Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Reprod Dev ; 67(5): 319-326, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34408103

RESUMO

In vitro maturation (IVM) is an important reproductive technology used to produce embryos in vitro. However, the developmental potential of oocytes sourced for IVM is markedly lower than those matured in vivo. Previously, NAD+-elevating treatments have improved oocyte quality and embryo development in cattle and mice, suggesting that NAD+ is important during oocyte maturation. The aim of this study was to examine the effects of nicotinic acid (NA), nicotinamide (NAM) and nicotinamide mononucleotide (NMN) on oocyte maturation and subsequent embryo development. Porcine oocytes from small antral follicles were matured for 44 h in a defined maturation medium supplemented with NA, NAM and resveratrol or NMN. Mature oocytes were artificially activated and presumptive zygotes cultured for 7 days. Additionally, oocytes were matured without treatment then cultured for 7 days with NMN. Supplementing the IVM medium with NA improved maturation and blastocyst formation while NAM supplementation improved cleavage rates compared with untreated controls. Supplementing the IVM or embryo culture media with NMN had no effect on maturation or embryo development. The results show that supplementing the maturation medium with NA and NAM improved maturation and developmental potential of porcine oocytes.


Assuntos
Meios de Cultura/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos , NAD/análogos & derivados , Animais , Niacina , Mononucleotídeo de Nicotinamida/análogos & derivados , Suínos
2.
PLoS One ; 15(11): e0242174, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33166357

RESUMO

Nicotinamide adenine dinucleotide (NAD+), the essential cofactor derived from vitamin B3, is both a coenzyme in redox enzymatic processes and substrate in non-redox events; processes that are intimately implicated in all essential bioenergetics. A decrease in intracellular NAD+ levels is known to cause multiple metabolic complications and age-related disorders. One NAD+ precursor is dihydronicotinamide riboside (NRH), which increases NAD+ levels more potently in both cultured cells and mice than current supplementation strategies with nicotinamide riboside (NR), nicotinamide mononucleotide (NMN) or vitamin B3 (nicotinamide and niacin). However, the consequences of extreme boosts in NAD+ levels are not fully understood. Here, we demonstrate the cell-specific effects of acute NRH exposure in mammalian cells. Hepatocellular carcinoma (HepG3) cells show dose-dependent cytotoxicity when supplemented with 100-1000 µM NRH. Cytotoxicity was not observed in human embryonic kidney (HEK293T) cells over the same dose range of NRH. PUMA and BAX mediate the cell-specific cytotoxicity of NRH in HepG3. When supplementing HepG3 with 100 µM NRH, a significant increase in ROS was observed concurrent with changes in the NAD(P)H and GSH/GSSG pools. NRH altered mitochondrial membrane potential, increased mitochondrial superoxide formation, and induced mitochondrial DNA damage in those cells. NRH also caused metabolic dysregulation, altering mitochondrial respiration. Altogether, we demonstrated the detrimental consequences of an extreme boost of the total NAD (NAD+ + NADH) pool through NRH supplementation in HepG3. The cell-specific effects are likely mediated through the different metabolic fate of NRH in these cells, which warrants further study in other systemic models.


Assuntos
NAD/análogos & derivados , Estresse Oxidativo , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial , NAD/toxicidade , NADP/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
3.
J Am Chem Soc ; 139(44): 15556-15559, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29043790

RESUMO

The synthesis, photophysics, and biochemical utility of a fluorescent NAD+ analogue based on an isothiazolo[4,3-d]pyrimidine core (NtzAD+) are described. Enzymatic reactions, photophysically monitored in real time, show NtzAD+ and NtzADH to be substrates for yeast alcohol dehydrogenase and lactate dehydrogenase, respectively, with reaction rates comparable to that of the native cofactors. A drop in fluorescence is seen as NtzAD+ is converted to NtzADH, reflecting a complementary photophysical behavior to that of the native NAD+/NADH. NtzAD+ and NtzADH serve as substrates for NADase, which selectively cleaves the nicotinamide's glycosidic bond yielding tzADP-ribose. NtzAD+ also serves as a substrate for ribosyl transferases, including human adenosine ribosyl transferase 5 (ART5) and Cholera toxin subunit A (CTA), which hydrolyze the nicotinamide and transfer tzADP-ribose to an arginine analogue, respectively. These reactions can be monitored by fluorescence spectroscopy, in stark contrast to the corresponding processes with the nonemissive NAD+.


Assuntos
NAD/análogos & derivados , NAD/metabolismo , ADP Ribose Transferases/metabolismo , Álcool Desidrogenase/metabolismo , Animais , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , NAD/síntese química , NAD+ Nucleosidase/metabolismo , Piridinas/síntese química , Piridinas/química , Piridinas/metabolismo , Especificidade por Substrato , Suínos , Tiazóis/síntese química , Tiazóis/química , Tiazóis/metabolismo
4.
Am J Hum Genet ; 99(4): 894-902, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27616477

RESUMO

To safeguard the cell from the accumulation of potentially harmful metabolic intermediates, specific repair mechanisms have evolved. APOA1BP, now renamed NAXE, encodes an epimerase essential in the cellular metabolite repair for NADHX and NADPHX. The enzyme catalyzes the epimerization of NAD(P)HX, thereby avoiding the accumulation of toxic metabolites. The clinical importance of the NAD(P)HX repair system has been unknown. Exome sequencing revealed pathogenic biallelic mutations in NAXE in children from four families with (sub-) acute-onset ataxia, cerebellar edema, spinal myelopathy, and skin lesions. Lactate was elevated in cerebrospinal fluid of all affected individuals. Disease onset was during the second year of life and clinical signs as well as episodes of deterioration were triggered by febrile infections. Disease course was rapidly progressive, leading to coma, global brain atrophy, and finally to death in all affected individuals. NAXE levels were undetectable in fibroblasts from affected individuals of two families. In these fibroblasts we measured highly elevated concentrations of the toxic metabolite cyclic-NADHX, confirming a deficiency of the mitochondrial NAD(P)HX repair system. Finally, NAD or nicotinic acid (vitamin B3) supplementation might have therapeutic implications for this fatal disorder.


Assuntos
Proteínas de Transporte/genética , Doenças Metabólicas/genética , Mutação , NAD/análogos & derivados , Doenças do Sistema Nervoso/genética , Racemases e Epimerases/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Pré-Escolar , Evolução Fatal , Feminino , Fibroblastos , Humanos , Lactente , Masculino , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , NAD/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Neuroimagem , Anormalidades da Pele/genética , Anormalidades da Pele/patologia
5.
ASN Neuro ; 8(4)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27449129

RESUMO

The pentose phosphate pathway is the main source of NADPH, which by reducing oxidized glutathione, contributes to antioxidant defenses. Although oxidative stress plays a major role in white matter injury, significance of NADPH for oligodendrocyte survival has not been yet investigated. It is reported here that the NADPH antimetabolite 6-amino-NADP (6AN) was cytotoxic to cultured adult rat spinal cord oligodendrocyte precursor cells (OPCs) as well as OPC-derived oligodendrocytes. The 6AN-induced necrosis was preceded by increased production of superoxide, NADPH depletion, and lower supply of reduced glutathione. Moreover, survival of NADPH-depleted OPCs was improved by the antioxidant drug trolox. Such cells were also protected by physiological concentrations of the neurosteroid dehydroepiandrosterone (10(-8) M). The protection by dehydroepiandrosterone was associated with restoration of reduced glutathione, but not NADPH, and was sensitive to inhibition of glutathione synthesis. A similar protective mechanism was engaged by the cAMP activator forskolin or the G protein-coupled estrogen receptor (GPER/GPR30) ligand G1. Finally, treatment with the glutathione precursor N-acetyl cysteine reduced cytotoxicity of 6AN. Taken together, NADPH is critical for survival of OPCs by supporting their antioxidant defenses. Consequently, injury-associated inhibition of the pentose phosphate pathway may be detrimental for the myelination or remyelination potential of the white matter. Conversely, steroid hormones and cAMP activators may promote survival of NADPH-deprived OPCs by increasing a NADPH-independent supply of reduced glutathione. Therefore, maintenance of glutathione homeostasis appears as a critical effector mechanism for OPC protection against NADPH depletion and preservation of the regenerative potential of the injured white matter.


Assuntos
Antioxidantes/farmacologia , Glutationa/metabolismo , NADP/metabolismo , Oligodendroglia/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos/farmacologia , Antineoplásicos Fitogênicos/toxicidade , Caspase 3/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Desidroepiandrosterona/farmacologia , L-Lactato Desidrogenase/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , NAD/análogos & derivados , NAD/toxicidade , NADP/imunologia , Ratos , Medula Espinal/citologia , Células-Tronco/efeitos dos fármacos , Superóxidos/metabolismo , Fatores de Tempo
6.
Plant Physiol Biochem ; 49(10): 1117-25, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21723140

RESUMO

Intense efforts are currently devoted to improve plant metabolomic analyses so as to describe more accurately the whole picture of metabolic pathways. Analyses based on liquid chromatography/time-of-flight mass spectrometry (LC-TOF) are now widely distributed among plant science laboratories. However, the use of reliable, sensitive LC-TOF methods to identify and quantify micromolar or inframicromolar key metabolites is often impeded by the sensitivity of the technique to sample preparation or chromatographic conditions. Typically, the sample matrix has a substantial influence on ionization efficiency and therefore, on the detectability of such compounds. Here, we describe a new method to analyze simultaneously 23 nucleotides and cofactors from plant extracts, taking advantage of solid-phase extraction (SPE) prior to injection. The influence of common m/z fragments in several metabolites and adducts is considered. We applied this method to characterise metabolic intermediates of NAD biosynthesis in Arabidopsis thaliana, using a wild-type and an engineered transgenic plant line that produces bacterial quinolinate phosphoribosyl transferase (nadc). We show that sample pre-purification with SPE is strictly required not only for compound quantification and identification but also to allow ionization of matrix-sensitive compounds (e.g. nicotinamide) or alleviate fragmentation of others (e.g. NAD). When exogenous substrate quinolinate was infiltrated into Arabidopsis leaves to increase the natural content in downstream metabolites, a clear correlation between intermediates of NAD biosynthesis was seen, showing the accuracy of our method for quantification in biological samples. Nadc plants only showed very modest changes in NAD-related metabolites and furthermore, they were associated with slightly lower photosynthetic performance and ATP production.


Assuntos
Arabidopsis/fisiologia , Pentosiltransferases/metabolismo , Extratos Vegetais/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Trifosfato de Adenosina/biossíntese , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Bactérias/enzimologia , Bactérias/genética , Cromatografia Líquida , Espectroscopia de Ressonância Magnética , NAD/análogos & derivados , NAD/biossíntese , NAD/metabolismo , Niacina/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacologia , Pentosiltransferases/genética , Fotossíntese , Extratos Vegetais/genética , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Ácido Quinolínico/metabolismo , Ácido Quinolínico/farmacologia , Extração em Fase Sólida , Espectrometria de Massas por Ionização por Electrospray
7.
Planta ; 231(1): 35-45, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19820966

RESUMO

As part of a research program on nucleotide metabolism in potato tubers (Solanum tuberosum L.), profiles of pyridine (nicotinamide) metabolism were examined based on the in situ metabolic fate of radio-labelled precursors and the in vitro activities of enzymes. In potato tubers, [(3)H]quinolinic acid, which is an intermediate of de novo pyridine nucleotide synthesis, and [(14)C]nicotinamide, a catabolite of NAD, were utilised for pyridine nucleotide synthesis. The in situ tracer experiments and in vitro enzyme assays suggest the operation of multiple pyridine nucleotide cycles. In addition to the previously proposed cycle consisting of seven metabolites, we found a new cycle that includes newly discovered nicotinamide riboside deaminase which is also functional in potato tubers. This cycle bypasses nicotinamide and nicotinic acid; it is NAD --> nicotinamide mononucleotide --> nicotinamide riboside --> nicotinic acid riboside --> nicotinic acid mononucleotide --> nicotinic acid adenine dinucleotide --> NAD. Degradation of the pyridine ring was extremely low in potato tubers. Nicotinic acid glucoside is formed from nicotinic acid in potato tubers. Comparative studies of [carboxyl-(14)C]nicotinic acid metabolism indicate that nicotinic acid is converted to nicotinic acid glucoside in all organs of potato plants. Trigonelline synthesis from [carboxyl-(14)C]nicotinic acid was also found. Conversion was greater in green parts of plants, such as leaves and stem, than in underground parts of potato plants. Nicotinic acid utilised for the biosynthesis of these conjugates seems to be derived not only from the pyridine nucleotide cycle, but also from the de novo synthesis of nicotinic acid mononucleotide.


Assuntos
Niacinamida/metabolismo , Nucleotídeos/biossíntese , Nucleotídeos/metabolismo , Solanum tuberosum/metabolismo , Isótopos de Carbono , NAD/análogos & derivados , NAD/biossíntese , NAD/química , Nucleotídeos/química , Especificidade de Órgãos , Folhas de Planta/metabolismo , Tubérculos/enzimologia , Ácido Quinolínico/metabolismo , Fatores de Tempo , Extratos de Tecidos , Trítio
8.
Biochemistry ; 46(49): 14250-8, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18001142

RESUMO

NADH-ubiquinone oxidoreductase (complex I) is the first enzyme of the respiratory electron transport chain in mitochondria. It conserves the energy from NADH oxidation, coupled to ubiquinone reduction, as a proton motive force across the inner membrane. Complex I catalyzes NADPH oxidation, NAD+ reduction, and hydride transfers from reduced to oxidized nicotinamide nucleotides also. Here, we investigate the transhydrogenation reactions of complex I, using four different nucleotide pairs to encompass a range of reaction rates. Our experimental data are described accurately by a ping-pong mechanism with double substrate inhibition. Thus, we contend that complex I contains only one functional nucleotide binding site, in agreement with recent structural information, but in disagreement with previous mechanistic models which have suggested that two different binding sites are employed to catalyze the two half reactions. We apply the Michaelis-Menten equation to describe the productive states formed when the nucleotide and the active-site flavin mononucleotide have complementary oxidation states, and dissociation constants to describe the nonproductive states formed when they have the same oxidation state. Consequently, we derive kinetic and thermodynamic information about nucleotide binding and interconversion in complex I, relevant to understanding the mechanisms of coupled NADH oxidation and NAD+ reduction, and to understanding how superoxide formation by the reduced flavin is controlled. Finally, we discuss whether NADPH oxidation and/or transhydrogenation by complex I are physiologically relevant processes.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Hidrogênio/metabolismo , Animais , Bovinos , Mitocôndrias Cardíacas/enzimologia , NAD/análogos & derivados , NAD/metabolismo , NADP/metabolismo
9.
Biochem J ; 380(Pt 1): 193-202, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-14972026

RESUMO

The inner mitochondrial membrane is selectively permeable, which limits the transport of solutes and metabolites across the membrane. This constitutes a problem when intramitochondrial enzymes are studied. The channel-forming antibiotic AlaM (alamethicin) was used as a potentially less invasive method to permeabilize mitochondria and study the highly branched electron-transport chain in potato tuber (Solanum tuberosum) and pea leaf (Pisum sativum) mitochondria. We show that AlaM permeabilized the inner membrane of plant mitochondria to NAD(P)H, allowing the quantification of internal NAD(P)H dehydrogenases as well as matrix enzymes in situ. AlaM was found to inhibit the electron-transport chain at the external Ca2+-dependent rotenone-insensitive NADH dehydrogenase and around complexes III and IV. Nevertheless, under optimal conditions, especially complex I-mediated NADH oxidation in AlaM-treated mitochondria was much higher than what has been previously measured by other techniques. Our results also show a difference in substrate specificities for complex I in mitochondria as compared with inside-out submitochondrial particles. AlaM facilitated the passage of cofactors to and from the mitochondrial matrix and allowed the determination of NAD+ requirements of malate oxidation in situ. In summary, we conclude that AlaM provides the best method for quantifying NADH dehydrogenase activities and that AlaM will prove to be an important method to study enzymes under conditions that resemble their native environment not only in plant mitochondria but also in other membrane-enclosed compartments, such as intact cells, chloroplasts and peroxisomes.


Assuntos
Mitocôndrias/enzimologia , NADH Desidrogenase/metabolismo , NADPH Desidrogenase/metabolismo , NADP/metabolismo , NAD/análogos & derivados , NAD/metabolismo , Folhas de Planta/metabolismo , Alameticina/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Ácidos Dicarboxílicos/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Malatos/metabolismo , Mitocôndrias/efeitos dos fármacos , Pressão Osmótica , Oxirredução , Consumo de Oxigênio , Pisum sativum/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/ultraestrutura , Rotenona/farmacologia , Solanum tuberosum/metabolismo , Especificidade por Substrato
10.
Antivir Chem Chemother ; 13(6): 345-52, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12718406

RESUMO

Ribavirin and mycophenolic acid (MPA) are known inhibitors of the IMPDH enzyme (E.C. 1.1.1.205). This enzyme catalyzes the conversion of inosine monophosphate to xanthine monophosphate, leading eventually to a decrease in the intracellular level of GTP and dGTP. The antiviral effect against bovine viral diarrhoea virus (BVDV) of 15 analogues related to MPA was determined. MDBK cells were infected with the cytopathic strain of BVDV in presence or absence of test compounds. Viral RNA was extracted from the cell supernatant fluids and quantified by RT-PCR. Ribavirin showed a potent antiviral effect against BVDV with 90% effective concentration (EC90) of 4 microM. MPA along with several analogues, including both its corresponding aldehyde and alcohol, and modifications in the length of the side chain (C2- and C4-derivatives) were tested. We have identified previously unreported IMPDH inhibitors that have potent anti-BVDV activity, namely: C6-MPAlc (5), C6-MPA-Me (7), C4-MPAlc (8), C4-MPA (10) and C2-MAD (20). Most of these compounds inhibited the IMPDH enzyme in the nanomolar range (4-800 nM) in cell-free assays. Some compounds, such as mizoribine, which is a potent inhibitor of IMPDH in vitro (enzyme 50% inhibitory concentration IC50=4 nM), had no detectable anti-BVDV activity up to 100 microM. The compounds were essentially non-toxic to a confluent monolayer of MDBK cells. However, in exponentially growing cells, they showed minimal toxicity at 100 microM over a 24 h period, but the toxicity was more pronounced after 3 days [50% cytotoxic concentration (CC50) value ranged from 5 to 30 microM].


Assuntos
Vírus da Diarreia Viral Bovina/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , IMP Desidrogenase/antagonistas & inibidores , Ácido Micofenólico/farmacologia , Ribavirina/farmacologia , Animais , Bovinos , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/virologia , Sistemas Computacionais , Meios de Cultivo Condicionados , Vírus da Diarreia Viral Bovina/fisiologia , Relação Dose-Resposta a Droga , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Guanosina Trifosfato/metabolismo , Rim , Estrutura Molecular , Ácido Micofenólico/análogos & derivados , NAD/análogos & derivados , NAD/farmacologia , Nucleosídeos/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribavirina/análogos & derivados , Ribonucleosídeos/farmacologia , Ensaio de Placa Viral , Replicação Viral/efeitos dos fármacos
11.
Biochem J ; 311 ( Pt 3): 987-93, 1995 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-7487961

RESUMO

Recently, we reported the synthesis and use of [32P]2-azido-NAD+ as a probe to study the structural organization of G-proteins. Pertussis toxin was used to 'tether' [32P]2-azido-ADP-ribose of [32P]2-azido-NAD+ to Cys347 of the alpha subunit of the G-protein Gt. Light activation of the azide moiety covalently cross-linked the domain containing Cys347 at the C-terminus of alpha t with neighbouring intra- and inter-molecular domains of holo-transducin. The radiolabel from [32P]2-azido-ADP-ribose was then transferred to the 'acceptor' domain by cleaving the thioglycosidic bond between Cys347 and [32P]2-azido-ADP- ribose with mercuric acetate. ADP-ribosylation followed by photocross-linking of holo-transducin indicated intramolecular interactions of the C-terminal domain with other alpha t domains and intermolecular interactions with holotransducin alpha and gamma subunits. The radiolabelled peptides, which were radiolabelled because of the transfer of the photoactive moiety, were identified by utilizing 2-(2'-nitrophenylsulphenyl)-3-methyl-3'- bromoindolenine ('BNPS-skatole') and CNBr. The results indicate that the C-terminus of alpha t interacts with both N-terminal and C-terminal domains within the alpha t molecular. Mapping the interacting sites between cross-linked alpha dimers and alpha trimers indicates that the C-terminal domain of alpha t is involved in the formation of alpha t homopolymers in solution. In addition, our studies place the beta gamma subunit in close proximity to Cys347 of alpha t, as indicated by the transfer of [32P]2-azido-ADP-ribose from Cys347 to the gamma subunit, which was further localized to the C-terminal half of gamma t. The studies presented here identify the C-terminal intra- and inter-molecular interactions of the alpha subunit of holo-transducin.


Assuntos
Marcadores de Afinidade , Azidas/química , Proteínas de Ligação ao GTP/química , NAD/análogos & derivados , Difosfato de Adenosina/análogos & derivados , Sequência de Aminoácidos , Reagentes de Ligações Cruzadas/química , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Substâncias Macromoleculares , Dados de Sequência Molecular , NAD/química , Mapeamento de Peptídeos , Radioisótopos de Fósforo , Fotoquímica , Fotólise , Transducina/química
12.
Biochemistry ; 28(13): 5354-66, 1989 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-2550053

RESUMO

The role of phospholipid in the binding of coenzyme, NAD(H), to 3-hydroxybutyrate dehydrogenase, a lipid-requiring membrane enzyme, has been studied with the ultrafiltration binding method, which we optimized to quantitate weak ligand binding (KD in the range 10-100 microM). 3-Hydroxybutyrate dehydrogenase has a specific requirement of phosphatidylcholine (PC) for optimal function and is a tetramer quantitated both for the apodehydrogenase, which is devoid of phospholipid, and for the enzyme reconstituted into phospholipid vesicles in either the presence or absence of PC. We find that (i) the stoichiometry for NADH and NAD binding is 0.5 mol/mol of enzyme monomer (2 mol/mol of tetramer); (ii) the dissociation constant for NADH binding is essentially the same for the enzyme reconstituted into the mixture of mitochondrial phospholipids (MPL) (KD = 15 +/- 3 microM) or into dioleoyl-PC (KD = 12 +/- 3 microM); (iii) the binding of NAD+ to the enzyme-MPL complex is more than an order of magnitude weaker than NADH binding (KD approximately 200 microM versus 15 microM) but can be enhanced by formation of a ternary complex with either 2-methylmalonate (apparent KD = 1.1 +/- 0.2 microM) or sulfite to form the NAD-SO3- adduct (KD = 0.5 +/- 0.1 microM); (iv) the binding stoichiometry for NADH is the same (0.5 mol/mol) for binary (NADH alone) and ternary complexes (NADH plus monomethyl malonate); (v) binding of NAD+ and NADH together totals 0.5 mol of NAD(H)/mol of enzyme monomer, i.e., two nucleotide binding sites per enzyme tetramer; and (vi) the binding of nucleotide to the enzyme reconstituted with phospholipid devoid of PC is weak, being detected only for the NAD+ plus 2-methylmalonate ternary complex (apparent KD approximately 50 microM or approximately 50-fold weaker binding than that for the same complex in the presence of PC). The binding of NADH by equilibrium dialysis or of spin-labeled analogues of NAD+ by EPR spectroscopy gave complementary results, indicating that the ultrafiltration studies approximated equilibrium conditions. In addition to specific binding of NAD(H) to 3-hydroxybutyrate dehydrogenase, we find significant binding of NAD(H) to phospholipid vesicles. An important new finding is that the nucleotide binding site is present in 3-hydroxybutyrate dehydrogenase in the absence of activating phospholipid since (a) NAD+, as the ternary complex with 2-methylmalonate, binds to the enzyme reconstituted with phospholipid devoid of PC and (b) the apodehydrogenase, devoid of phospholipid, binds NADH or NAD-SO3- weakly (half-maximal binding at approximately 75 microM NAD-SO3- and somewhat weaker binding for NADH).(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
Hidroxibutirato Desidrogenase/metabolismo , Mitocôndrias Cardíacas/enzimologia , NAD/metabolismo , Fosfatidilcolinas/metabolismo , Regulação Alostérica , Sítio Alostérico , Animais , Bovinos , Diálise , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Lipossomos , NAD/análogos & derivados , Fosfatidilcolinas/farmacologia , Ligação Proteica , Reagentes de Sulfidrila/farmacologia , Ultrafiltração
13.
J Med Chem ; 28(1): 99-105, 1985 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-2856943

RESUMO

A series of dinucleotides, analogous to nicotinamide adenine dinucleotide but containing the five-membered base nucleosides tiazofurin (1a), selenazofurin (1b), ribavirin (2), and AICAR (3) in place of nicotinamide ribonucleoside, were prepared in greater than 50% yield by reacting the corresponding nucleotide imidazolidates (6a-d) with adenosine 5'-monophosphate (AMP). The symmetric dinucleotides of tiazofurin (TTD, 8e) and selenazofurin (SSD, 8f) were also prepared by a similar methodology. These dinucleotides were characterized by 1H NMR and fast atom bombardment MS and were evaluated for their inhibitory potency against a partially purified preparation of tumoral inosine monophosphate dehydrogenase (IMPD) from P388 cells. The order of potency found was SAD (8b) greater than TAD (8a) much greater than SSD (8f) congruent to TTD (8e) congruent to RAD (8c) much much greater than ZAD (8d). On kinetic analysis none of the dinucleotides produced competitive inhibition of IMPD with NAD as a variable substrate. In addition to their superior IMPD inhibitory activity, SAD and TAD appear to be the only dinucleotides, besides NAD, that are formed naturally by the NAD pyrophosphorylase from P388 lymphoblasts.


Assuntos
IMP Desidrogenase/metabolismo , Cetona Oxirredutases/metabolismo , NAD/análogos & derivados , Compostos Organosselênicos , Ribavirina/síntese química , Ribonucleosídeos/síntese química , Selênio/síntese química , Animais , Cinética , Leucemia P388/enzimologia , Camundongos , Ribavirina/análogos & derivados , Ribavirina/metabolismo , Ribonucleosídeos/metabolismo , Selênio/metabolismo
17.
Vopr Biokhim Mozga ; 10: 75-83, 1975.
Artigo em Russo | MEDLINE | ID: mdl-186944

RESUMO

The coenzyme affinity of lactate dehydrogenase of various parts of rat brain is different to deamino-NAD and NAD as well as to their reduced forms. In direct reactions NAD exhibits a higher activity than deamino-NAD. In the reverse reaction an opposite pattern is observed. The effect of deamino-NADH is much higher than that of NADH. Our studies have shown that the isoenzymes of LDH which are richer in H subunits have a higher affinity for deamino-NAD and deamino-NADH than for NAD and NADH. The isoenzymes of LDH that contain more M forms have opposite properties. LDH-3 does not show a pronounced selective affinity. The data obtained indicate that the activity of LDH and of its 5 isoenzymes varies greatly in different brain parts; crucial changes being observed in the relative percentage of molecular forms of LDH.


Assuntos
Encéfalo/enzimologia , L-Lactato Desidrogenase/metabolismo , Animais , Cerebelo/enzimologia , Coenzimas/metabolismo , Hipotálamo/enzimologia , Isoenzimas , L-Lactato Desidrogenase/isolamento & purificação , Bulbo/enzimologia , Métodos , NAD/análogos & derivados , Glândula Pineal/enzimologia , Hipófise/enzimologia , Ratos , Medula Espinal/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA