Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(4): 641-661, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38221670

RESUMO

Sleep spindles are major oscillatory components of Non-Rapid Eye Movement (NREM) sleep, reflecting hyperpolarization-rebound sequences of thalamocortical neurons. Reports suggest a link between sleep spindles and several forms of high-frequency oscillations which are considered as expressions of pathological off-line neural plasticity in the central nervous system. Here we investigated the relationship between thalamic sleep spindles and ripples in the anterior and mediodorsal nuclei (ANT and MD) of epilepsy patients. Whole-night LFP from the ANT and MD were co-registered with scalp EEG/polysomnography by using externalized leads in 15 epilepsy patients undergoing a Deep Brain Stimulation protocol. Slow (~12 Hz) and fast (~14 Hz) sleep spindles were present in the human ANT and MD and roughly, 20% of them were associated with ripples. Ripple-associated thalamic sleep spindles were characterized by longer duration and exceeded pure spindles in terms of spindle power as indicated by time-frequency analysis. Furthermore, ripple amplitude was modulated by the phase of sleep spindles within both thalamic nuclei. No signs of pathological processes were correlated with measures of ripple and spindle association, furthermore, the density of ripple-associated sleep spindles in the ANT showed a positive correlation with verbal comprehension. Our findings indicate the involvement of the human thalamus in coalescent spindle-ripple oscillations of NREM sleep.


Assuntos
Epilepsia , Sono , Humanos , Sono/fisiologia , Tálamo/fisiologia , Eletroencefalografia , Núcleo Mediodorsal do Tálamo
2.
J Neurosci ; 43(46): 7780-7798, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37709539

RESUMO

Animal studies have established that the mediodorsal nucleus (MD) of the thalamus is heavily and reciprocally connected with all areas of the prefrontal cortex (PFC). In humans, however, these connections are difficult to investigate. High-resolution imaging protocols capable of reliably tracing the axonal tracts linking the human MD with each of the PFC areas may thus be key to advance our understanding of the variation, development, and plastic changes of these important circuits, in health and disease. Here, we tested in adult female and male humans the reliability of a new reconstruction protocol based on in vivo diffusion MRI to trace, measure, and characterize the fiber tracts interconnecting the MD with 39 human PFC areas per hemisphere. Our protocol comprised the following three components: (1) defining regions of interest; (2) preprocessing diffusion data; and, (3) modeling white matter tracts and tractometry. This analysis revealed largely separate PFC territories of reciprocal MD-PFC tracts bearing striking resemblance with the topographic layout observed in macaque connection-tracing studies. We then examined whether our protocol could reliably reconstruct each of these MD-PFC tracts and their profiles across test and retest sessions. Results revealed that this protocol was able to trace and measure, in both left and right hemispheres, the trajectories of these 39 area-specific axon bundles with good-to-excellent test-retest reproducibility. This protocol, which has been made publicly available, may be relevant for cognitive neuroscience and clinical studies of normal and abnormal PFC function, development, and plasticity.SIGNIFICANCE STATEMENT Reciprocal MD-PFC interactions are critical for complex human cognition and learning. Reliably tracing, measuring and characterizing MD-PFC white matter tracts using high-resolution noninvasive methods is key to assess individual variation of these systems in humans. Here, we propose a high-resolution tractography protocol that reliably reconstructs 39 area-specific MD-PFC white matter tracts per hemisphere and quantifies structural information from diffusion MRI data. This protocol revealed a detailed mapping of thalamocortical and corticothalamic MD-PFC tracts in four different PFC territories (dorsal, medial, orbital/frontal pole, inferior frontal) showing structural connections resembling those observed in tracing studies with macaques. Furthermore, our automated protocol revealed high test-retest reproducibility and is made publicly available, constituting a step forward in mapping human MD-PFC circuits in clinical and academic research.


Assuntos
Núcleo Mediodorsal do Tálamo , Córtex Pré-Frontal , Adulto , Animais , Humanos , Masculino , Feminino , Reprodutibilidade dos Testes , Córtex Pré-Frontal/diagnóstico por imagem , Tálamo , Cognição , Macaca , Vias Neurais/diagnóstico por imagem
3.
Schizophr Res ; 256: 26-35, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37126979

RESUMO

BACKGROUND: The thalamus is central to brain functions ranging from primary sensory processing to higher-order cognition. Structural deficits in thalamic association nuclei such as the pulvinar and mediodorsal nuclei have previously been reported in schizophrenia. However, the specificity with regards to clinical presentation, and whether or not bipolar disorder (BD) is associated with similar alterations is unclear. METHODS: We investigated thalamic nuclei volumes in 334 patients with schizophrenia spectrum disorders (SSD) (median age 29 years, 59 % male), 322 patients with BD (30 years, 40 % male), and 826 healthy controls (HC) (34 years, 54 % male). Volumes of 25 thalamic nuclei were extracted from T1-weighted magnetic resonance imaging using an automated Bayesian segmentation method and compared between groups. Furthermore, we explored associations with clinical characteristics across diagnostic groups, including psychotic and mood symptoms and medication use, as well as diagnostic subtype in BD. RESULTS: Significantly smaller volumes were found in the mediodorsal, pulvinar, and lateral and medial geniculate thalamic nuclei in SSD. Similarly, smaller volumes were found in BD in the same four regions, but mediodorsal nucleus volume alterations were limited to its lateral part and pulvinar alterations to its anterior region. Smaller volumes in BD compared to HC were seen only in BD type I, not BD type II. Across diagnoses, having more negative symptoms was associated with smaller pulvinar volumes. CONCLUSIONS: Structural alterations were found in both SSD and BD, mainly in the thalamic association nuclei. Structural deficits in the pulvinar may be of relevance for negative symptoms.


Assuntos
Esquizofrenia , Humanos , Masculino , Adulto , Feminino , Esquizofrenia/diagnóstico , Teorema de Bayes , Núcleos Talâmicos/diagnóstico por imagem , Núcleos Talâmicos/patologia , Tálamo/patologia , Núcleo Mediodorsal do Tálamo , Imageamento por Ressonância Magnética/métodos
4.
Cereb Cortex ; 33(11): 6742-6760, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36757182

RESUMO

Auditory gating (AG) is an adaptive mechanism for filtering out redundant acoustic stimuli to protect the brain against information overload. AG deficits have been found in many mental illnesses, including schizophrenia (SZ). However, the neural correlates of AG remain poorly understood. Here, we found that the posterior parietal cortex (PPC) shows an intermediate level of AG in auditory thalamocortical circuits, with a laminar profile in which the strongest AG is in the granular layer. Furthermore, AG of the PPC was decreased and increased by optogenetic inactivation of the medial dorsal thalamic nucleus (MD) and auditory cortex (AC), respectively. Optogenetically activating the axons from the MD and AC drove neural activities in the PPC without an obvious AG. These results indicated that AG in the PPC is determined by the integrated signal streams from the MD and AC in a bottom-up manner. We also found that a mouse model of SZ (postnatal administration of noncompetitive N-methyl-d-aspartate receptor antagonist) presented an AG deficit in the PPC, which may be inherited from the dysfunction of MD. Together, our findings reveal a neural circuit underlying the generation of AG in the PPC and its involvement in the AG deficit of SZ.


Assuntos
Córtex Auditivo , Vigília , Camundongos , Animais , Lobo Parietal/fisiologia , Tálamo , Núcleo Mediodorsal do Tálamo , Encéfalo , Córtex Auditivo/fisiologia
5.
Brain Res ; 1796: 148083, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108782

RESUMO

The dorsomedial nucleus of the hypothalamus (DMH) is part of the brain circuits that modulate organism responses to the circadian cycle, energy balance, and psychological stress. A large group of thyrotropin-releasing hormone (Trh) neurons is localized in the DMH; they comprise about one third of the DMH neurons that project to the lateral hypothalamus area (LH). We tested their response to various paradigms. In male Wistar rats, food restriction during adulthood, or chronic variable stress (CVS) during adolescence down-regulated adult DMH Trh mRNA levels compared to those in sedentary animals fed ad libitum; two weeks of voluntary wheel running during adulthood enhanced DMH Trh mRNA levels compared to pair-fed rats. Except for their magnitude, female responses to exercise were like those in male rats; in contrast, in female rats CVS did not change DMH Trh mRNA levels. A very strong negative correlation between DMH Trh mRNA levels and serum corticosterone concentration in rats of either sex was lost in CVS rats. CVS canceled the response to food restriction, but not that to exercise in either sex. TRH receptor 1 (Trhr) cells were numerous along the rostro-caudal extent of the medial LH. In either sex, fasting during adulthood reduced DMH Trh mRNA levels, and increased LH Trhr mRNA levels, suggesting fasting may inhibit the activity of TRHDMH->LH neurons. Thus, in Wistar rats DMH Trh mRNA levels are regulated by negative energy balance, exercise and chronic variable stress through sex-dependent and -independent pathways.


Assuntos
Hipotálamo , Hormônio Liberador de Tireotropina , Animais , Feminino , Masculino , Ratos , Corticosterona , Hipotálamo/metabolismo , Núcleo Mediodorsal do Tálamo , Atividade Motora , Ratos Wistar , Receptores do Hormônio Liberador da Tireotropina/genética , Receptores do Hormônio Liberador da Tireotropina/metabolismo , RNA Mensageiro/metabolismo , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/metabolismo
6.
Neuroimage Clin ; 35: 103070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35667173

RESUMO

The thalamus is a subcortical structure formed by different nuclei that relay information to the neocortex. Several reports have already described alterations of this structure in patients of schizophrenia that experience auditory hallucinations. However, to date no study has addressed whether the volumes of specific thalamic nuclei are altered in chronic patients experiencing persistent auditory hallucinations. We have processed structural MRI images using Freesurfer, and have segmented them into 25 nuclei using the probabilistic atlas developed by Iglesias and collaborators (Iglesias et al., 2018). To homogenize the sample, we have matched patients of schizophrenia, with and without persistent auditory hallucinations, with control subjects, considering sex, age and their estimated intracranial volume. This rendered a group number of 41 patients experiencing persistent auditory hallucinations, 35 patients without auditory hallucinations, and 55 healthy controls. In addition, we have also correlated the volume of the altered thalamic nuclei with the total score of the PSYRATS, a clinical scale used to evaluate the positive symptoms of this disorder. We have found alterations in the volume of 8 thalamic nuclei in both cohorts of patients with schizophrenia: The medial and lateral geniculate nuclei, the anterior, inferior, and lateral pulvinar nuclei, the lateral complex and the lateral and medial mediodorsal nuclei. We have also found some significant correlations between the volume of these nuclei in patients experiencing auditory hallucinations, and the total score of the PSYRATS scale. Altogether our results indicate that volumetric alterations of thalamic nuclei involved in audition may be related to persistent auditory hallucinations in chronic schizophrenia patients, whereas alterations in nuclei related to association cortices are evident in all patients. Future studies should explore whether the structural alterations are cause or consequence of these positive symptoms and whether they are already present in first episodes of psychosis.


Assuntos
Esquizofrenia , Alucinações/diagnóstico por imagem , Alucinações/etiologia , Humanos , Imageamento por Ressonância Magnética , Núcleo Mediodorsal do Tálamo/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Núcleos Talâmicos/diagnóstico por imagem , Tálamo/diagnóstico por imagem
7.
WMJ ; 120(3): 247-249, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34710312

RESUMO

INTRODUCTION: The mediodorsal nucleus is a subcomponent of the thalamus hypothesized to have a role in memory pathways. Given the limited number of reported cases and associated images, its clinical significance has not yet been fully elucidated. CASE PRESENTATION: We report the case of a 53-year-old man who presented with verbal amnesia, including deficits of both recall and recognition. High-resolution magnetic resonance imaging demonstrated a well-defined infarct contained within the mediodorsal nucleus. DISCUSSION: Current literature reports a range of conclusions regarding the extent to which the mediodorsal nucleus is involved in memory pathways. Several case series have attempted to localize infarcts by combining neuropsychology testing with imaging but were constrained by dated imaging modalities often dispersed with impurities. CONCLUSION: Our case demonstrates that isolated lesions of the mediodorsal nucleus can lead to deficits in both recall and recognition and that high-resolution magnetic resonance imaging is necessary when a thalamic infarct is suspected.


Assuntos
Amnésia , Núcleo Mediodorsal do Tálamo , Amnésia/etiologia , Humanos , Infarto , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tálamo
8.
Nature ; 600(7887): 100-104, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34614503

RESUMO

Interactions between the mediodorsal thalamus and the prefrontal cortex are critical for cognition. Studies in humans indicate that these interactions may resolve uncertainty in decision-making1, but the precise mechanisms are unknown. Here we identify two distinct mediodorsal projections to the prefrontal cortex that have complementary mechanistic roles in decision-making under uncertainty. Specifically, we found that a dopamine receptor (D2)-expressing projection amplifies prefrontal signals when task inputs are sparse and a kainate receptor (GRIK4) expressing-projection suppresses prefrontal noise when task inputs are dense but conflicting. Collectively, our data suggest that there are distinct brain mechanisms for handling uncertainty due to low signals versus uncertainty due to high noise, and provide a mechanistic entry point for correcting decision-making abnormalities in disorders that have a prominent prefrontal component2-6.


Assuntos
Vias Neurais , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Tálamo/citologia , Tálamo/fisiologia , Animais , Tomada de Decisões , Feminino , Humanos , Interneurônios/fisiologia , Masculino , Núcleo Mediodorsal do Tálamo/citologia , Núcleo Mediodorsal do Tálamo/fisiologia , Camundongos , Receptores Dopaminérgicos/metabolismo , Receptores de Ácido Caínico/metabolismo , Incerteza
9.
J Cogn Neurosci ; 32(12): 2303-2319, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32902335

RESUMO

The human thalamus has been suggested to be involved in executive function, based on animal studies and correlational evidence from functional neuroimaging in humans. Human lesion studies, examining behavioral deficits associated with focal brain injuries, can directly test the necessity of the human thalamus for executive function. The goal of our study was to determine the specific lesion location within the thalamus as well as the potential disruption of specific thalamocortical functional networks, related to executive dysfunction. We assessed executive function in 15 patients with focal thalamic lesions and 34 comparison patients with lesions that spared the thalamus. We found that patients with mediodorsal thalamic lesions exhibited more severe impairment in executive function when compared to both patients with thalamic lesions that spared the mediodorsal nucleus and to comparison patients with lesions outside the thalamus. Furthermore, we employed a lesion network mapping approach to map cortical regions that show strong functional connectivity with the lesioned thalamic subregions in the normative functional connectome. We found that thalamic lesion sites associated with more severe deficits in executive function showed stronger functional connectivity with ACC, dorsomedial PFC, and frontoparietal network, compared to thalamic lesions not associated with executive dysfunction. These are brain regions and functional networks whose dysfunction could contribute to impaired executive functioning. In aggregate, our findings provide new evidence that delineates a thalamocortical network for executive function.


Assuntos
Conectoma , Função Executiva , Animais , Humanos , Imageamento por Ressonância Magnética , Núcleo Mediodorsal do Tálamo , Tálamo/diagnóstico por imagem
11.
Mol Brain ; 13(1): 68, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375833

RESUMO

Thalamic recruitment of feedforward inhibition is known to enhance the fidelity of the receptive field by limiting the temporal window during which cortical neurons integrate excitatory inputs. Feedforward inhibition driven by the mediodorsal nucleus of the thalamus (MD) has been previously observed, but its physiological function and regulation remain unknown. Accumulating evidence suggests that elevated neuronal activity in the prefrontal cortex is required for the short-term storage of information. Furthermore, the elevated neuronal activity is supported by the reciprocal connectivity between the MD and the medial prefrontal cortex (mPFC). Therefore, detailed knowledge about the synaptic connections during high-frequency activity is critical for understanding the mechanism of short-term memory. In this study, we examined how feedforward inhibition of thalamofrontal connectivity is modulated by activity frequency. We observed greater short-term synaptic depression during disynaptic inhibition than in thalamic excitatory synapses during high-frequency activities. The strength of feedforward inhibition became weaker as the stimulation continued, which, in turn, enhanced the range of firing jitter in a frequency-dependent manner. We postulated that this phenomenon was primarily due to the increased failure rate of evoking action potentials in parvalbumin-expressing inhibitory neurons. These findings suggest that the MD-mPFC pathway is dynamically regulated by an excitatory-inhibitory balance in an activity-dependent manner. During low-frequency activities, excessive excitations are inhibited, and firing is restricted to a limited temporal range by the strong feedforward inhibition. However, during high-frequency activities, such as during short-term memory, the activity can be transferred in a broader temporal range due to the decreased feedforward inhibition.


Assuntos
Núcleo Mediodorsal do Tálamo/fisiologia , Córtex Pré-Frontal/fisiologia , Transmissão Sináptica/fisiologia , Tálamo/fisiologia , Potenciais de Ação , Animais , Eletrofisiologia , Interneurônios/metabolismo , Masculino , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Optogenética , Parvalbuminas/genética , Parvalbuminas/metabolismo , Sinapses/fisiologia
12.
PLoS Biol ; 18(2): e3000639, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32106269

RESUMO

Studies on the thalamus have mostly focused on sensory relay nuclei, but the organization of pathways associated with emotions is not well understood. We addressed this issue by testing the hypothesis that the primate amygdala acts, in part, like a sensory structure for the affective import of stimuli and conveys this information to the mediodorsal thalamic nucleus, magnocellular part (MDmc). We found that primate sensory cortices innervate amygdalar sites that project to the MDmc, which projects to the orbitofrontal cortex. As in sensory thalamic systems, large amygdalar terminals innervated excitatory relay and inhibitory neurons in the MDmc that facilitate faithful transmission to the cortex. The amygdala, however, uniquely innervated a few MDmc neurons by surrounding and isolating large segments of their proximal dendrites, as revealed by three-dimensional high-resolution reconstruction. Physiologic studies have shown that large axon terminals are found in pathways issued from motor systems that innervate other brain centers to help distinguish self-initiated from other movements. By analogy, the amygdalar pathway to the MDmc may convey signals forwarded to the orbitofrontal cortex to monitor and update the status of the environment in processes deranged in schizophrenia, resulting in attribution of thoughts and actions to external sources.


Assuntos
Tonsila do Cerebelo/fisiologia , Emoções/fisiologia , Núcleo Mediodorsal do Tálamo/fisiologia , Tonsila do Cerebelo/citologia , Animais , Dendritos , Feminino , Macaca mulatta , Masculino , Núcleo Mediodorsal do Tálamo/citologia , Vias Neurais , Neurônios , Córtex Pré-Frontal/fisiologia , Terminações Pré-Sinápticas , Tálamo/citologia , Tálamo/fisiologia
13.
World Neurosurg ; 137: 310-318, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32036065

RESUMO

The thalamus is a deep cerebral structure that is crucial for proper neurological functioning as it transmits signals from nearly all pathways in the body. Insult to the thalamus can, therefore, result in complex syndromes involving sensation, cognition, executive function, fine motor control, emotion, and arousal, to name a few. Specific territories in the thalamus that are supplied by deep cerebral arteries have been shown to correlate with clinical symptoms. The aim of this review is to enhance our understanding of the arterial anatomy of the thalamus and the complications that can arise from lesions to it by considering the functions of known thalamic nuclei supplied by each vascular territory.


Assuntos
Artéria Basilar/anatomia & histologia , Infarto Encefálico/fisiopatologia , Círculo Arterial do Cérebro/anatomia & histologia , Artéria Cerebral Posterior/anatomia & histologia , Tálamo/irrigação sanguínea , Núcleos Anteriores do Tálamo/anatomia & histologia , Núcleos Anteriores do Tálamo/irrigação sanguínea , Núcleos Anteriores do Tálamo/fisiologia , Corpos Geniculados/anatomia & histologia , Corpos Geniculados/irrigação sanguínea , Corpos Geniculados/fisiologia , Humanos , Núcleos Laterais do Tálamo/anatomia & histologia , Núcleos Laterais do Tálamo/irrigação sanguínea , Núcleos Laterais do Tálamo/fisiologia , Núcleo Mediodorsal do Tálamo/anatomia & histologia , Núcleo Mediodorsal do Tálamo/irrigação sanguínea , Núcleo Mediodorsal do Tálamo/fisiologia , Pulvinar/anatomia & histologia , Pulvinar/irrigação sanguínea , Pulvinar/fisiologia , Tálamo/anatomia & histologia , Tálamo/fisiologia , Núcleos Ventrais do Tálamo/anatomia & histologia , Núcleos Ventrais do Tálamo/irrigação sanguínea , Núcleos Ventrais do Tálamo/fisiologia
14.
Cereb Cortex ; 30(6): 3827-3837, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-31989161

RESUMO

The neural basis of memory is highly distributed, but the thalamus is known to play a particularly critical role. However, exactly how the different thalamic nuclei contribute to different kinds of memory is unclear. Moreover, whether thalamic connectivity with the medial temporal lobe (MTL), arguably the most fundamental memory structure, is critical for memory remains unknown. We explore these questions using an fMRI recognition memory paradigm that taps familiarity and recollection (i.e., the two types of memory that support recognition) for objects, faces, and scenes. We show that the mediodorsal thalamus (MDt) plays a material-general role in familiarity, while the anterior thalamus plays a material-general role in recollection. Material-specific regions were found for scene familiarity (ventral posteromedial and pulvinar thalamic nuclei) and face familiarity (left ventrolateral thalamus). Critically, increased functional connectivity between the MDt and the parahippocampal (PHC) and perirhinal cortices (PRC) of the MTL underpinned increases in reported familiarity confidence. These findings suggest that familiarity signals are generated through the dynamic interaction of functionally connected MTL-thalamic structures.


Assuntos
Giro Para-Hipocampal/diagnóstico por imagem , Córtex Perirrinal/diagnóstico por imagem , Reconhecimento Psicológico/fisiologia , Lobo Temporal/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Adulto , Núcleos Anteriores do Tálamo/diagnóstico por imagem , Núcleos Anteriores do Tálamo/fisiologia , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Núcleo Mediodorsal do Tálamo/diagnóstico por imagem , Núcleo Mediodorsal do Tálamo/fisiologia , Rememoração Mental , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Giro Para-Hipocampal/fisiologia , Córtex Perirrinal/fisiologia , Pulvinar/diagnóstico por imagem , Pulvinar/fisiologia , Lobo Temporal/fisiologia , Tálamo/fisiologia , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Núcleos Ventrais do Tálamo/fisiologia , Adulto Jovem
15.
Neuron ; 103(5): 762-770, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487527

RESUMO

The role of the thalamus in cortical sensory transmission is well known, but its broader role in cognition is less appreciated. Recent studies have shown thalamic engagement in dynamic regulation of cortical activity in attention, executive control, and perceptual decision-making, but the circuit mechanisms underlying such functionality are unknown. Because the thalamus is composed of excitatory neurons that are devoid of local recurrent excitatory connectivity, delineating long-range, input-output connectivity patterns of single thalamic neurons is critical for building functional models. We discuss this need in relation to existing organizational schemes such as core versus matrix and first-order versus higher-order relay nuclei. We propose that a new classification is needed based on thalamocortical motifs, where structure naturally informs function. Overall, our synthesis puts understanding thalamic organization at the forefront of existing research in systems and computational neuroscience, with both basic and translational applications.


Assuntos
Córtex Cerebral/fisiologia , Cognição/fisiologia , Função Executiva/fisiologia , Tálamo/fisiologia , Tomada de Decisões/fisiologia , Corpos Geniculados/fisiologia , Humanos , Núcleo Mediodorsal do Tálamo/fisiologia , Vias Neurais/fisiologia
16.
Neuropharmacology ; 158: 107745, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31445017

RESUMO

Non-competitive N-methyl-d-aspartate receptor antagonists mimic schizophrenia symptoms and produce immediate and persistent antidepressant effects. We investigated the effects of ketamine and phencyclidine (PCP) on thalamo-cortical network activity in awake, freely-moving male Wistar rats to gain new insight into the neuronal populations and brain circuits involved in the effects of NMDA-R antagonists. Single unit and local field potential (LFP) recordings were conducted in mediodorsal/centromedial thalamus and in medial prefrontal cortex (mPFC) using microelectrode arrays. Ketamine and PCP moderately increased the discharge rates of principal neurons in both areas while not attenuating the discharge of mPFC GABAergic interneurons. They also strongly affected LFP activity, reducing beta power and increasing that of gamma and high-frequency oscillation bands. These effects were short-lasting following the rapid pharmacokinetic profile of the drugs, and consequently were not present at 24 h after ketamine administration. The temporal profile of both drugs was remarkably different, with ketamine effects peaking earlier than PCP effects. Although this study is compatible with the glutamate hypothesis for fast-acting antidepressant action, it does not support a local disinhibition mechanism as the source for the increased pyramidal neuron activity in mPFC. The short-lasting increase in thalamo-cortical activity is likely associated with the rapid psychotomimetic action of both agents but could also be part of a cascade of events ultimately leading to the persistent antidepressant effects of ketamine. Changes in spectral contents of high-frequency bands by the drugs show potential as translational biomarkers for target engagement of NMDA-R modulators.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Núcleos Intralaminares do Tálamo/efeitos dos fármacos , Ketamina/farmacologia , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Fenciclidina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Neurônios GABAérgicos/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Núcleos Intralaminares do Tálamo/citologia , Núcleos Intralaminares do Tálamo/metabolismo , Núcleo Mediodorsal do Tálamo/citologia , Núcleo Mediodorsal do Tálamo/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tálamo , Vigília
17.
Br J Pharmacol ; 176(20): 4002-4018, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31347694

RESUMO

BACKGROUND AND PURPOSE: Lurasidone is an atypical mood-stabilizing antipsychotic with a unique receptor-binding profile, including 5-HT7 receptor antagonism; however, the detailed effects of 5-HT7 receptor antagonism on various transmitter systems relevant to schizophrenia, particularly the thalamo-insular glutamatergic system and the underlying mechanisms, are yet to be clarified. EXPERIMENTAL APPROACH: We examined the mechanisms underlying the clinical effects of lurasidone by measuring the release of l-glutamate, GABA, dopamine, and noradrenaline in the reticular thalamic nucleus (RTN), mediodorsal thalamic nucleus (MDTN) and insula of freely moving rats in response to systemic injection or local infusion of lurasidone or MK-801 using multiprobe microdialysis with ultra-HPLC. KEY RESULTS: Systemic MK-801 (0.5 mg·kg-1 ) administration increased insular release of l-glutamate, dopamine, and noradrenaline but decreased GABA release. Systemic lurasidone (1 mg·kg-1 ) administration also increased insular release of l-glutamate, dopamine, and noradrenaline but without affecting GABA. Local lurasidone administration into the insula (3 µM) did not affect MK-801-induced insular release of l-glutamate or catecholamine, whereas local lurasidone administration into the MDTN (1 µM) inhibited MK-801-induced insular release of l-glutamate and catecholamine, similar to the 5-HT7 receptor antagonist SB269970. CONCLUSIONS AND IMPLICATIONS: The present results indicate that MK-801-induced insular l-glutamate release is generated by activation of thalamo-insular glutamatergic transmission via MDTN GABAergic disinhibition resulting from NMDA receptor inhibition in the MDTN and RTN. Lurasidone inhibited this MK-801-evoked insular l-glutamate release through inhibition of excitatory 5-HT7 receptor in the MDTN. These effects on thalamo-insular glutamatergic transmission may contribute to the antipsychotic and mood-stabilizing actions of lurasidone.


Assuntos
Antipsicóticos/farmacologia , Maleato de Dizocilpina/antagonistas & inibidores , Cloridrato de Lurasidona/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Animais , Antipsicóticos/administração & dosagem , Maleato de Dizocilpina/farmacologia , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Cloridrato de Lurasidona/administração & dosagem , Masculino , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Perfusão , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Antagonistas da Serotonina/administração & dosagem , Transmissão Sináptica/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Tálamo/metabolismo
18.
Pharmacol Res Perspect ; 7(1): e00457, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30784207

RESUMO

Deficiencies in N-methyl-d-aspartate (NMDA)/glutamate receptor (NMDAR) signaling have been considered central to the cognitive impairments of schizophrenia; however, an NMDAR antagonist memantine (MEM) improves cognitive impairments of Alzheimer's disease and schizophrenia. These mechanisms of paradoxical clinical effects of NMDAR antagonists remain unclear. To explore the mechanisms by which MK801 and MEM affect thalamocortical transmission, we determined interactions between local administrations of MK801, MEM, system xc- (Sxc), and metabotropic glutamate receptors (mGluRs) on extracellular glutamate and GABA levels in the mediodorsal thalamic nucleus (MDTN) and medial prefrontal cortex (mPFC) using dual-probe microdialysis with ultra-high-pressure liquid chromatography. Effects of MK801 and MEM on Sxc activity were also determined using primary cultured astrocytes. Sxc activity was enhanced by MEM, but was unaffected by MK801. MK801 enhanced thalamocortical glutamatergic transmission by GABAergic disinhibition in the MDTN. In the MDTN and the mPFC, MEM weakly increased glutamate release by activating Sxc, whereas MEM inhibited thalamocortical glutamatergic transmission. Paradoxical effects of MEM were induced following secondary activation of inhibitory II-mGluR and III-mGluR by exporting glutamate from astroglial Sxc. The present results suggest that the effects of therapeutically relevant concentrations of MEM on thalamocortical glutamatergic transmission are predominantly caused by activation of Sxc rather than inhibition of NMDAR. These demonstrations suggest that the combination between reduced NMDAR and activated Sxc contribute to the neuroprotective effects of MEM. Furthermore, activation of Sxc may compensate for the cognitive impairments that are induced by hyperactivation of thalamocortical glutamatergic transmission following activation of Sxc/II-mGluR in the MDTN and Sxc/II-mGluR/III-mGluR in the mPFC.


Assuntos
Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Memantina/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Ácido Glutâmico/metabolismo , Masculino , Núcleo Mediodorsal do Tálamo/metabolismo , Microdiálise/métodos , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Tálamo/metabolismo
19.
Nature ; 566(7744): 339-343, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30760920

RESUMO

A psychotherapeutic regimen that uses alternating bilateral sensory stimulation (ABS) has been used to treat post-traumatic stress disorder. However, the neural basis that underlies the long-lasting effect of this treatment-described as eye movement desensitization and reprocessing-has not been identified. Here we describe a neuronal pathway driven by the superior colliculus (SC) that mediates persistent attenuation of fear. We successfully induced a lasting reduction in fear in mice by pairing visual ABS with conditioned stimuli during fear extinction. Among the types of visual stimulation tested, ABS provided the strongest fear-reducing effect and yielded sustained increases in the activities of the SC and mediodorsal thalamus (MD). Optogenetic manipulation revealed that the SC-MD circuit was necessary and sufficient to prevent the return of fear. ABS suppressed the activity of fear-encoding cells and stabilized inhibitory neurotransmission in the basolateral amygdala through a feedforward inhibitory circuit from the MD. Together, these results reveal the neural circuit that underlies an effective strategy for sustainably attenuating traumatic memories.


Assuntos
Ansiedade/psicologia , Ansiedade/terapia , Extinção Psicológica/fisiologia , Medo/fisiologia , Medo/psicologia , Vias Neurais/fisiologia , Colículos Superiores/citologia , Colículos Superiores/fisiologia , Animais , Ansiedade/fisiopatologia , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Retroalimentação Fisiológica , Masculino , Núcleo Mediodorsal do Tálamo/citologia , Núcleo Mediodorsal do Tálamo/fisiologia , Camundongos , Inibição Neural , Optogenética , Estimulação Luminosa , Transtornos de Estresse Pós-Traumáticos , Fatores de Tempo
20.
Neurogastroenterol Motil ; 31(3): e13501, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30406957

RESUMO

BACKGROUND: The cholinergic anti-inflammatory pathway comprises the perception of peripheral inflammation by afferent sensory neurons and reflex activation of efferent vagus nerve activity to regulate inflammation. Activation of this pathway was shown to reduce the inflammatory response and improve outcome of postoperative ileus (POI) and sepsis in rodents. Herein, we tested if a non-invasive auricular electrical transcutaneous vagus nerve stimulation (tVNS) affects inflammation in models of POI or endotoxemia. METHODS: Mice underwent tVNS or sham stimulation before and after induction of either POI by intestinal manipulation (IM) or endotoxemia by lipopolysaccharide administration. Some animals underwent a preoperative right cervical vagotomy. Neuronal activation of the solitary tract nucleus (NTS) and the dorsal motor nucleus of the vagus nerve (DMV) were analyzed by immunohistological detection of c-fos+ cells. Gene and protein expression of IL-6, MCP-1, IL-1ß as well as leukocyte infiltration and gastrointestinal transit were analyzed at different time points after IM. IL-6, TNFα, and IL-1ß serum levels were analyzed 3 hours after lipopolysaccharide administration. RESULTS: tVNS activated the NTS and DMV and reduced intestinal cytokine expression, reduced leukocyte recruitment to the manipulated intestine segment, and improved gastrointestinal transit after IM. Endotoxemia-induced IL-6 and TNF-α release was also reduced by tVNS. The protective effects of tVNS on POI and endotoxemia were abrogated by vagotomy. CONCLUSION: tVNS prevents intestinal and systemic inflammation. Activation of the DMV indicates an afferent to efferent central circuitry of the tVNS stimulation and the beneficial effects of tVNS depend on an intact vagus nerve. tVNS may become a non-invasive approach for treatment of POI.


Assuntos
Endotoxemia/prevenção & controle , Íleus/prevenção & controle , Complicações Pós-Operatórias/prevenção & controle , Estimulação Elétrica Nervosa Transcutânea/métodos , Estimulação do Nervo Vago/métodos , Animais , Citocinas/metabolismo , Endotoxemia/etiologia , Trânsito Gastrointestinal , Regulação da Expressão Gênica , Íleus/etiologia , Lipopolissacarídeos/toxicidade , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Solitário/efeitos dos fármacos , Vagotomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA