Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosurg ; 136(1): 231-241, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34359039

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) of the centromedian thalamic nucleus has been reportedly used to treat severe Tourette syndrome, yielding promising outcomes. However, it remains unclear how DBS electrode position and stimulation parameters modulate the specific area and related networks. The authors aimed to evaluate the relationships between the anatomical location of stimulation fields and clinical responses, including therapeutic and side effects. METHODS: The authors collected data from 8 patients with Tourette syndrome who were treated with DBS. The authors selected the active contact following threshold tests of acute side effects and gradually increased the stimulation intensity within the therapeutic window such that acute and chronic side effects could be avoided at each programming session. The patients were carefully interviewed, and stimulation-induced side effects were recorded. Clinical outcomes were evaluated using the Yale Global Tic Severity Scale, the Yale-Brown Obsessive-Compulsive Scale, and the Hamilton Depression Rating Scale. The DBS lead location was evaluated in the normalized brain space by using a 3D atlas. The volume of tissue activated was determined, and the associated normative connective analyses were performed to link the stimulation field with the therapeutic and side effects. RESULTS: The mean follow-up period was 10.9 ± 3.9 months. All clinical scales showed significant improvement. Whereas the volume of tissue activated associated with therapeutic effects covers the centromedian and ventrolateral nuclei and showed an association with motor networks, those associated with paresthesia and dizziness were associated with stimulation of the ventralis caudalis and red nucleus, respectively. Depressed mood was associated with the spread of stimulation current to the mediodorsal nucleus and showed an association with limbic networks. CONCLUSIONS: This study addresses the importance of accurate implantation of DBS electrodes for obtaining standardized clinical outcomes and suggests that meticulous programming with careful monitoring of clinical symptoms may improve outcomes.


Assuntos
Estimulação Encefálica Profunda/métodos , Tálamo/anatomia & histologia , Tálamo/cirurgia , Síndrome de Tourette/patologia , Síndrome de Tourette/cirurgia , Adolescente , Adulto , Criança , Pré-Escolar , Estimulação Encefálica Profunda/efeitos adversos , Depressão/etiologia , Tontura/etiologia , Feminino , Seguimentos , Humanos , Núcleos Intralaminares do Tálamo/anatomia & histologia , Núcleos Intralaminares do Tálamo/diagnóstico por imagem , Núcleos Intralaminares do Tálamo/cirurgia , Masculino , Pessoa de Meia-Idade , Rede Nervosa/anatomia & histologia , Neuroanatomia , Parestesia/etiologia , Complicações Pós-Operatórias , Estudos Prospectivos , Escalas de Graduação Psiquiátrica , Núcleo Rubro/anatomia & histologia , Núcleo Rubro/cirurgia , Resultado do Tratamento , Núcleos Ventrais do Tálamo/anatomia & histologia , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Núcleos Ventrais do Tálamo/cirurgia , Adulto Jovem
2.
J Neurol Neurosurg Psychiatry ; 90(10): 1078-1090, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31129620

RESUMO

BACKGROUND: Deep brain stimulation (DBS) can be an effective therapy for tics and comorbidities in select cases of severe, treatment-refractory Tourette syndrome (TS). Clinical responses remain variable across patients, which may be attributed to differences in the location of the neuroanatomical regions being stimulated. We evaluated active contact locations and regions of stimulation across a large cohort of patients with TS in an effort to guide future targeting. METHODS: We collected retrospective clinical data and imaging from 13 international sites on 123 patients. We assessed the effects of DBS over time in 110 patients who were implanted in the centromedial (CM) thalamus (n=51), globus pallidus internus (GPi) (n=47), nucleus accumbens/anterior limb of the internal capsule (n=4) or a combination of targets (n=8). Contact locations (n=70 patients) and volumes of tissue activated (n=63 patients) were coregistered to create probabilistic stimulation atlases. RESULTS: Tics and obsessive-compulsive behaviour (OCB) significantly improved over time (p<0.01), and there were no significant differences across brain targets (p>0.05). The median time was 13 months to reach a 40% improvement in tics, and there were no significant differences across targets (p=0.84), presence of OCB (p=0.09) or age at implantation (p=0.08). Active contacts were generally clustered near the target nuclei, with some variability that may reflect differences in targeting protocols, lead models and contact configurations. There were regions within and surrounding GPi and CM thalamus that improved tics for some patients but were ineffective for others. Regions within, superior or medial to GPi were associated with a greater improvement in OCB than regions inferior to GPi. CONCLUSION: The results collectively indicate that DBS may improve tics and OCB, the effects may develop over several months, and stimulation locations relative to structural anatomy alone may not predict response. This study was the first to visualise and evaluate the regions of stimulation across a large cohort of patients with TS to generate new hypotheses about potential targets for improving tics and comorbidities.


Assuntos
Estimulação Encefálica Profunda/métodos , Globo Pálido/diagnóstico por imagem , Cápsula Interna/diagnóstico por imagem , Núcleo Accumbens/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Síndrome de Tourette/terapia , Adolescente , Adulto , Atlas como Assunto , Estudos de Coortes , Comportamento Compulsivo/psicologia , Feminino , Humanos , Núcleos Intralaminares do Tálamo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Comportamento Obsessivo/psicologia , Estudos Retrospectivos , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X , Síndrome de Tourette/diagnóstico por imagem , Síndrome de Tourette/psicologia , Resultado do Tratamento , Adulto Jovem
3.
J Clin Neurophysiol ; 18(6): 495-513, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11779964

RESUMO

The following two different modulatory procedures to control intractable epileptic seizures are presented: (1) chronic electrical stimulation of the centromedian-thalamic nucleus (ESCM) for control of generalized tonic-clonic seizures and atypical absences, and (2) subacute hippocampal stimulation (SAHCS) and chronic hippocampal stimulation for control of nonlesional temporal lobe seizures. The ESCM antiepileptic effect seems to be the result of activation of a nonspecific reticulothalamocortical system responsible for generalized electrocortical responses (recruiting, desynchronization, negative direct current shifts, and three spike-wave complexes per second). The success of the ESCM procedure depends on the following predictor factors: case selection (primary and secondary tonic-clonic seizures and atypical absences of the Lennox Gastaut syndrome), ventriculographic and electrophysiologic definition of the optimal stereotactic targets (based on the anterior commissure, posterior commissure, and the vertical line perpendicular to the posterior commissure and electrocortical recruiting responses), periodic electrophysiologic monitoring of the reliability of ESCM in the absence of the patient's subjective sensations and with totally internalized subcutaneous stimulation systems (by recording scalp electrocortical recruiting, desynchronizing, and direct current responses), quantitative evaluation of clinical and EEG improvement, and analysis of the ON and OFF effects, taking into account a long-lasting (possibly plastic) effect of ESCM. SAHCS blocks clinical and EEG signs of temporal lobe epileptogenesis with no additional damage of the stimulated hippocampal tissue. Preliminary results suggest that this antiepileptic effect is, at least in part, the result of a physiologic inhibition of the stimulated hippocampal tissue, because after SAHCS the authors found the following: (1) increased threshold and decreased duration, propagation, and blockage of the clinical signs accompanied with the hippocampal afterdischarge; (2) flattening of the hippocampal-evoked response recovery cycles; (3) single photon emission computed tomographic hypoperfusion; and (4) increased concentration of benzodiazepine receptor binding at the stimulated hippocampal region. Chronic hippocampal stimulation persistently blocked temporal lobe epileptogenesis in one patient under open protocols during 24 months with no apparent additional alterations in recent memory.


Assuntos
Terapia por Estimulação Elétrica , Epilepsia Generalizada/terapia , Epilepsia do Lobo Temporal/terapia , Hipocampo/fisiopatologia , Núcleos Intralaminares do Tálamo/fisiopatologia , Mapeamento Encefálico , Eletrodos Implantados , Eletroencefalografia , Epilepsia Generalizada/diagnóstico por imagem , Epilepsia Generalizada/fisiopatologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/diagnóstico por imagem , Humanos , Núcleos Intralaminares do Tálamo/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Receptores de GABA-A/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Tomografia Computadorizada de Emissão de Fóton Único , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA