Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216125

RESUMO

The development of floral organs is coordinated by an elaborate network of homeotic genes, and gibberellin (GA) signaling is involved in floral organ development; however, the underlying molecular mechanisms remain elusive. In the present study, we found that MOS4-ASSOCIATED COMPLEX 5A (MAC5A), which is a protein containing an RNA-binding motif, was involved in the development of sepals, petals, and stamens; either the loss or gain of MAC5A function resulted in stamen malformation and a reduced seed set. The exogenous application of GA considerably exacerbated the defects in mac5a null mutants, including fewer stamens and male sterility. MAC5A was predominantly expressed in pollen grains and stamens, and overexpression of MAC5A affected the expression of homeotic genes such as APETALA1 (AP1), AP2, and AGAMOUS (AG). MAC5A may interact with RABBIT EARS (RBE), a repressor of AG expression in Arabidopsis flowers. The petal defect in rbe null mutants was at least partly rescued in mac5a rbe double mutants. These findings suggest that MAC5A is a novel factor that is required for the normal development of stamens and depends on the GA signaling pathway.


Assuntos
Flores/efeitos dos fármacos , Giberelinas/farmacologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes Homeobox/efeitos dos fármacos , Genes Homeobox/genética , Genes de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/efeitos dos fármacos , Pólen/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6573-6580, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36604905

RESUMO

The content of available phosphorus in soil is generally low worldwide. Phosphorus, one of the necessary macroelements for plant growth and development, plays an important role in cell structure, material composition and energy metabolism, and signal transduction in plants. Phosphate transporter(PHT) genes are important for plant growth and development, root morphogenesis, secondary metabolism, hormone response, and phosphorus balance. Most of the active components in medicinal plants are secondary metabolites. Thus, it is essential to reveal the relationship between the regulation of phosphorus and the accumulation of active components in medicinal plants, especially the effect of phosphorus starvation on root morphogenesis of root medicinal materials and its coupling with hormone response. With advancement of molecular biology, scholars gradually emphasize the mechanism of PHT regulating the secondary metabolism of medicinal plants. This study summarized the strategies of plants to adapt to low phosphorus environment, such as changing root morphogenesis, inhibiting taproot growth, forming cluster root and changing physiological metabolism, PHT, its regulatory network, phenotypic biological characteristics and key genes in medicinal plants related to phosphorus starvation, and the response mechanism. The findings are expected to lay a basis for the cultivation of medicinal plants with high quality, excellent shape, and high price.


Assuntos
Plantas Medicinais , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Desenvolvimento Vegetal , Fósforo , Hormônios/metabolismo , Morfogênese/genética , Raízes de Plantas
3.
Dev Dyn ; 250(7): 1036-1050, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33452727

RESUMO

BACKGROUND: Pharyngeal arches (PA) are sequentially generated in an anterior-to-posterior order. Ripply3 is essential for posterior PA development in mouse embryos and its expression is sequentially activated in ectoderm and endoderm prior to formation of each PA. Since the PA phenotype of Ripply3 knockout (KO) mice is similar to that of retinoic acid (RA) signal-deficient embryos, we investigated the relationship between RA signaling and Ripply3 in mouse embryos. RESULTS: In BMS493 (pan-RAR antagonist) treated embryos, which are defective in third and fourth PA development, Ripply3 expression is decreased in the region posterior to PA2 at E9.0. This expression remains and its distribution is expanded posteriorly at E9.5. Conversely, high dose RA exposure does not apparently change its expression at E9.0 and 9.5. Knockout of retinaldehyde dehydrogenase 2 (Raldh2), which causes more severe PA defect, attenuates sequential Ripply3 expression at PA1 and reduces its expression level. EGFP reporter expression driven by a 6 kb Ripply3 promoter fragment recapitulates the endogenous Ripply3 mRNA expression during PA development in wild-type, but its distribution is expanded posteriorly in BMS493-treated and Raldh2 KO embryos. CONCLUSION: Spatio-temporal regulation of Ripply3 expression by RA signaling is indispensable for the posterior PA development in mouse.


Assuntos
Região Branquial/embriologia , Proteínas Repressoras/genética , Tretinoína/metabolismo , Animais , Benzoatos/farmacologia , Região Branquial/efeitos dos fármacos , Região Branquial/metabolismo , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Gravidez , Proteínas Repressoras/metabolismo , Receptor alfa de Ácido Retinoico/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estilbenos/farmacologia , Tretinoína/farmacologia , Tretinoína/fisiologia
4.
Mol Biol Cell ; 32(4): 314-330, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33378226

RESUMO

TRIM9 and TRIM67 are neuronally enriched E3 ubiquitin ligases essential for appropriate morphogenesis of cortical and hippocampal neurons and fidelitous responses to the axon guidance cue netrin-1. Deletion of murine Trim9 or Trim67 results in neuroanatomical defects and striking behavioral deficits, particularly in spatial learning and memory. TRIM9 and TRIM67 interact with cytoskeletal and exocytic proteins, but the full interactome is not known. Here we performed the unbiased proximity-dependent biotin identification (BioID) approach to define TRIM9 and TRIM67 protein-protein proximity network in developing cortical neurons and identified putative neuronal TRIM interaction partners. Candidates included cytoskeletal regulators, cytosolic protein transporters, exocytosis and endocytosis regulators, and proteins necessary for synaptic regulation. A subset of high-priority candidates was validated, including Myo16, Coro1A, MAP1B, ExoC1, GRIP1, PRG-1, and KIF1A. For a subset of validated candidates, we utilized total internal reflection fluorescence microscopy to demonstrate dynamic colocalization with TRIM proteins at the axonal periphery, including at the tips of filopodia. Further analysis demonstrated that the RNA interference-based knockdown of the unconventional myosin Myo16 in cortical neurons altered growth cone filopodia density and axonal branching patterns in a TRIM9- and netrin-1-dependent manner. Future analysis of other validated candidates will likely identify novel proteins and mechanisms by which TRIM9 and TRIM67 regulate neuronal form and function. [Media: see text].


Assuntos
Proteínas do Citoesqueleto/metabolismo , Morfogênese/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Axônios/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/fisiologia , Feminino , Cones de Crescimento/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Pseudópodes/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/fisiologia
5.
Nature ; 582(7811): 246-252, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32499648

RESUMO

A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates1,2. Nevertheless, we lack a developmental blueprint that integrates the molecular determinants of neuronal and glial diversity along temporal and spatial scales of hypothalamus development3. Here we combine single-cell RNA sequencing of 51,199 mouse cells of ectodermal origin, gene regulatory network (GRN) screens in conjunction with genome-wide association study-based disease phenotyping, and genetic lineage reconstruction to show that nine glial and thirty-three neuronal subtypes are generated by mid-gestation under the control of distinct GRNs. Combinatorial molecular codes that arise from neurotransmitters, neuropeptides and transcription factors are minimally required to decode the taxonomical hierarchy of hypothalamic neurons. The differentiation of γ-aminobutyric acid (GABA) and dopamine neurons, but not glutamate neurons, relies on quasi-stable intermediate states, with a pool of GABA progenitors giving rise to dopamine cells4. We found an unexpected abundance of chemotropic proliferation and guidance cues that are commonly implicated in dorsal (cortical) patterning5 in the hypothalamus. In particular, loss of SLIT-ROBO signalling impaired both the production and positioning of periventricular dopamine neurons. Overall, we identify molecular principles that shape the developmental architecture of the hypothalamus and show how neuronal heterogeneity is transformed into a multimodal neural unit to provide virtually infinite adaptive potential throughout life.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/citologia , Hipotálamo/embriologia , Morfogênese , Animais , Diferenciação Celular , Linhagem da Célula , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Ectoderma/citologia , Ectoderma/metabolismo , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Ácido Glutâmico/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Morfogênese/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Receptores Imunológicos/metabolismo , Regulon/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ácido gama-Aminobutírico/metabolismo , Proteínas Roundabout
6.
Hum Mol Genet ; 29(13): 2109-2123, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32186706

RESUMO

Cobalamin C (cblC) deficiency, the most common inborn error of intracellular cobalamin metabolism, is caused by mutations in MMACHC, a gene responsible for the processing and intracellular trafficking of vitamin B12. This recessive disorder is characterized by a failure to metabolize cobalamin into adenosyl- and methylcobalamin, which results in the biochemical perturbations of methylmalonic acidemia, hyperhomocysteinemia and hypomethioninemia caused by the impaired activity of the downstream enzymes, methylmalonyl-CoA mutase and methionine synthase. Cobalamin C deficiency can be accompanied by a wide spectrum of clinical manifestations, including progressive blindness, and, in mice, manifests with very early embryonic lethality. Because zebrafish harbor a full complement of cobalamin metabolic enzymes, we used genome editing to study the loss of mmachc function and to develop the first viable animal model of cblC deficiency. mmachc mutants survived the embryonic period but perished in early juvenile life. The mutants displayed the metabolic and clinical features of cblC deficiency including methylmalonic acidemia, severe growth retardation and lethality. Morphologic and metabolic parameters improved when the mutants were raised in water supplemented with small molecules used to treat patients, including hydroxocobalamin, methylcobalamin, methionine and betaine. Furthermore, mmachc mutants bred to express rod and/or cone fluorescent reporters, manifested a retinopathy and thin optic nerves (ON). Expression analysis using whole eye mRNA revealed the dysregulation of genes involved in phototransduction and cholesterol metabolism. Zebrafish with mmachc deficiency recapitulate the several of the phenotypic and biochemical features of the human disorder, including ocular pathology, and show a response to established treatments.


Assuntos
Proteínas de Transporte/genética , Morfogênese/genética , Deficiência de Vitamina B 12/genética , Vitamina B 12/genética , Proteínas de Peixe-Zebra/genética , Animais , Homocistinúria/genética , Homocistinúria/patologia , Humanos , Camundongos , Mutação/genética , Nervo Óptico/crescimento & desenvolvimento , Nervo Óptico/patologia , Oxirredutases/genética , Retina/crescimento & desenvolvimento , Retina/metabolismo , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/patologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
7.
Plant Physiol ; 181(4): 1600-1614, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548267

RESUMO

RETINOBLASTOMA-RELATED (RBR) is an essential gene in plants, but its molecular function outside of its role in cell cycle entry remains poorly understood. We characterized the functions of OsRBR1 and OsRBR2 in plant growth and development in rice using both forward- and reverse-genetics methods. The two genes were coexpressed and performed redundant roles in vegetative organs but exhibited separate functions in flowers. OsRBR1 was highly expressed in the floral meristem and regulated the expression of floral homeotic genes to ensure floral organ formation. Mutation of OsRBR1 caused loss of floral meristem identity, resulting in the replacement of lodicules, stamens, and the pistil with either a panicle-like structure or whorls of lemma-like organs. OsRBR2 was preferentially expressed in stamens and promoted pollen formation. Mutation of OsRBR2 led to deformed anthers without pollen. Similar to the protein interaction between AtRBR and AtMSI1 that is essential for floral development in Arabidopsis, OsMSI1 was identified as an interaction partner of OsRBR1 and OsRBR2. OsMSI1 was ubiquitously expressed and appears to be essential for development in rice (Oryza sativa), as the mutation of OsMSI1 was lethal. These results suggest that OsRBR1 and OsRBR2 function with OsMSI1 in reproductive development in rice. This work characterizes further functions of RBRs and improves current understanding of specific regulatory pathways of floral specification and pollen formation in rice.


Assuntos
Genes de Plantas , Morfogênese/genética , Oryza/genética , Proteínas de Plantas/genética , Pólen/genética , Retinoblastoma/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Mutação/genética , Especificidade de Órgãos/genética , Oryza/ultraestrutura , Fenótipo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pólen/ultraestrutura , Ligação Proteica , Frações Subcelulares/metabolismo
8.
PLoS Comput Biol ; 15(2): e1006800, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30817762

RESUMO

Pollen provides an excellent system to study pattern formation at the single-cell level. Pollen surface is covered by the pollen wall exine, whose deposition is excluded from certain surface areas, the apertures, which vary between the species in their numbers, positions, and morphology. What determines aperture patterns is not understood. Arabidopsis thaliana normally develops three apertures, equally spaced along the pollen equator. However, Arabidopsis mutants whose pollen has higher ploidy and larger volume develop four or more apertures. To explore possible mechanisms responsible for aperture patterning, we developed a mathematical model based on the Gierer-Meinhardt system of equations. This model was able to recapitulate aperture patterns observed in the wild-type and higher-ploidy pollen. We then used this model to further explore geometric and kinetic factors that may influence aperture patterns and found that pollen size, as well as certain kinetic parameters, like diffusion and decay of morphogens, could play a role in formation of aperture patterns. In conjunction with mathematical modeling, we also performed a forward genetic screen in Arabidopsis and discovered two mutants with aperture patterns that had not been previously observed in this species but were predicted by our model. The macaron mutant develops a single ring-like aperture, matching the unusual ring-like pattern produced by the model. The doughnut mutant forms two pore-like apertures at the poles of the pollen grain. Further tests on these novel mutants, motivated by the modeling results, suggested the existence of an area of inhibition around apertures that prevents formation of additional apertures in their vicinity. This work demonstrates the ability of the theoretical model to help focus experimental efforts and to provide fundamental insights into an important biological process.


Assuntos
Arabidopsis , Modelos Biológicos , Morfogênese , Mutação , Pólen , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Biologia Computacional , Simulação por Computador , Cinética , Morfogênese/genética , Morfogênese/fisiologia , Mutação/genética , Mutação/fisiologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia
9.
Mol Med Rep ; 18(5): 4739-4746, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30221726

RESUMO

Coenzyme A (CoA) is an essential cofactor of cellular metabolism that is involved in ~4% of cellular reactions. Its de novo production relies on five subsequent enzymatic steps, starting with the phosphorylation of vitamin B5. Pantothenate kinase 2 (PANK2) and coenzyme A synthase (COASY) catalyze the first and last steps of this pathway. Mutations in these genes lead to severe and progressive movement disorders, with neurodegeneration and iron accumulation in the basal ganglia, known as PANK2­ and COASY protein­associated neurodegeneration, respectively. Given the ubiquitous role of CoA in cellular metabolism, it is still not clear why patients carrying PANK2 and COASY mutations develop almost exclusively neurological symptoms. Important clues are the energetic profile of neural cells as well as the high levels of PANK2 expression in the brain; however, other features may contribute to this selective tissue vulnerability. Notably, when pank2 or coasy expression was suppressed in zebrafish evident perturbation of neuronal development was observed, as well as severe defects in vasculature formation. Supplementation of CoA to fish water prevented the appearance of the phenotype, thereby confirming the specific connection with the availability of the metabolic cofactor. The present study investigated the associations between PANK2 defects and angiogenesis in a mammalian setting, and revealed that PANK2 expression was required for normal angiogenetic properties of human umbilical vein endothelial cells.


Assuntos
Morfogênese/genética , Neovascularização Fisiológica/genética , Neurodegeneração Associada a Pantotenato-Quinase/genética , Transferases/genética , Proteínas de Peixe-Zebra/genética , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Ferro/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Neurodegeneração Associada a Pantotenato-Quinase/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
10.
PLoS One ; 13(4): e0196300, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29684089

RESUMO

Zinc is an essential micronutrient required for proper structure and function of many proteins. Bacteria regularly encounter zinc depletion and have evolved diverse mechanisms to continue growth when zinc is limited, including the expression of zinc-independent paralogs of zinc-binding proteins. Mycobacteria have a conserved operon encoding four zinc-independent alternative ribosomal proteins (AltRPs) that are expressed when zinc is depleted. It is unknown if mycobacterial AltRPs replace their primary paralogs in the ribosome and maintain protein synthesis under zinc-limited conditions, and if such replacements contribute to their physiology. This study shows that AltRPs from Mycobacterium smegmatis are essential for growth when zinc ion is scarce. Specifically, the deletion mutant of this operon (ΔaltRP) is unable to grow in media containing a high-affinity zinc chelator, while growth of the wild type strain is unaffected under the same conditions. However, when zinc is gradually depleted during growth in zinc-limited medium, the ΔaltRP mutant maintains the same growth rate as seen for the wild type strain. In contrast to M. smegmatis grown with sufficient zinc supplementation that forms shorter cells when transitioning from logarithmic to stationary phase, M. smegmatis deficient for zinc elongates after the expression of AltRPs in late logarithmic phase. These zinc-depleted bacteria also exhibit a remarkable morphology characterized by a condensed chromosome, increased number of polyphosphate granules, and distinct appearance of lipid bodies and the cell wall compared to the zinc-replete cells. However, the ΔaltRP cells fail to elongate and transition into the zinc-limited morphotype, resembling the wild type zinc-replete bacteria instead. Therefore, the altRP operon in M. smegmatis has a vital role in continuation of growth when zinc is scarce and in triggering specific morphogenesis during the adaptation to zinc limitation, suggesting that AltRPs can functionally replace their zinc-dependent paralogs, but also contribute to mycobacterial physiology in a unique way.


Assuntos
Proteínas de Bactérias/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/genética , Proteínas Ribossômicas/genética , Zinco/deficiência , Proteínas de Transporte/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Mycobacterium smegmatis/efeitos dos fármacos , Óperon/genética , Filogenia , Zinco/farmacologia
11.
Curr Biol ; 27(22): 3403-3418.e7, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29103938

RESUMO

Etiolated growth in darkness or the irreversible transition to photomorphogenesis in the light engages alternative developmental programs operating across all organs of a plant seedling. Dark-grown Arabidopsis de-etiolated by zinc (dez) mutants exhibit morphological, cellular, metabolic, and transcriptional characteristics of light-grown seedlings. We identify the causal mutation in TRICHOME BIREFRINGENCE encoding a putative acyl transferase. Pectin acetylation is decreased in dez, as previously found in the reduced wall acetylation2-3 mutant, shown here to phenocopy dez. Moreover, pectin of dez is excessively methylesterified. The addition of very short fragments of homogalacturonan, tri-galacturonate, and tetra-galacturonate, restores skotomorphogenesis in dark-grown dez and similar mutants, suggesting that the mutants are unable to generate these de-methylesterified pectin fragments. In combination with genetic data, we propose a model of spatiotemporally separated photoreceptive and signal-responsive cell types, which contain overlapping subsets of the regulatory network of light-dependent seedling development and communicate via a pectin-derived dark signal.


Assuntos
Estiolamento/genética , Transdução de Sinal Luminoso/genética , Acetiltransferases/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Escuridão , Estiolamento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Transdução de Sinal Luminoso/fisiologia , Morfogênese/genética , Mutação , Pectinas/genética , Plântula/genética , Transdução de Sinais , Tricomas/genética
12.
PLoS One ; 12(3): e0173537, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278222

RESUMO

Long-term cultivated Fagopyrum tataricum (L.) Gaertn. (Tartary buckwheat) morphogenic and non-morphogenic callus lines are interesting systems for gaining a better understanding of the mechanisms that are responsible for the genetic stability and instability of a plant tissue culture. In this work, we used histological sections and transmission electron microscopy to identify and describe the morphology of the nuclei of all of the analysed callus lines. We demonstrated that the embryogenic callus cells had prominent round nuclei that did not contain heterochromatin clumps in contrast to the non-morphogenic callus lines, in which we found nuclei that had multiple lobes. Flow cytometry analysis revealed significant differences in the relative DNA content between the analysed calli. All of the analysed morphogenic callus lines had peaks from 2C to 8C as compared to the non-morphogenic callus lines, whose peaks did not reflect any regular DNA content and exceeded 8C and 16C for the line 6p1 and 16C and 32C for the callus line 10p2A. The results showed that non-morphogenic calli are of an aneuploid nature. The TUNEL test enabled us to visualise the nuclei that had DNA fragmentation in both the morphogenic and non-morphogenic lines. We revealed significantly higher frequencies of positively labelled nuclei in the non-morphogenic lines than in the morphogenic lines. In the case of the morphogenic lines, the highest observed frequency of TUNEL-positive nuclei was 7.7% for lines 2-3. In the non-morphogenic calli, the highest level of DNA damage (68.5%) was revealed in line 6p1. These results clearly indicate greater genome stability in the morphogenic lines.


Assuntos
Núcleo Celular/genética , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/genética , Instabilidade Genômica , Morfogênese/genética , Proteínas de Plantas/genética , Técnicas de Cultura de Células
13.
Methods Cell Biol ; 127: 403-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25837402

RESUMO

Marsilea vestita is a semiaquatic fern that produces its spores (meiotic products) as it undergoes a process of natural desiccation. During the period of desiccation, the spores mature, and produce large quantities of pre-mRNA, which is partially processed and stored in nuclear speckles and can remain stable during a period of extended quiescence in the dry spore. Rehydration of the spores initiates a highly coordinated developmental program, featuring nine successive mitotic division cycles that occur at precise times and in precise planes within the spore wall to produce 39 cells, 32 of which are spermatids. The spermatids then undergo de novo basal body formation, the assembly of a massive cytoskeleton, nuclear and cell elongation, and finally ciliogenesis, before being released from the spore wall. The entire developmental program requires only 11 h to reach completion, and is synchronous in a population of spores rehydrated at the same time. Rapid development in this endosporic gametophyte is controlled posttranscriptionally, where stored pre-mRNAs, many of which are intron-retaining transcripts, are unmasked, processed, and translated under tight spatial and temporal control. Here, we describe posttranscriptional mechanisms that exert temporal and spatial control over this developmental program, which culminates in the production of ∼140 ciliary axonemes in each spermatozoid.


Assuntos
Cílios/genética , Marsileaceae/citologia , Pólen/citologia , Espermidina/metabolismo , Esporos/citologia , Diferenciação Celular/genética , Cílios/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas , Marsileaceae/genética , Marsileaceae/metabolismo , Morfogênese/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Poliadenilação/genética , Interferência de RNA , RNA Mensageiro/genética , RNA de Plantas/genética , RNA Interferente Pequeno , Reprodução/fisiologia , Esporângios/fisiologia , Transcriptoma/genética
14.
Biosci Biotechnol Biochem ; 79(4): 581-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25495132

RESUMO

In our continuing search for novel antiangiogenic agents, a new lignan glycoside, (7R,8R)-1-(4-O-ß-d-glucopyranosyl-3-methoxyphenyl)-2-{2-methoxy-4-[1-(E)-propene-3-ol]-phenoxyl}-propane-1,3-diol (1), along with three known lignans (2-4), were isolated from the 80% EtOH extract of Brandisia hancei stems and leaves. These isolates (1-4) were subjected to an in vitro bioassay to evaluate their effects on vascular endothelial growth factor (VEGF)-induced vascular permeability and migration of human retinal endothelial cells (HRECs). Of the compounds tested, compound 1 resulted in the greatest reduction in VEGF-induced vascular permeability by about 31.5% at 10 µM compared to the VEGF-treated control. In the migration assay, compounds 1 and 2 significantly decreased VEGF-induced HREC migration. Furthermore, zebrafish embryos treated with compounds 1 and 2 showed mild reductions of dorsal longitudinal anastomotic vessel (DLAV) formation.


Assuntos
Inibidores da Angiogênese/farmacologia , Vasos Sanguíneos/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Glicosídeos/farmacologia , Lignanas/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/isolamento & purificação , Animais , Bioensaio , Vasos Sanguíneos/embriologia , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Expressão Gênica , Glicosídeos/química , Glicosídeos/isolamento & purificação , Humanos , Lamiales/química , Lignanas/química , Lignanas/isolamento & purificação , Estrutura Molecular , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Extratos Vegetais/química , Folhas de Planta/química , Caules de Planta/química , Retina/citologia , Retina/efeitos dos fármacos , Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Peixe-Zebra
15.
PLoS One ; 9(9): e106977, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25188307

RESUMO

Hypocretin/Orexin (H/O) neuropeptides are released by a discrete group of neurons in the vertebrate hypothalamus which play a pivotal role in the maintenance of waking behavior and brain state control. Previous studies have indicated that the H/O neuronal development differs between mammals and fish; H/O peptide-expressing cells are detectable during the earliest stages of brain morphogenesis in fish, but only towards the end of brain morphogenesis (by ∼ 85% of embryonic development) in rats. The developmental emergence of H/O neurons has never been previously described in birds. With the goal of determining whether the chick developmental pattern was more similar to that of mammals or of fish, we investigated the emergence of H/O-expressing cells in the brain of chick embryos of different ages using immunohistochemistry. Post-natal chick brains were included in order to compare the spatial distribution of H/O cells with that of other vertebrates. We found that H/O-expressing cells appear to originate from two separate places in the region of the diencephalic proliferative zone. These developing cells express the H/O neuropeptide at a comparatively early age relative to rodents (already visible at 14% of the way through fetal development), thus bearing a closer resemblance to fish. The H/O-expressing cell population proliferates to a large number of cells by a relatively early embryonic age. As previously suggested, the distribution of H/O neurons is intermediate between that of mammalian and non-mammalian vertebrates. This work suggests that, in addition to its roles in developed brains, the H/O peptide may play an important role in the early embryonic development of non-mammalian vertebrates.


Assuntos
Proteínas Aviárias/genética , Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/metabolismo , Morfogênese/genética , Neurônios/metabolismo , Orexinas/genética , Fatores Etários , Animais , Proteínas Aviárias/metabolismo , Embrião de Galinha , Hipotálamo/citologia , Hipotálamo/embriologia , Neurônios/citologia , Orexinas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Especificidade da Espécie
16.
Theory Biosci ; 133(3-4): 145-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24737046

RESUMO

In developmental and evolutionary biology, particular emphasis has been given to the relationship between transcription factors and the cognate cis-regulatory elements of their target genes. These constitute the gene regulatory networks that control expression and are assumed to causally determine the formation of structures and body plans. Comparative analysis has, however, established a broad sequence homology among species that nonetheless display quite different anatomies. Transgenic experiments have also confirmed that many developmentally important elements are, in fact, functionally interchangeable. Although dependent upon the appropriate degree of gene expression, the actual construction of specific structures appears not directly linked to the functions of gene products alone. Instead, the self-formation of complex patterns, due in large part to epigenetic and non-genetic determinants, remains a persisting theme in the study of ontogeny and regenerative medicine. Recent evidence indeed points to the existence of a self-organizing process, operating through a set of intrinsic rules and forces, which imposes coordination and a holistic order upon cells and tissue. This has been repeatedly demonstrated in experiments on regeneration as well as in the autonomous formation of structures in vitro. The process cannot be wholly attributed to the functional outcome of protein-protein interactions or to concentration gradients of diffusible chemicals. This phenomenon is examined here along with some of the methodological and theoretical approaches that are now used in understanding the causal basis for self-organization in development and its evolution.


Assuntos
Epigênese Genética/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/genética , Modelos Genéticos , Morfogênese/genética , Proteoma/genética , Transdução de Sinais/genética , Animais , Humanos , Mutação/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-24281353

RESUMO

Among the major distance senses of vertebrates, the ear is unique in its complex morphological changes during evolution. Conceivably, these changes enable the ear to adapt toward sensing various physically well-characterized stimuli. This review develops a scenario that integrates sensory cell with organ evolution. We propose that molecular and cellular evolution of the vertebrate hair cells occurred prior to the formation of the vertebrate ear. We previously proposed that the genes driving hair cell differentiation were aggregated in the otic region through developmental re-patterning that generated a unique vertebrate embryonic structure, the otic placode. In agreement with the presence of graviceptive receptors in many vertebrate outgroups, it is likely that the vertebrate ear originally functioned as a simple gravity-sensing organ. Based on the rare occurrence of angular acceleration receptors in vertebrate outgroups, we further propose that the canal system evolved with a more sophisticated ear morphogenesis. This evolving morphogenesis obviously turned the initial otocyst into a complex set of canals and recesses, harboring multiple sensory epithelia each adapted to the acquisition of a specific aspect of a given physical stimulus. As support for this evolutionary progression, we provide several details of the molecular basis of ear development.


Assuntos
Evolução Biológica , Orelha Interna , Células Ciliadas Auditivas , Morfogênese/genética , Vertebrados , Estimulação Acústica , Animais , Orelha Interna/anatomia & histologia , Orelha Interna/crescimento & desenvolvimento , Orelha Interna/fisiologia , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/fisiologia , Audição/genética , Mutação
18.
Theor Appl Genet ; 126(9): 2289-97, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23748707

RESUMO

Oleosin is the most abundant protein in the oil bodies of plant seeds, playing an important role in regulating oil body formation and lipid accumulation. To investigate whether lipid accumulation in transgenic rice seeds depends on the expression level of oleosin, we introduced two soybean oleosin genes encoding 24 kDa proteins into rice under the control of an embryo-specific rice promoter REG-2. Overexpression of soybean oleosin in transgenic rice leads to an increase of seed lipid content up to 36.93 and 46.06 % higher than that of the non-transgenic control, respectively, while the overall fatty acid profiles of triacylglycerols remained unchanged. The overexpression of soybean oleosin in transgenic rice seeds resulted in more numerous and smaller oil bodies compared with wild type, suggesting that an inverse relationship exists between oil body size and the total oleosin level. The increase in lipid content is accompanied by a reduction in the accumulation of total seed protein. Our results suggest that it is possible to increase rice seed oil content for food use and for use as a low-cost feedstock for biodiesel by overexpressing oleosin in rice seeds.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , Oryza/química , Oryza/genética , Proteínas de Soja/genética , DNA de Plantas/genética , Genes de Plantas , Morfogênese/genética , Óleos de Plantas/análise , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Sementes/química , Sementes/genética , Proteínas de Soja/metabolismo
19.
BMC Med Genomics ; 4: 49, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21649900

RESUMO

BACKGROUND: Glioblastoma is a complex multifactorial disorder that has swift and devastating consequences. Few genes have been consistently identified as prognostic biomarkers of glioblastoma survival. The goal of this study was to identify general and clinical-dependent biomarker genes and biological processes of three complementary events: lifetime, overall and progression-free glioblastoma survival. METHODS: A novel analytical strategy was developed to identify general associations between the biomarkers and glioblastoma, and associations that depend on cohort groups, such as race, gender, and therapy. Gene network inference, cross-validation and functional analyses further supported the identified biomarkers. RESULTS: A total of 61, 47 and 60 gene expression profiles were significantly associated with lifetime, overall, and progression-free survival, respectively. The vast majority of these genes have been previously reported to be associated with glioblastoma (35, 24, and 35 genes, respectively) or with other cancers (10, 19, and 15 genes, respectively) and the rest (16, 4, and 10 genes, respectively) are novel associations. Pik3r1, E2f3, Akr1c3, Csf1, Jag2, Plcg1, Rpl37a, Sod2, Topors, Hras, Mdm2, Camk2g, Fstl1, Il13ra1, Mtap and Tp53 were associated with multiple survival events.Most genes (from 90 to 96%) were associated with survival in a general or cohort-independent manner and thus the same trend is observed across all clinical levels studied. The most extreme associations between profiles and survival were observed for Syne1, Pdcd4, Ighg1, Tgfa, Pla2g7, and Paics. Several genes were found to have a cohort-dependent association with survival and these associations are the basis for individualized prognostic and gene-based therapies. C2, Egfr, Prkcb, Igf2bp3, and Gdf10 had gender-dependent associations; Sox10, Rps20, Rab31, and Vav3 had race-dependent associations; Chi3l1, Prkcb, Polr2d, and Apool had therapy-dependent associations. Biological processes associated glioblastoma survival included morphogenesis, cell cycle, aging, response to stimuli, and programmed cell death. CONCLUSIONS: Known biomarkers of glioblastoma survival were confirmed, and new general and clinical-dependent gene profiles were uncovered. The comparison of biomarkers across glioblastoma phases and functional analyses offered insights into the role of genes. These findings support the development of more accurate and personalized prognostic tools and gene-based therapies that improve the survival and quality of life of individuals afflicted by glioblastoma multiforme.


Assuntos
Envelhecimento/genética , Biomarcadores Tumorais/genética , Ciclo Celular/genética , Genes Neoplásicos/genética , Glioblastoma/genética , Glioblastoma/patologia , Morfogênese/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Estudos de Coortes , Sondas de DNA/metabolismo , Progressão da Doença , Intervalo Livre de Doença , Feminino , Redes Reguladoras de Genes/genética , Glioblastoma/enzimologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Proteína Quinase C/metabolismo , Proteína Quinase C beta , Sequências Repetitivas de Aminoácidos , Reprodutibilidade dos Testes , Espectrina/química , Análise de Sobrevida , Adulto Jovem
20.
Eur J Neurosci ; 32(5): 693-706, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21050275

RESUMO

A role for endocannabinoid signaling in neuronal morphogenesis as the brain develops has recently been suggested. Here we used the developing somatosensory circuit as a model system to examine the role of endocannabinoid signaling in neural circuit formation. We first show that a deficiency in cannabinoid receptor type 1 (CB(1)R), but not G-protein-coupled receptor 55 (GPR55), leads to aberrant fasciculation and pathfinding in both corticothalamic and thalamocortical axons despite normal target recognition. Next, we localized CB(1)R expression to developing corticothalamic projections and found little if any expression in thalamocortical axons, using a newly established reporter mouse expressing GFP in thalamocortical projections. A similar thalamocortical projection phenotype was observed following removal of CB(1)R from cortical principal neurons, clearly demonstrating that CB(1)R in corticothalamic axons was required to instruct their complimentary connections, thalamocortical axons. When reciprocal thalamic and cortical connections meet, CB(1)R-containing corticothalamic axons are intimately associated with elongating thalamocortical projections containing DGLß, a 2-arachidonoyl glycerol (2-AG) synthesizing enzyme. Thus, 2-AG produced in thalamocortical axons and acting at CB(1)Rs on corticothalamic axons is likely to modulate axonal patterning. The presence of monoglyceride lipase, a 2-AG degrading enzyme, in both thalamocortical and corticothalamic tracts probably serves to restrict 2-AG availability. In summary, our study provides strong evidence that endocannabinoids are a modulator for the proposed 'handshake' interactions between corticothalamic and thalamocortical axons, especially for fasciculation. These findings are important in understanding the long-term consequences of alterations in CB(1)R activity during development, a potential etiology for the mental health disorders linked to prenatal cannabis use.


Assuntos
Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Morfogênese/fisiologia , Vias Neurais/crescimento & desenvolvimento , Células Piramidais/crescimento & desenvolvimento , Receptor CB1 de Canabinoide/fisiologia , Tálamo/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Moduladores de Receptores de Canabinoides/metabolismo , Moduladores de Receptores de Canabinoides/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese/genética , Vias Neurais/embriologia , Técnicas de Rastreamento Neuroanatômico/métodos , Células Piramidais/embriologia , Receptor CB1 de Canabinoide/genética , Receptores de Canabinoides/genética , Receptores de Canabinoides/fisiologia , Tálamo/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA