Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6954, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521809

RESUMO

Mucin protein glycosylation is important in determining biological properties of mucus gels, which form protective barriers at mucosal surfaces of the body such as the intestine. Ecological factors including: age, sex, and diet can change mucus barrier properties by modulating mucin glycosylation. However, as our understanding stems from controlled laboratory studies in house mice, the combined influence of ecological factors on mucin glycosylation in real-world contexts remains limited. In this study, we used histological staining with 'Alcian Blue, Periodic Acid, Schiff's' and 'High-Iron diamine' to assess the acidic nature of mucins stored within goblet cells of the intestine, in a wild mouse population (Mus musculus). Using statistical models, we identified sex as among the most influential ecological factors determining the acidity of intestinal mucin glycans in wild mice. Our data from wild mice and experiments using laboratory mice suggest estrogen signalling associates with an increase in the relative abundance of sialylated mucins. Thus, estrogen signalling may underpin sex differences observed in the colonic mucus of wild and laboratory mice. These findings highlight the significant influence of ecological parameters on mucosal barrier sites and the complementary role of wild populations in augmenting standard laboratory studies in the advancement of mucus biology.


Assuntos
Colo , Mucinas , Camundongos , Feminino , Masculino , Animais , Mucinas/metabolismo , Colo/patologia , Células Caliciformes/metabolismo , Intestinos , Estrogênios/metabolismo , Mucina-2/metabolismo , Mucosa Intestinal/metabolismo
2.
Fitoterapia ; 172: 105746, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967772

RESUMO

Cholelithiasis is a common and frequently occurring disease worldwide that belongs to the category of jaundice in traditional Chinese medicine. Yinchenhao decoction (YD) consists of Artemisia capillaris Thunb., Gardenia jasminoides J.Ellis, and Rheum palmatum L., and is traditionally used to treat jaundice, which has a significant therapeutic effect on cholelithiasis. Our study aimed to investigate the pathological mechanism of cholelithiasis and the therapeutic mechanism of YD via mucin in the gallbladder and intestine. YD was prepared and analyzed using HPLC. The supersaturation stability experiment was designed by the solvent-shift method. The cell transport experiment was conducted by coculture monolayers. The animal experiment was performed using a cholelithiasis model with a high-cholesterol diet. The related indicators were detected by automatic biochemical analyzer, PCR, western blot, or ELISA. Statistics were analyzed using χ2-tests and t-tests. As the results, in cholelithiasis, MUC5AC highly expressed in the gallbladder shortened cholesterol supersaturation and promoted cholesterol crystallization via the inflammatory cytokine signaling pathway; MUC2 highly expressed in the small intestine prolonged cholesterol supersaturation and promoted cholesterol absorption via the inflammatory cytokine signaling pathway. YD inhibited mucin expression in the gallbladder and intestine in a concentration-dependent manner for cholelithiasis treatment by inhibiting the inflammatory cytokine signaling pathway, which was attributed to the active components, including chlorogenic acid, geniposide, and rhein.


Assuntos
Colelitíase , Medicamentos de Ervas Chinesas , Icterícia , Animais , Vesícula Biliar/química , Vesícula Biliar/metabolismo , Mucinas/metabolismo , Estrutura Molecular , Colelitíase/tratamento farmacológico , Colelitíase/química , Colelitíase/metabolismo , Colesterol/metabolismo , Icterícia/metabolismo , Intestinos/química , Citocinas/metabolismo
3.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958911

RESUMO

The application of vaterite microparticles for mucosal delivery depends on their interaction with mucin and immune cells. As we have shown previously, the binding of mucin onto particles enhances the generation of reactive oxygen species by neutrophils. The attenuation of the pro-oxidant effect of the bound mucin through the modification of vaterite could improve its biocompatibility. Hybrid microparticles composed of vaterite and pectin (CCP) were prepared using co-precipitation. In comparison with vaterite (CC), they had a smaller diameter and pores, a greater surface area, and a negative zeta-potential. We aimed to study the cytotoxicity and mucin-dependent neutrophil-activating effect of CCP microparticles. The incorporated pectin did not influence the neutrophil damage according to a lactate dehydrogenase test. The difference in the CC- and CCP-elicited luminol or lucigenin chemiluminescence of neutrophils was insignificant, with no direct pro- or antioxidant effects from the incorporated pectin. Unlike soluble pectin, the CCP particles were ineffective at scavenging radicals in an ABAP-luminol test. The fluorescence of SYTOX Green demonstrated a CCP-stimulated formation of neutrophil extracellular traps (NETs). The pre-treatment of CC and CCP with mucin resulted in a 2.5-times-higher CL response of neutrophils to the CC-mucin than to the CCP-mucin. Thus, the incorporation of pectin into vaterite microspheres enabled an antioxidant effect to be reached when the neutrophils were activated by mucin-treated microparticles, presumably via exposed ligands.


Assuntos
Carbonato de Cálcio , Pectinas , Pectinas/farmacologia , Pectinas/metabolismo , Carbonato de Cálcio/farmacologia , Luminol/metabolismo , Mucinas/metabolismo , Ativação de Neutrófilo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Neutrófilos/metabolismo
4.
Mol Cells ; 46(11): 700-709, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37750239

RESUMO

Mucus hyperproduction and hypersecretion are observed often in respiratory diseases. MUC8 is a glycoprotein synthesized by epithelial cells and generally expressed in the respiratory track. However, the physiological mechanism by which extracellular nucleotides induce MUC8 gene expression in human airway epithelial cells is unclear. Here, we show that UTP could induce MUC8 gene expression through P2Y2-PLCß3-Ca2+ activation. Because the full-length cDNA sequence of MUC8 has not been identified, a specific siRNA-MUC8 was designed based on the partial cDNA sequence of MUC8. siRNA-MUC8 significantly increased TNF-α production and decreased IL-1Ra production, suggesting that MUC8 may downregulate UTP/P2Y2-induced airway inflammation. Interestingly, the PDZ peptide of ZO-1 protein strongly abolished UTP-induced TNF-α production and increased IL-1Ra production and MUC8 gene expression. In addition, the PDZ peptide dramatically increased the levels of UTP-induced ZO proteins and TEER (trans-epithelial electrical resistance). These results show that the anti-inflammatory mucin MUC8 may contribute to homeostasis, and the PDZ peptide can be a novel therapeutic candidate for UTP-induced airway inflammation.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1 , Mucinas , Humanos , Mucinas/genética , Mucinas/metabolismo , Uridina Trifosfato/metabolismo , DNA Complementar , Fator de Necrose Tumoral alfa/metabolismo , Células Epiteliais/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , RNA Interferente Pequeno/metabolismo , Inflamação/metabolismo
5.
Int Immunopharmacol ; 117: 109888, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36827918

RESUMO

Nucleotides (NTs) play a pivotal role in the growth and development of the intestine. This study aimed to evaluate the effects of nucleotides supplementation on the intestinal barrier function, immune responses and microbiota in 3-day-old weaned piglets. Ninety-six piglets weaned at 3-days after birth were randomly assigned to 2 treatments (6 replicates/treatment, 8 piglets/replicate) according to the average body weight. The dietary treatments consisted of the control (CON; fed a basal artificial milk) and nucleotides groups (NT; fed a basal artificial milk with 0.035 % nucleotides, the contents of CMP, UMP, AMP, GMP, and IMP were 1:1:1:1:1, respectively). Diarrhea rates were recorded, and blood and intestinal samples were collected on day 35 of the piglets. The current study showed that NTs supplementation tended to decrease the diarrhea rate of weaned piglets (P < 0.10). NTs increased villus height and the villus height-to-crypt depth (V/C) ratio in the ileum (P < 0.05). Dietary NTs up-regulated protein expression of ZO-1 in ileal mucosa (P < 0.05), and the protein expression of Occludin tended to increase. Furthermore, NTs up-regulated the mRNA expression of Mucin (MUC)2, while the mRNA expression of MUC4 was down-regulated in the ileal mucosa (P < 0.05). Besides, supplementation with NTs increased the ileal mucosa genes expression of IL-21, INF-γ, IL-10, IL-4, IL-6 and TNF-α (P < 0.05). Furthermore, dietary NTs increased the protein expression of NF-κB, IL-6 and TNF-α (P < 0.05), and the proteins expression of Occludin and p-NF-κB tended to be up-regulated in the ileal mucosa (P < 0.10). Furthermore, NTs supplementation increased short chain fatty acid in the colonic (P < 0.05). And NTs supplementation reduced the Firmicutes/Bacteroidota ratio in the colon, at the genus level, NTs enriched the relative abundance of Prevotella, Faecalibacterium and Olsenella (P < 0.05). These data indicate that NTs could increase the villus height, increase the V/C, regulate the expression of tight junction protein and mucin, improve the intestinal barrier of piglets, regulate the secretion of cytokines, improve the biological immunity, increase the abundance of beneficial bacteria, and thus reduce the diarrhea of piglets.


Assuntos
Suplementos Nutricionais , Microbiota , Animais , Diarreia/metabolismo , Suplementos Nutricionais/análise , Imunidade , Interleucina-6/metabolismo , Mucosa Intestinal , Mucinas/metabolismo , NF-kappa B/metabolismo , Nucleotídeos/metabolismo , Ocludina/genética , Ocludina/metabolismo , RNA Mensageiro/metabolismo , Suínos , Fator de Necrose Tumoral alfa/metabolismo , Desmame
6.
Sci Total Environ ; 869: 161824, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36720396

RESUMO

The accumulation of nanoplastics (NPs) in the environment has raised concerns about their impact on human health and the biosphere. The main aim of this study is to understand the mechanism that governs the capture of NPs by jellyfish mucus extracted from the jellyfish Aurelia sp. (A.a.) and compare the capture/removal efficiency to that of conventional coagulants and mucus from other organisms. The efficacy of A.a mucus to capture polystyrene and acrylic NPs (∼100 nm) from spiked wastewater treatment plant (WWTP) effluent was evaluated. The mucus effect on capture kinetics and destabilization of NPs of different polymer compositions, sizes and concentrations was quantified by means of fluorescent NPs, dynamic light scattering and zeta potential measurements and visualized by scanning electron microscopy. A dosing of A.a. mucus equivalent to protein concentrations of ∼2-4 mg L-1 led to a rapid change in zeta potential from a baseline of -30 mV to values close to 0 mV, indicating a marked change from a stable to a non-stable dispersion leading to a rapid (<10 min) and significant removal of NPs (60 %-90 %) from a stable suspension. The A.a. mucus outperformed all other mucus types (0-37 %) and coagulants (0 %-32 % for ferric chloride; 23-40 % for poly aluminum chlorohydrate), highlighting the potential for jellyfish mucus to be used as bio-flocculant. The results indicate a mucus-particle interaction consisting of adsorption-bridging and "mesh" filtration. Further insight is provided by carbohydrate composition and protein disruption analysis. Total protein disruption resulted in a complete loss of the A.a. mucus capacity to capture NPs, while the breaking of disulfide bonds and protein unfolding resulted in improved capture capacity. The study demonstrates that natural jellyfish mucin can capture and remove NPs in water and wastewater treatment systems more efficiently than conventional coagulants, highlighting the potential for development of a new type of bio-flocculant.


Assuntos
Nanopartículas , Cifozoários , Purificação da Água , Animais , Humanos , Mucinas/metabolismo , Microplásticos , Adsorção , Purificação da Água/métodos , Nanopartículas/química
7.
Biol Trace Elem Res ; 201(8): 4052-4061, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36402885

RESUMO

Pathological conditions and harmful drugs cause many gastrointestinal diseases in broiler chicken. The current study was conducted to investigate the effect of trace elements zinc (Zn) and selenium (Se) supplementation on histomorphology, immunological role, and functional activity of goblet cells (GCs) of the small intestine. The Alcian blue-periodic acid-Schiff (AB-PAS) was performed to assess the histomorphological changes in GCs, which revealed the regular dispersion with high electron density of GCs throughout the mucosal surface in the supplemented group. However, irregular dispersion with low electron density of GCs was present in the control group. The immunological functional role of GCs within the small intestine was examined by mucicarmine staining, immunohistochemistry, and immunofluorescence. The results showed a high mucin glycol protein secretion in the supplemented group, whereas limited mucin glycol protein secretion in the control group. Furthermore, the biological significance showed a high and low immunoreactivity of Muc2 and Muc13 in the supplemented and control groups, respectively. Immunofluorescence was used to confirm the immunosignaling of Muc2. Results revealed high immunosignaling of Muc2 at the apical part of the small intestine in the supplementation group, while low immunosignaling of Muc2 in the control group. Results suggest that trace element supplementation had significant effect on morphology and immunological role of GCs, which might be essential for immune function and health status of broiler chicken.


Assuntos
Galinhas , Oligoelementos , Animais , Galinhas/metabolismo , Oligoelementos/farmacologia , Oligoelementos/metabolismo , Células Caliciformes/metabolismo , Mucinas/metabolismo , Suplementos Nutricionais , Intestino Delgado/metabolismo
8.
J Ethnopharmacol ; 303: 115959, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436716

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Paeoniae Radix Rubra (PRR), the root of Paeonia lactiflora Pall., is a traditional Chinese medicine which has the effects of regulating various inflammatory diseases, treating blood stasis, and enhancing blood circulation. AIM OF THE STUDY: This study examined whether Paeoniae Radix rubra extract (PRRE) and Paeoniflorin (PF) affect mucin production, gene expression including MUC5AC, and protein expression related to the ERK pathway induced by TNF-α from human airway epithelial cells. MATERIALS AND METHODS: NCI-H292 cells induced by TNF-α were treated with each agent. MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription polymerase chain reaction, staining, and enzyme-linked immunosorbent assay. Western blot was used to investigate the cell signaling pathways. RESULTS: PRRE and PF inhibited the production of MUC5AC mucin protein and gene expression in TNF-α-induced H292 cells. In Western blot, PRRE was involved in protein expression related to the ERK pathway. CONCLUSIONS: Overall, PRRE effectively inhibited the MUC5AC, and inflammatory cytokines expression caused by TNF-α, which was closely involved in the ERK pathway. PRRE may have the potential for treating mucus producing respiratory inflammation.


Assuntos
Paeonia , Humanos , Mucinas/genética , Mucinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células Epiteliais , Expressão Gênica
9.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6414-6422, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38211999

RESUMO

This study investigated the therapeutic effect of Shegan Mahuang Decoction(SGMHD) on cold-induced asthma in rats and explored its underlying mechanism. Seventy-two healthy male SD rats of specific pathogen free(SPF) grade were randomly divided into a blank group, a model group, a positive control group(dexamethasone, 0.4 mg·kg~(-1)), and low-, medium-, and high-dose SGMHD groups(3.2, 6.4, and 12.8 g·kg~(-1)). The blank group received saline, while the other groups were sensitized by intraperitoneal injection of ovalbumin(OVA) solution. Subsequently, the rats were placed in a cold chamber adjustable to 0-2 ℃, and OVA solution was ultrasonically nebulized to induce cold-induced asthma in rats. After three weeks of treatment, the general behaviors of rats were observed. Hematoxylin-eosin(HE) staining was used to evaluate pathological changes in lung tissues, periodic acid-Schiff(PAS) staining assessed mucin changes, and Masson staining was performed to examine collagen deposition. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of the inflammatory factors interleukin-4(IL-4) and vascular endothelial growth factor(VEGF) in serum and bronchoalveolar lavage fluid(BALF). Real-time quantitative polymerase chain reaction(RT-PCR) was employed to assess the mRNA expression levels of transient receptor potential vanilloid subfamily member 1(TRPV1), nuclear respiratory factor 1(NRF-1), and mitochondrial transcription factor A(mtTFA) in lung tissues. Western blot was used to measure the protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues. Compared with the blank group, the model group exhibited signs of rapid respiration, increased frequency of defecation with looser stools, and disheveled and dull fur. Pathological results showed significant infiltration of inflammatory cells in lung tissues, narrowing of bronchial lumens, increased mucin secretion, and enhanced collagen deposition in the model group. Additionally, the levels of IL-4 and VEGF in serum and BALF were significantly elevated, and the mRNA and protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues were significantly increased. Compared with the model group, SGMHD improved the behaviors of rats, alleviated pathological changes in lung tissues, mucin production, and collagen deposition, significantly decreased the levels of IL-4 and VEGF in serum and BALF, and reduced the mRNA expression levels of TRPV1, NRF-1, and mtTFA in lung tissues, with the medium-dose SGMHD group showing the most significant effect. Moreover, the protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues were also reduced, with the medium-dose SGMHD group exhibiting the most significant effect. In conclusion, this study demonstrates that SGMHD can alleviate airway inflammation and inhibit airway remodeling in cold-induced asthma rats. These effects may be associated with the modulation of the TRPV1/NRF-1/mtTFA signaling pathway.


Assuntos
Asma , Medicamentos de Ervas Chinesas , Interleucina-4 , Ratos , Masculino , Animais , Camundongos , Interleucina-4/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ratos Sprague-Dawley , Asma/tratamento farmacológico , Asma/genética , Pulmão , Líquido da Lavagem Broncoalveolar , RNA Mensageiro/metabolismo , Colágeno/metabolismo , Mucinas/metabolismo , Mucinas/farmacologia , Mucinas/uso terapêutico , Ovalbumina , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
10.
Sci Rep ; 12(1): 17407, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36258027

RESUMO

Improving maternal nutrition during pregnancy/lactation is a promising strategy to maximise the intestinal health of piglets undergoing abrupt weaning under commercial production conditions. This experiment investigated the effects of maternal supplementation of a casein hydrolysate and yeast ß-glucan (CH-YBG) from day 83 of gestation until weaning (day 28) on sow faecal microbial populations and measures of piglet gastrointestinal health parameters at weaning. Sows (n = 10 sows/group) were assigned to: (1) control diet, and (2) control diet + CH-YBG. Maternal supplementation increased the abundance of the phylum Firmicutes, including members Lactobacillus in the sows faeces, with a concomitant increase in the caecal abundance of Lactobacillus in the weaned piglets compared to the controls. Piglets weaned from the supplemented sows had increased villus height in the duodenum (P < 0.05) and increased villus height to crypt depth ratio in the jejunum, as well as a decreased expression of the proinflammatory cytokine genes (IL6/TNF/TGFB), the tight junction gene CLDN3 and the mucin gene MUC2 in the duodenum/jejunum compared to the controls (P < 0.05). In conclusion, maternal CH-YBG supplementation during pregnancy/lactation improved microbial, structural, and inflammatory measures of gastrointestinal health of piglets at weaning. This is a promising strategy to alleviate the challenges that occur with early abrupt weaning in commercial pig production.


Assuntos
Saccharomyces cerevisiae , beta-Glucanas , Animais , Suínos , Feminino , Gravidez , Desmame , Colostro/química , Ração Animal/análise , Leite/química , beta-Glucanas/metabolismo , Interleucina-6/metabolismo , Lactação , Suplementos Nutricionais , Dieta/veterinária , Mucinas/metabolismo
11.
Biosci Rep ; 42(10)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36124858

RESUMO

Eremina desertorum snail mucin antioxidant and anti-inflammatory effects were investigated against carbon tetrachloride (CCl4)-intestinal inflammation and testes damage. Male albino mice were intraperitoneally injected with 0.5 ml/kg b.wt of 40% CCl4, twice a week for 8 weeks. The treated groups were treated orally with mucin (after 8 weeks of CCl4 intoxication, twice a week for 4 weeks). CCl4 caused significant increases in C-reactive protein, lipid peroxidation, interleukin-2 levels and caspase-3, while decreasing the total proteins levels, activities of catalase, superoxide dismutase, and glutathione reductase contents, testosterone and 17ß estradiol levels compared with the control mice. The improvements of these parameters occurred after treatment with E. desertorum mucin, where all the biochemical measurements tended to restore to the normal values. Histopathologically, CCl4 caused ulceration in the columnar mucin secreting cells that lined the ileal mucosa, partial loss of goblet cells, abnormal villous/crypt ratio, and submucosal infiltrate of the inflammatory cells. Also, sections of testis showed alterations in the developmental spermatogenic arrangement of the same seminiferous tubules, with no spermatozoa in the center. Improvements in these architectures occurred after administration of mucin, where sections showed almost normal histological structure. In conclusion, E. desertorum mucin could be used as a supplementary material as it has antioxidant and anti-inflammatory effects; besides it has low cost.


Assuntos
Antioxidantes , Testículo , Masculino , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Testículo/metabolismo , Mucinas/metabolismo , Estresse Oxidativo , Peroxidação de Lipídeos , Extratos Vegetais , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Caramujos/metabolismo
12.
Food Funct ; 13(18): 9311-9323, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-35997173

RESUMO

Artemisia annua L. (A. annua) contains artemisinin, which attracts attention on account of its anti-inflammatory and anti-oxidant effects. Increased intestinal inflammation, oxidative stress, and hypoimmunity commonly occur in neonatal and early-weaning piglets. Abundant evidence suggests that maternal nutritional interventions during pregnancy modify the offspring's long-term gut development. The present study was conducted to investigate the effects of maternal A. annua extract (AAE) supplementation on the offspring's intestinal inflammation and redox status. A total of 90 pregnant sows were assigned randomly and equally into the control (CON) group (fed with a basal diet) and the 0.1% (AAE) group (basal diet with 1.0 g kg-1 AAE) during late gestation and lactation. The results showed that 0.1% AAE supplementation significantly decreased the contents and relative mRNA expressions of interleukin (IL)-1ß, IL-6, and IL-12, and tumor necrosis factor-α in the small intestine of the newborn and weaned piglets (offspring) (P < 0.05). There were higher activities of total antioxidant capacity and total superoxide dismutase, whereas a lower concentration of malondialdehyde in the small instestine of offspring in the 0.1% AAE group than that in the CON group (P < 0.05). Furthermore, the 0.1% AAE group decreased the mRNA and protein expressions of Toll-like receptor 4 (TLR4) and inhibited the activation of TLR4-mediated nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways (P < 0.05). The mRNA expression of peroxisome proliferator activated receptor γ (PPARγ), porcine beta-defensin (PBD)-1, PBD-2, PBD-3, mucin (MUC)-1, MUC-2 and MUC-4 was significantly enhanced in the small intestine of both neonatal and weanling piglets (P < 0.05). Together, these results showed that maternal 0.1% AAE supplementation improved the redox status and attenuated the neonatal and early-weaning associated inflammatory response in the offspring's small intestine, possibly by suppressing the activation of the TLR4/NF-κB and MAPK inflammatory pathways, and stimulated expressions of beta-defensins, mucins, and PPARγ to promote inflammation resolution and innate immunity response.


Assuntos
Artemisia annua , Artemisininas , beta-Defensinas , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Artemisia annua/metabolismo , Artemisininas/farmacologia , Suplementos Nutricionais/análise , Feminino , Inflamação/tratamento farmacológico , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Malondialdeído , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mucinas/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Oxirredução , Estresse Oxidativo , PPAR gama/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Superóxido Dismutase/metabolismo , Suínos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , beta-Defensinas/metabolismo
13.
Fitoterapia ; 162: 105278, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35970410

RESUMO

Asthma is a high-incidence disease in the world. Oxysophocarpine (OSC), a quinolizidine alkaloid displays various pharmacological functions including anti-inflammation, neuroprotective, anti-virus and antioxidant. Here, we established mice and cell asthmatic model to explore the effects of OSC for asthma treatment. Mice were sensitized and challenged with ovalbumin (OVA) and treated with OSC before challenge. Enzyme-linked immuno sorbent assay (ELISA), hematoxylin and eosin (H&E), periodic acid-schiff (PAS), tolonium chloride staining and immunohistochemical assay were performed. OSC treatment inhibited inflammatory cell infiltration and mucus secretion in the airway, reduced IgE level in mouse serum and decreased IL-4, IL-5 production in bronchoalveolar lavage fluid (BALF). OSC also reduced the spleen index to regulate immune function. Meanwhile, NCI-H292 cells were induced by lipopolysaccharide (LPS) to simulate airway epithelial injury. OSC pretreatment decreased the IL-6 and IL-8 cytokine levels, mucin 5 AC expression, and mucin 5 AC mRNA level in the cell model. Further, OSC suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), and activator protein 1 (AP-1, Fos and Jun). These findings revealed that OSC alleviated bronchial asthma associated with JNK/AP-1 signaling pathway.


Assuntos
Alcaloides , Asma , Quinolizidinas , Alcaloides/metabolismo , Alcaloides/farmacologia , Animais , Antioxidantes/farmacologia , Asma/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Amarelo de Eosina-(YS)/uso terapêutico , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Hematoxilina/uso terapêutico , Imunoglobulina E , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Interleucina-4/uso terapêutico , Interleucina-5/metabolismo , Interleucina-5/farmacologia , Interleucina-5/uso terapêutico , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Mucinas/metabolismo , Mucinas/farmacologia , Mucinas/uso terapêutico , Muco/metabolismo , Ovalbumina/metabolismo , Ácido Periódico/metabolismo , Ácido Periódico/farmacologia , Ácido Periódico/uso terapêutico , Quinolizidinas/farmacologia , RNA Mensageiro/metabolismo , Cloreto de Tolônio/metabolismo , Cloreto de Tolônio/farmacologia , Cloreto de Tolônio/uso terapêutico , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/farmacologia , Fator de Transcrição AP-1/uso terapêutico
14.
Environ Toxicol ; 37(9): 2153-2166, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35567572

RESUMO

1,2-Dimethylhydrazine (DMH), a colon-specific environmental toxicant is one among the carcinogen responsible for the cause of colon cancer. The present study was designed to evaluate the protective effect of Hesperetin (HST) against colon toxicity induced by DMH in Wistar rats. HST, a flavonoid widely found in citrus fruits possesses several biological activities including anti-microbial, anti-oxidant properties among others. A single dose of DMH (40 mg/kg body weight) was administered subcutaneously on 1st day for induction of colon toxicity followed by oral treatment with HST at a dose of 20 mg/kg bodyweight for 14 consecutive days. DMH administration leads to excessive ROS generation, resulting in an imbalance in redox homeostasis and causing membrane lipid peroxidation, which is also partly due to the decrease in the level of tissue antioxidant machinery. Our result showed HST significantly ameliorates DMH-induced lipid peroxidation and also substantially increases the activity/level of various anti-oxidant proteins (GR, GPx, GST, GSH, and SOD). HST was also found to reduce the expression of inflammatory proteins (TNF-α, IL-6, i-NOS, COX-2, NF-kB-p65), goblet cell disintegration as well as mucin depletion (sulfo and sialomucin) in the colon that was found to be elevated upon administration of DMH. Our histological results further provide confirmation of the protective role of HST against DMH-induced pathological alterations. The results of the present study demonstrate supplementation of HST is beneficial in ameliorating DMH-induced toxicity by suppressing oxidative stress, inflammation, goblet cell disintegration as well mucin depletion in the colon of Wistar rats.


Assuntos
Neoplasias do Colo , Hesperidina , Estresse Oxidativo , 1,2-Dimetilidrazina/toxicidade , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Colo/metabolismo , Neoplasias do Colo/patologia , Glutationa/metabolismo , Hesperidina/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Mucinas/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
15.
Food Funct ; 13(8): 4399-4420, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35297435

RESUMO

Background: Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon with a continuously remitting and relapsing course. Its etiology is closely related to abnormal interactions between host and gut microbiota. The mucus barrier lining the gastrointestinal tract is necessary to coordinate host and gut microbiota interaction by nourishing and modulating the microbiota. Differential effects of the anti-inflammatory fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on UC progression in mice were firstly addressed by our previous work; here, the mechanism for their respective effects were further uncovered from host-microbiome crosstalk based on mucus barrier modulation to pave the way for UC therapy. Methods: Assessment of the disease activity index and histopathology score was conducted in mice with dextran sodium sulfate (DSS)-induced colitis pre-treated with different doses of EPA and DHA. Mucin generation, glycosylation and secretion were evaluated by a combination of electron microscopy, specific mucous staining, and qPCR. Western blotting was used to analyze the underlying molecular events. Fecal short chain fatty acids were detected using gas chromatography, and the gut microbial composition was analyzed using 16S rRNA sequencing. Results: Compared with DHA, the more potent inhibitory effect of high dose EPA on DSS-induced colitis was reconfirmed, which was underlain by a reinforced mucus layer as indicated by increased mucin granule release, mucus layer stratification and markedly upregulated expression of the key modulators involved in goblet cell differentiation. In turn a remarkably enhanced mucus barrier in the EPA group functioned to modulate the gut microbiome, as demonstrated by the enriched abundance of the phylum Bacteroidetes and mucin-degrading bacterium Akkermansia muciniphila producing acetic and propionic acids. Conclusions: EPA and DHA differentially coordinate the interaction between the host and the gut microbiota and relieve mucus barrier disruption in DSS-induced colitis. EPA may develop into a promising adjunctive therapy for UC.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Colite Ulcerativa/tratamento farmacológico , Colo/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Mucinas/metabolismo , Muco/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Verrucomicrobia
16.
Nutrients ; 13(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34444752

RESUMO

Threonine (Thr), an essential amino acid for animals and the limiting amino acid in swine and poultry diets, which plays a vital role in the modulation of nutritional metabolism, macromolecular biosynthesis, and gut homeostasis. Current evidence supports that the supplementation of Thr leads to benefits in terms of energy metabolism. Threonine is not only an important component of gastrointestinal mucin, but also acts as a nutritional modulator that influences the intestinal immune system via complex signaling networks, particularly mitogen-activated protein kinase (MAPK) and the target of the rapamycin (TOR) signal pathway. Threonine is also recognized as an indispensable nutrient for cell growth and proliferation. Hence, optimization of Thr requirement may exert a favorable impact on the factors linked to health and diseases in animals. This review focuses on the latest reports of Thr in metabolic pathways and nutritional regulation, as well as the relationship between Thr and relevant physiological functions.


Assuntos
Metabolismo Energético , Estado Nutricional , Treonina/metabolismo , Aminoácidos/metabolismo , Animais , Dieta , Trato Gastrointestinal/metabolismo , Redes e Vias Metabólicas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mucinas/metabolismo , Sirolimo , Células-Tronco , Suínos
17.
Theranostics ; 11(13): 6193-6213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995653

RESUMO

Rationale: The pandemic caused by the novel coronavirus SARS-CoV-2 is advancing rapidly. In particular, the number of severe courses of the disease is still dramatically high. An efficient drug therapy that helps to improve significantly the fatal combination of damages in the airway epithelia, in the extensive pulmonary microvascularization and finally multiorgan failure, is missing. The physiological, inorganic polymer, polyphosphate (polyP) is a molecule which could prevent the initial phase of the virus life cycle, the attachment of the virus to the target cells, and improve the epithelial integrity as well as the mucus barrier. Results: Surprisingly, polyP matches perfectly with the cationic groove on the RBD. Subsequent binding studies disclosed that polyP, with a physiological chain length of 40 phosphate residues, abolishes the binding propensity of the RBD to the ACE2 receptor. In addition to this first mode of action of polyP, this polymer causes in epithelial cells an increased gene expression of the major mucins in the airways, of MUC5AC and MUC1, as well as a subsequent glycoprotein production. MUC5AC forms a gel-like mucus layer trapping inhaled particles which are then transported out of the airways, while MUC1 constitutes the periciliary liquid layer and supports ciliary beating. As a third mode of action, polyP undergoes enzymatic hydrolysis of the anhydride bonds in the airway system by alkaline phosphatase, releasing metabolic energy. Conclusions: This review summarizes the state of the art of the biotherapeutic potential of the polymer polyP and the findings from basic research and outlines future biomedical applications.


Assuntos
Tratamento Farmacológico da COVID-19 , Pandemias/prevenção & controle , Polifosfatos/farmacologia , Animais , Antivirais/química , Antivirais/uso terapêutico , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Camundongos , Mucinas/metabolismo , Nanopartículas/química , Polifosfatos/química , Polifosfatos/uso terapêutico , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Ligação Viral/efeitos dos fármacos
18.
Front Immunol ; 12: 670279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054843

RESUMO

The inclusion of a medicinal plant leaf extract (MPLE) from sage (Salvia officinalis) and lemon verbena (Lippia citriodora), rich in verbascoside and triterpenic compounds like ursolic acid, was evaluated in gilthead seabream (Sparus aurata) fed a low fishmeal-based diet (48% crude protein, 17% crude fat, 21.7 MJ kg-1, 7% fishmeal, 15% fish oil) for 92 days. In particular, the study focused on the effect of these phytogenic compounds on the gut condition by analyzing the transcriptomic profiling (microarray analysis) and histological structure of the intestinal mucosa, as well as the histochemical properties of mucins stored in goblet cells. A total number of 506 differentially expressed genes (285 up- and 221 down-regulated) were found when comparing the transcriptomic profiling of the intestine from fish fed the control and MPLE diets. The gut transcripteractome revealed an expression profile that favored biological mechanisms associated to the 1) immune system, particularly involving T cell activation and differentiation, 2) gut integrity (i.e., adherens and tight junctions) and cellular proliferation, and 3) cellular proteolytic pathways. The histological analysis showed that the MPLE dietary supplementation promoted an increase in the number of intestinal goblet cells and modified the composition of mucins' glycoproteins stored in goblet cells, with an increase in the staining intensity of neutral mucins, as well as in mucins rich in carboxylated and weakly sulfated glycoconjugates, particularly those rich in sialic acid residues. The integration of transcriptomic and histological results showed that the evaluated MPLE from sage and lemon verbena is responsible for the maintenance of intestinal health, supporting gut homeostasis and increasing the integrity of the intestinal epithelium, which suggests that this phytogenic may be considered as a promising sustainable functional additive for aquafeeds.


Assuntos
Imunidade nas Mucosas/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Junções Intercelulares/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Salvia officinalis , Dourada , Linfócitos T/efeitos dos fármacos , Verbenaceae , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/imunologia , Células Caliciformes/metabolismo , Fatores Imunológicos/isolamento & purificação , Junções Intercelulares/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Mucinas/metabolismo , Permeabilidade/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Salvia officinalis/química , Dourada/genética , Dourada/imunologia , Dourada/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Transcriptoma , Verbenaceae/química
19.
Sci Rep ; 11(1): 2216, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500454

RESUMO

Allantoin (ALL) is a phytochemical possessing an impressive array of biological activities. Nonetheless, developing a nanostructured delivery system targeted to augment the gastric antiulcerogenic activity of ALL has not been so far investigated. Consequently, in this survey, ALL-loaded chitosan/sodium tripolyphosphate nanoparticles (ALL-loaded CS/STPP NPs) were prepared by ionotropic gelation technique and thoroughly characterized. A full 24 factorial design was adopted using four independently controlled parameters (ICPs). Comprehensive characterization, in vitro evaluations as well as antiulcerogenic activity study against ethanol-induced gastric ulcer in rats of the optimized NPs formula were conducted. The optimized NPs formula, (CS (1.5% w/v), STPP (0.3% w/v), CS:STPP volume ratio (5:1), ALL amount (13 mg)), was the most convenient one with drug content of 6.26 mg, drug entrapment efficiency % of 48.12%, particle size of 508.3 nm, polydispersity index 0.29 and ζ-potential of + 35.70 mV. It displayed a sustained in vitro release profile and mucoadhesive strength of 45.55%. ALL-loaded CS/STPP NPs (F-9) provoked remarkable antiulcerogenic activity against ethanol-induced gastric ulceration in rats, which was accentuated by histopathological, immunohistochemical (IHC) and biochemical studies. In conclusion, the prepared ALL-loaded CS/STPP NPs could be presented to the phytomedicine field as an auspicious oral delivery system for gastric ulceration management.


Assuntos
Alantoína/uso terapêutico , Quitosana/química , Composição de Medicamentos , Nanopartículas/química , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Adesividade , Alantoína/química , Alantoína/farmacologia , Animais , Quitosana/análogos & derivados , Liberação Controlada de Fármacos , Etanol , Mucosa Gástrica/patologia , Mediadores da Inflamação/sangue , Cinética , Malondialdeído/metabolismo , Mucinas/metabolismo , Fator 2 Relacionado a NF-E2 , Nanopartículas/ultraestrutura , Estresse Oxidativo , Tamanho da Partícula , Difração de Pó , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Úlcera Gástrica/sangue , Úlcera Gástrica/patologia , Temperatura , Fator de Necrose Tumoral alfa/metabolismo
20.
Br J Nutr ; 125(9): 998-1006, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32912366

RESUMO

This study characterised the in vitro ileal fermentability of different substrates in the growing pig, adopted as an animal model for the adult human, and compared in vitro ileal and caecal fermentation in the pig. Substrates (arabinogalactan (AG), cellulose, fructo-oligosaccharide (FOS), inulin, mucin, citrus pectin and resistant starch) were fermented in vitro (ileal 2 h and caecal 24 h) with an ileal or caecal inoculum prepared from ileal or caecal digesta collected from growing pigs (n 5) fed a human-type diet for 15 d. The organic matter (OM) fermentability and production of organic acids were determined. In general, there was considerable in vitro ileal fermentation of fibre, and the substrates differed (P < 0·001) for both in vitro ileal and caecal OM fermentability and for organic acid production. Pectin had the greatest in vitro ileal OM fermentability (26 %) followed by AG, FOS and resistant starch (15 % on average), and cellulose, inulin and mucin (3 % on average). The fermentation of FOS, inulin and mucin was greater for in vitro caecal fermentation compared with the ileal counterpart (P ≤ 0·05). In general, the organic acid production was higher for in vitro caecal fermentation (P ≤ 0·05). For instance, the in vitro ileal acetic acid production represented 4-46 % of in vitro caecal production. Energy from fibre fermentation of 0·6-11 kJ/g substrate fermented could be expected in the ileum of the pig. In conclusion, substrates are fermented in both the ileum and caecum. The degree of fermentation varies among substrates, especially for in vitro ileal fermentation.


Assuntos
Bactérias/metabolismo , Ceco/microbiologia , Dieta Ocidental , Fibras na Dieta/metabolismo , Fermentação , Íleo/microbiologia , Animais , Ceco/metabolismo , Celulose/metabolismo , Fibras na Dieta/administração & dosagem , Digestão , Galactanos/metabolismo , Humanos , Íleo/metabolismo , Masculino , Modelos Animais , Mucinas/metabolismo , Oligossacarídeos/metabolismo , Pectinas/metabolismo , Amido/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA