity and liver triglycerides, with decreased glucose tolerance, liver NAD+ levels and citrate synthase activity in offspring. Both interventions reduced adiposity, and showed a modest improvement in glucose tolerance and improved markers of mitochondrial function. NMN appeared to have stronger effects on liver fat catabolism (Hadh) and synthesis (Fasn) than exercise. The interventions appeared to exert the most global benefit in mice that were most metabolically challenged (HFD-consuming offspring of obese mothers). This work encourages further study to confirm the suitability of NMN for use in reversing metabolic dysfunction linked to programming by maternal obesity.


Assuntos
Suplementos Nutricionais , Mononucleotídeo de Nicotinamida/farmacologia , Obesidade/prevenção & controle , Condicionamento Físico Animal/fisiologia , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Dieta Hiperlipídica , Feminino , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mononucleotídeo de Nicotinamida/administração & dosagem , Obesidade/genética , Obesidade/fisiopatologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Gravidez , Triglicerídeos/metabolismo , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA