Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 764
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 210: 448-461, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036067

RESUMO

Non-alcoholic steatohepatitis (NASH) is one of the fastest growing liver diseases worldwide, and oxidative stress is one of NASH main key drivers. Nicotinamide adenine dinucleotide phosphate (NADPH) is the ultimate donor of reductive power to a number of antioxidant defences. Here, we explored the potential of increasing NADPH levels to prevent NASH progression. We used nicotinamide riboside (NR) supplementation or a G6PD-tg mouse line harbouring an additional copy of the human G6PD gene. In a NASH mouse model induced by feeding mice a methionine-choline deficient (MCD) diet for three weeks, both tools increased the hepatic levels of NADPH and ameliorated the NASH phenotype induced by the MCD intervention, but only in female mice. Boosting NADPH levels in females increased the liver expression of the antioxidant genes Gsta3, Sod1 and Txnrd1 in NR-treated mice, or of Gsr for G6PD-tg mice. Both strategies significantly reduced hepatic lipid peroxidation. NR-treated female mice showed a reduction of steatosis accompanied by a drop of the hepatic triglyceride levels, that was not observed in G6PD-tg mice. NR-treated mice tended to reduce their lobular inflammation, showed a reduction of the NK cell population and diminished transcription of the damage marker Lcn2. G6PD-tg female mice exhibited a reduction of their lobular inflammation and hepatocyte ballooning induced by the MCD diet, that was related to a reduction of the monocyte-derived macrophage population and the Tnfa, Ccl2 and Lcn2 gene expression. As conclusion, boosting hepatic NADPH levels attenuated the oxidative lipid damage and the exhausted antioxidant gene expression specifically in female mice in two different models of NASH, preventing the progression of the inflammatory process and hepatic injury.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Feminino , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , NADP/metabolismo , Antioxidantes/metabolismo , Fígado/metabolismo , Inflamação/metabolismo , Colina/metabolismo , Metionina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Biotechnol Appl Biochem ; 71(1): 176-192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37864368

RESUMO

Thioredoxin reductase (TrxR, enzyme code [E.C.] 1.6.4.5) is a widely distributed flavoenzyme that catalyzes nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of thioredoxin and many other physiologically important substrates. Spirulina platensis is a blue-green algae that is often used as a dietary supplement. S. platensis is rich in protein, lipid, polysaccharide, pigment, carotenoid, enzyme, vitamins and many other chemicals and exhibits a variety of pharmacological functions. In the present study, a simple and efficient method to purify TrxR from S. platensis tablets is reported. The extractions were carried out using two different methods: heat denaturation and 2',5'-adenosine diphosphate Sepharose 4B affinity chromatography. The enzyme was purified by 415.04-fold over the crude extract, with a 19% yield, and specific activity of 0.7640 U/mg protein. Optimum pH, temperature and ionic strength of the enzyme activity, as well as the Michaelis constant (Km ) and maximum velocity of enzyme (Vmax ) values for NADPH and 5,5'-dithiobis(2-nitrobenzoic acid) were determined. Tested metal ions, vitamins, and drugs showed inhibition effects, except Se4+ ion, cefazolin sodium, teicoplanin, and tobramycin that increased the enzyme activity in vitro. Ag+ , Cu2+ , Mg2+ , Ni2+ , Pb2+ , Zn2+ , Al3+ , Cr3+ , Fe3+ , and V4+ ions; vitamin B3 , vitamin B6 , vitamin C, and vitamin U and aciclovir, azithromycin, benzyladenine, ceftriaxone sodium, clarithromycin, diclofenac, gibberellic acid, glurenorm, indole-3-butyric acid, ketorolac, metformin, mupirocin, mupirocin calcium, paracetamol, and tenofovir had inhibitory effects on TrxR. Ag+ exhibited stronger inhibition than 1-chloro-2,4-dinitrobenzene (a positive control).


Assuntos
Spirulina , Tiorredoxina Dissulfeto Redutase , NADP/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/metabolismo , Cromatografia de Afinidade , Vitaminas , Íons
3.
Molecules ; 28(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37959828

RESUMO

Diterpenoid alkaloids (DAs) are major pharmacologically active ingredients of Aconitum vilmorinianum, an important medicinal plant. Cytochrome P450 monooxygenases (P450s) are involved in the DA biosynthetic pathway, and the electron transfer reaction of NADPH-cytochrome P450 reductase (CPR) with P450 is the rate-limiting step of the P450 redox reaction. Here, we identified and characterized two homologs of CPR from Aconitum vilmorinianum. The open reading frames of AvCPR1 and AvCPR2 were found to be 2103 and 2100 bp, encoding 700 and 699 amino acid residues, respectively. Phylogenetic analysis characterized both AvCPR1 and AvCPR2 as class II CPRs. Cytochrome c and ferricyanide could be reduced with the recombinant proteins of AvCPR1 and AvCPR2. Both AvCPR1 and AvCPR2 were expressed in the roots, stems, leaves, and flowers of A. vilmorinianum. The expression levels of AvCPR1 and AvCPR2 were significantly increased in response to methyl jasmonate (MeJA) treatment. The yeasts co-expressing AvCPR1/AvCPR2/SmCPR1 and CYP76AH1 all produced ferruginol, indicating that AvCPR1 and AvCPR2 can transfer electrons to CYP76AH1 in the same manner as SmCPR1. Docking analysis confirmed the experimentally deduced functional activities of AvCPR1 and AvCPR2 for FMN, FAD, and NADPH. The functional characterization of AvCPRs will be helpful in disclosing molecular mechanisms relating to the biosynthesis of diterpene alkaloids in A. vilmorinianum.


Assuntos
Aconitum , Clonagem Molecular , Sequência de Aminoácidos , NADP , Filogenia , Sistema Enzimático do Citocromo P-450
4.
Biomed Pharmacother ; 168: 115711, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879213

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is the most common pathological type of esophageal cancer in China, accounting for more than 90 %. Most patients were diagnosed with advanced-stage ESCC, for whom new adjuvant therapy is recommended. Therefore, it is urgent to explore new therapeutic targets for ESCC. Ferroptosis, a newly discovered iron-dependent programmed cell death, has been shown to play an important role in carcinogenesis by many studies. This study explored the effect of Polo like kinase 1 (PLK1) on chemoradiotherapy sensitivity of ESCC through ferroptosis METHODS: In this study, we knocked out the expression of PLK1 (PLK1-KO) in ESCC cell lines (KYSE150 and ECA109) with CRISPR/CAS9. The effects of PLK1-knock out on G6PD, the rate-limiting enzyme of pentose phosphate pathway (PPP), and downstream NADPH and GSH were explored. The lipid peroxidation was observed by flow cytometry, and the changes in mitochondria were observed by transmission electron microscopy. Next, through the CCK-8 assay and clone formation assay, the sensitivity to cobalt 60 rays, paclitaxel, and cisplatin were assessed after PLK1-knock out, and the nude mouse tumorigenesis experiment further verified it. The regulation of transcription factor YY1 on PLK1 was evaluated by dual luciferase reporter assay. The expression and correlation of PLK1 and YY1, and their impact on prognosis were analyzed in more than 300 ESCC cases from the GEO database and our center. Finally, the above results were further proved by single-cell sequencing. RESULTS: After PLK1 knockout, the expression of G6PD dimer and the level of NADPH and GSH in KYSE150 and ECA109 cells significantly decreased. Accordingly, lipid peroxidation increased, mitochondria became smaller, membrane density increased, and ferroptosis was more likely to occur. However, with the stimulation of exogenous GSH (10 mM), there was no significant difference in lipid peroxidation and ferroptosis between the PLK1-KO group and the control group. After ionizing radiation, the PLK1-KO group had higher lipid peroxidation ratio, more cell death, and was more sensitive to radiation, while exogenous GSH (10 mM) could eliminate this difference. Similar results could also be observed when receiving paclitaxel combined with cisplatin and chemoradiotherapy. The expression of PLK1, G6PD dimer, and the level of NADPH and GSH in KYSE150, ECA109, and 293 T cells stably transfected with YY1-shRNAs significantly decreased, and the cells were more sensitive to radiotherapy and chemotherapy. ESCC patients from the GEO database and our center, YY1 and PLK1 expression were significantly positively-correlated, and the survival of patients with high expression of PLK1 was significantly shorter. Further analysis of single-cell sequencing specimens of ESCC in our center confirmed the above results. CONCLUSION: In ESCC, down-regulation of PLK1 can inhibit PPP, and reduce the level of NADPH and GSH, thereby promoting ferroptosis and improving their sensitivity to radiotherapy and chemotherapy. Transcription factor YY1 has a positive regulatory effect on PLK1, and their expressions were positively correlated. PLK1 may be a target for predicting and enhancing the chemoradiotherapy sensitivity of ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferroptose , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Quimiorradioterapia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/patologia , NADP/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Via de Pentose Fosfato , Fator de Transcrição YY1/metabolismo , Quinase 1 Polo-Like
5.
J Nutr Biochem ; 122: 109437, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37666478

RESUMO

Obesity has become a major health crisis in the past decades. Branched-chain amino acids (BCAA), a class of essential amino acids, exerted beneficial health effects with regard to obesity and its related metabolic dysfunction, although the underlying reason is unknown. Here, we show that BCAA supplementation alleviates high-fat diet (HFD)-induced obesity and insulin resistance in mice and inhibits adipogenesis in 3T3-L1 cells. Further, we find that BCAA prevent the mitotic clonal expansion (MCE) of preadipocytes by reducing cyclin A2 (CCNA2) and cyclin-dependent kinase 2 (CDK2) expression. Mechanistically, BCAA decrease the concentration of nicotinamide adenine dinucleotide phosphate (NADPH) in adipose tissue and 3T3-L1 cells by reducing glucose-6-phosphate dehydrogenase (G6PD) expression. The reduced NADPH attenuates the expression of fat mass and obesity-associated (FTO) protein, a well-known m6A demethylase, to increase the N6-methyladenosine (m6A) levels of Ccna2 and Cdk2 mRNA. Meanwhile, the high m6A levels of Ccna2 and Cdk2 mRNA are recognized by YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), which results in mRNA decay and reduction of their protein expressions. Overall, our data demonstrate that BCAA inhibit obesity and adipogenesis by reducing CDK2 and CCNA2 expression via an NADPH-FTO-m6A coordinated manner in vivo and in vitro, which raises a new perspective on the role of m6A in the BCAA regulation of obesity and adipogenesis.


Assuntos
Aminoácidos de Cadeia Ramificada , Obesidade , Camundongos , Animais , NADP , Aminoácidos de Cadeia Ramificada/metabolismo , Obesidade/metabolismo , Ciclo Celular , Adipogenia , RNA Mensageiro/metabolismo , Células 3T3-L1 , Dieta Hiperlipídica/efeitos adversos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
6.
Biomed Pharmacother ; 166: 115363, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660650

RESUMO

The purpose of this study was to examine the effects of nano-micelle curcumin (NMC)-induced redox imbalance on mitochondrial biogenesis and mitophagy. For this purpose, 24 mature male Wistar rats were divided into control and NMC-received groups (7.5, 15, and 30 mg/kg) groups. After 48 days, the Nrf1, Nrf2, and SOD (Cu/Zn) expression levels, as well as GSH/GSSG, NADP+ /NADPH relative balances (elements involved in redox homeostasis) were analyzed. Moreover, to explore the effect of NMC on mitochondrial biogenesis, the expression levels of Mfn1, Mfn2, OPA1, Fis1, and Drp1 were investigated. Finally, the expression levels of Parkin/PARK and PINK (genes involved in mitochondrial quality control), as well as LC3-I/II (mitophagy marker), were analyzed. Observations showed that NMC, dose-dependently, altered GSH/GSSG, NADP+ /NADPH relative balances, suppressed SOD expression and diminished its biochemical level, and repressed Nrf1 and Nrf2 expression levels. Moreover, it could change the Mfn1, Mfn2, OPA1, Fis1, and Drp1 expression pattern and stimulate the Parkin/PARK and PINK as well as LC3-I/II expression levels, dose-dependently. In conclusion, chronic and high-dose NMC is able to suppress the redox capacity by down-regulating the Nrf1 and Nrf2 expression. Finally, at high-dose levels, it is able to trigger mitophagy signaling in the testicles.


Assuntos
Curcumina , Biogênese de Organelas , Masculino , Ratos , Animais , Ratos Wistar , Curcumina/farmacologia , Dissulfeto de Glutationa , Mitofagia , NADP , Fator 2 Relacionado a NF-E2 , Testículo , Hidrolases , Micelas , Oxirredução , Superóxido Dismutase
7.
Phytomedicine ; 120: 155044, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634486

RESUMO

BACKGROUND: The urgent challenge for ischemic stroke treatment is the lack of effective neuroprotectants that target multiple pathological processes. Crebanine, an isoquinoline-like alkaloid with superior pharmacological activities, presents itself as a promising candidate for neuroprotection. However, its effects and mechanisms on ischemic stroke remain unknown. METHODS: The effects of crebanine on brain damage following ischemic stroke were evaluated using the middle cerebral artery occlusion and reperfusion (MCAO/R) model. Mechanism of action was investigated using both MCAO/R rats and lipopolysaccharide (LPS)-activated BV-2 cells. RESULTS: We initially demonstrated that crebanine effectively ameliorated the neurological deficits in MCAO/R rats, while also reducing brain edema and infarction. Treatment with crebanine resulted in the up-regulation of NeuN+ fluorescence density and down-regulation of FJB+ cell count, and mitigated synaptic damage. Crebanine attenuated the hyperactivation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) by downregulating NADP+ and NADPH levels, suppressing gp91phox and p47phox expressions, and reducing p47phox membrane translocation in Iba-1+ cells. Additionally, crebanine reduced the quantity of Iba-1+ cells and protein expression. Correlation analysis has demonstrated that the inhibition of NOX2 activation in microglia is beneficial for mitigating I/R brain injuries. Moreover, crebanine exhibited significant antioxidant properties by down-regulating the expression of superoxide anion and intracellular reactive oxygen species in vivo and in vitro, and reducing lipid and DNA peroxidation. Crebanine exerted anti-inflammatory effect, as evidenced by the reduction in the expressions of nitric oxide, interleukin 1ß, tumor necrosis factor α, interleukin 6, and inducible nitric oxide synthase. The effect of crebanine was achieved through the suppression of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) signaling pathway. This is supported by evidence showing reduced NF-κB p65 promoter activity and nucleus translocation, as well as suppressed IκBα phosphorylation and degradation. Additionally, it inhibited the phosphorylation of ERK, JNK, and p38 MAPKs. Importantly, the anti-oxidative stress and neuroinflammation effects of crebanine were further enhanced after silencing gp91phox and p47phox. CONCLUSION: Crebanine alleviated the brain damages of MCAO/R rats by inhibiting oxidative stress and neuroinflammation mediated by NOX2 in microglia, implying crebanine might be a potential natural drug for the treatment of cerebral ischemia.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Ratos , Animais , NF-kappa B/metabolismo , Microglia , NADPH Oxidase 2/metabolismo , Doenças Neuroinflamatórias , NADP/metabolismo , NADP/farmacologia , NADPH Oxidases , Estresse Oxidativo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Encéfalo/metabolismo , Reperfusão
8.
Phytochemistry ; 213: 113766, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343736

RESUMO

The increased activity of PARP enzymes is associated with a deficiency of NAD+, as well as with a loss of NADPH and ATP, and consequent deterioration of the redox state in fruits. In this study, we checked whether treatment with nicotinamide (NAM) would affect PARP-1 expression and NAD+ metabolism in strawberry fruit during storage. For this purpose, strawberry fruits were treated with 10 mM NAM and co-treated with NAM and UV-C, and then stored for 5 days at 4 °C. Research showed that nicotinamide contributes to reducing oxidative stress level by reducing PARP-1 mRNA gene expression and the protein level resulting in higher NAD+ availability, as well as improving energy metabolism and NADPH levels in fruits, regardless of whether they are exposed to UV-C. The above effects cause fruits treated with nicotinamide to be characterised by higher anti-radical activity, and a lower level of reactive oxygen species in the tissue.


Assuntos
Armazenamento de Alimentos , Fragaria , Frutas , Niacinamida , Catalase , Produção Agrícola/métodos , Complexo II de Transporte de Elétrons , Armazenamento de Alimentos/métodos , Fragaria/efeitos dos fármacos , Fragaria/metabolismo , Fragaria/efeitos da radiação , Frutas/efeitos dos fármacos , Frutas/metabolismo , Frutas/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , NAD/metabolismo , NADP/metabolismo , Niacinamida/farmacologia , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro , Superóxido Dismutase , Raios Ultravioleta
9.
Clin Exp Nephrol ; 27(7): 593-602, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37140734

RESUMO

BACKGROUND: Astragalus root is a commonly used herb in traditional Chinese medicine. Although renoprotective effects have been reported in some clinical and experimental studies, the details remain unknown. METHODS: We used 5/6 nephrectomized rats as chronic kidney disease (CKD) models. At 10 weeks, they were divided into four groups, namely, CKD, low-dose astragalus (AR400), high-dose astragalus (AR800), and sham groups. At 14 weeks, they were sacrificed for the evaluation of blood, urine, mRNA expression in the kidney, and renal histopathology. RESULTS: Kidney dysfunction was significantly improved following astragalus administration (creatinine clearance: sham group; 3.8 ± 0.3 mL/min, CKD group; 1.5 ± 0.1 mL/min, AR400 group; 2.5 ± 0.3 mL/min, AR800 group; 2.7 ± 0.1 mL/min). Blood pressure, urinary albumin, and urinary NGAL levels were significantly lower in the astragalus-treated groups than those in the CKD group. Excretion of urinary 8-OHdG, an oxidative stress marker, and intrarenal oxidative stress were lower in the astragalus-treated groups than those in the CKD group. Furthermore, the mRNA expression of NADPH p22 phox, NADPH p47 phox, Nox4, renin, angiotensin II type 1 receptor, and angiotensinogen in the kidney was lower in the astragalus-treated groups compared with the CKD group. CONCLUSION: This study suggests that astragalus root slowed CKD progression, possibly through the suppression of oxidative stress and the renin-angiotensin system.


Assuntos
Rim , Insuficiência Renal Crônica , Ratos , Animais , NADP/metabolismo , NADP/farmacologia , NADP/uso terapêutico , Rim/patologia , Renina , Sistema Renina-Angiotensina , RNA Mensageiro/metabolismo
10.
Phytother Res ; 37(9): 3982-4001, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37209001

RESUMO

Alzheimer's disease (AD) is the most frequent cause of dementia in the elderly. Isoamericanin A (ISOA) is a natural lignan possessing great potential for AD treatment. This study investigated the efficacy of ISOA on memory impairments in the mice intrahippocampal injected with lipopolysaccharide (LPS) and the underlying mechanism. Y-maze and Morris Water Maze data suggested that ISOA (5 and 10 mg/kg) ameliorated short- and long-term memory impairments, and attenuated neuronal loss and lactate dehydrogenase activity. ISOA exerted anti-inflammatory effect demonstrating by the reduction of ionized calcium-binding adapter molecule 1 positive cells and suppression of marker protein and pro-inflammation cytokines expressions induced by LPS. ISOA suppressed the nuclear factor kappa B (NF-κB) signaling pathway by inhibiting IκBα phosphorylation and NF-κB p65 phosphorylation and nuclear translocation. ISOA inhibited superoxide and intracellular reactive oxygen species accumulation by reducing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation, demonstrating by suppressing NADP+ and NADPH contents, gp91phox expression, and p47phox expression and membrane translocation. These effects were enhanced in combination with NADPH oxidase inhibitor apocynin. The neuroprotective effect of ISOA was further proved in the in vitro models. Overall, our data revealed a novel pharmacological activity of ISOA: ameliorating memory impairment in AD via inhibiting neuroinflammation.


Assuntos
Lipopolissacarídeos , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , NAD/metabolismo , NAD/farmacologia , NADP/metabolismo , NADP/farmacologia , Transdução de Sinais , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transtornos da Memória
11.
Environ Sci Pollut Res Int ; 30(25): 67771-67787, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37115449

RESUMO

Hexavalent chromium salt, like potassium dichromate (PD), is chromium's most precarious valence state in industrial wastes. Recently, there has been increasing interest in ß-sitosterol (BSS), a bioactive phytosterol, as a dietary supplement. BSS is recommended in treating cardiovascular disorders due to its antioxidant effect. Trimetazidine (TMZ) was used traditionally for cardioprotection. Through the administration of BSS and TMZ, the cardiotoxic effects of PD were to be countered in this study, in addition to examining the precise mechanism of PD-induced cardiotoxicity. Thirty male albino rats were divided into five groups; the control group: administered normal saline daily (3 mL/kg); the PD group: administered normal saline daily (3 mL/kg); BSS group: administered BSS daily (20 mg/kg); TMZ group: administered TMZ daily (15 mg/kg); and the BSS + TMZ group: administered both BSS (20 mg/kg) and TMZ (15 mg/kg) daily. All experimental groups, except the control, received on the 19th day a single dose of PD (30 mg/kg/day, S.C.). Normal saline, BSS, and TMZ were received daily for 21 consecutive days p.o. The exposure to PD promoted different oxidative stresses, pro-inflammatory, and cardiotoxicity biomarkers. BSS or TMZ succeeded solely in reducing these deleterious effects; however, their combination notably returned measured biomarkers close to normal values. The histopathological investigations have supported the biochemical findings. The combination of BSS and TMZ protects against PD cardiotoxicity in rats by reducing oxidative stress and apoptotic and inflammatory biomarkers. It may be promising for alleviating and protecting against PD-induced cardiotoxicity in people at an early stage; however, these findings need further clinical studies to be confirmed. HIGHLIGHTS: • Potassium dichromate induces cardiotoxicity in rats through the upregulation of oxidative stress, proinflammatory, and apoptotic pathways biomarkers. • ß-Sitosterol possesses a possible cardioprotective effect by modulating several signaling pathways. • Trimetazidine, the antianginal agent, has a potential cardioprotective impact on PD-intoxicated rat model. • The combination of ß-Sitosterol and trimetazidine was the best in modulating different pathways involved in PD cardiotoxicity in rats via the interplay between NF-κB/AMPK/mTOR/TLR4 and HO-1/NADPH signaling pathways.


Assuntos
Trimetazidina , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Biomarcadores , Cardiotoxicidade/tratamento farmacológico , NADP/metabolismo , NADP/farmacologia , NF-kappa B/metabolismo , Dicromato de Potássio , Solução Salina/farmacologia , Transdução de Sinais , Receptor 4 Toll-Like , Serina-Treonina Quinases TOR/metabolismo , Trimetazidina/farmacologia , Trimetazidina/uso terapêutico , Animais , Ratos
12.
Phytomedicine ; 114: 154749, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36931097

RESUMO

BACKGROUND: Phospholipid peroxidation signaling was recently revealed as a novel pathological mechanism of coronary heart disease (CHD), and small molecules involved in this redox-metabolic pathway are suggested as the potential anti-CHD drugs. Danlou Tablet (DLT), a famous traditional Chinese medicine (TCM) formula characterized by multi-component and multi-target regulation, is widely used in the clinical treatment of CHD by regulating lipid metabolism. However, little information is available addressing the corresponding pharmacological mechanisms and associated active components of DLT. PURPOSE: To study whether phospholipid peroxidation involves a novel mechanism of DLT for the therapeutic effect of CHD and to explain the essential active components. METHODS: Firstly, the HPLC fingerprint was constructed to ensure the controllability of the quality of DLT. Then, a CHD animal model with the characteristics of lipid disorder and myocardial ischemia was established by a high-fat diet (HFD) combined with left anterior descending coronary artery (LAD) ligation. The therapeutic effect of DLT was further evaluated based on the results of the rat survival rate, cardiac function, cardiac histopathology, and myocardial ischemia indicators. Correspondingly, whether DLT can regulate the key indicators (ALOX15, GPX4, MDA, GSH, and NADPH) of the phospholipid peroxidation pathway was investigated, and Alox15-/- mice have been applied to confirm the mechanism of DLT. Finally, the target-mediated characterization strategy based on ALOX15, including the integration of in vivo component characterization, network pharmacology, molecular docking analysis, and activity verification, has been further implemented to reveal the key bio-active components in DLT. RESULTS: In this study, a high-fat diet (HFD) combined with left anterior descending coronary artery (LAD) ligation was utilized to generate a CHD model, and DLT significantly improved the cardiac dysfunction and reduced the myocardial cell death susceptibility. Further results revealed that DLT reversed the protein expression of ALOX15 and GPX4, the key proteins of phospholipid peroxidation pathways, which subsequently influenced the parameters of phospholipid peroxidation (MDA, GSH, and NADPH). The ALOX15 knockout transgenic animal model confirmed that Alox15-/- mice lost their cardioprotective effects with DLT, suggesting that DLT exerted therapeutic effects on CHD by regulating ALOX15-mediated phospholipid peroxidation. Finally, the target-mediated characterization strategy identified that daidzein is an active component in DLT against CHD by modulating ALOX15. CONCLUSION: Innovatively, ALOX15-mediated phospholipid peroxidation was identified as one of the critical mechanisms of DLT exerting cardioprotective effects. Our findings elucidate a novel mechanism of DLT and provide some new drug evaluation targets and therapeutic strategies for CHD.


Assuntos
Doença das Coronárias , Medicamentos de Ervas Chinesas , Isquemia Miocárdica , Ratos , Camundongos , Animais , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , NADP/uso terapêutico , Doença das Coronárias/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Isquemia Miocárdica/tratamento farmacológico , Fosfolipídeos
13.
J Colloid Interface Sci ; 641: 135-145, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36931212

RESUMO

Cancer cells show unique redox homeostasis. Glutathione (GSH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) play essential roles as coenzymes of multiple key antioxidant enzymes. Coenzyme depletion offers a unique opportunity for cancer treatment by inducing oxidative stress. Here, we report an innovative hybrid nanocarrier for cancer redox therapy via selective depletion of GSH and NADPH. The nanocarrier core is a sorafenib-loaded porous zeolitic imidazole framework (ZIF-65), and the shell is epigallocatechin gallate (EGCG)-Fe3+ complex (EF). The nitroimidazole ligand in ZIF-65 could selectively deplete NADPH under hypoxia. Sorafenib diminished GSH by inhibiting cystine import and GSH biosynthesis. EGCG can reduce Fe3+ to Fe2+, which aids the generation of hydroxyl radicals via the Fenton reaction. The reversible coordination between nitroimidazole and Zn2+, EGCG, and Fe3+ enables triggered cargo release in acidic lysosomes. Tailored nanocarriers induced the depletion of both coenzymes (GSH and NADPH) and boosted reactive oxygen species in a 4T1 murine cancer cell line. The altered redox balance eventually resulted in efficient apoptotic cell death. The current work offers a novel means of redox cancer therapy via the selective depletion of key antioxidant enzymes in hypoxic cells.


Assuntos
Neoplasias , Nitroimidazóis , Camundongos , Humanos , Animais , Coenzimas/metabolismo , NADP/metabolismo , Antioxidantes/metabolismo , Sorafenibe , Oxirredução , Glutationa/metabolismo , Hipóxia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
14.
Food Chem ; 417: 135848, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36913871

RESUMO

To explore regulation mechanism of temperature on garlic greening and pigment precursors' accumulation, greening capacities, pigment precursors and critical metabolites, enzyme and genes involved in glutathione and NADPH metabolism of garlic stored at five temperatures (4, 8, 16, 24 and 30 ℃) were analyzed. Results showed that garlic pre-stored at 4, 8 and 16 ℃ were more likely to green than ones at 24 and 30 ℃ after pickling. After 25 days, more S-1-propenyl-l-cysteine sulfoxide (1-PeCSO) were detected in garlic stored at 4, 8 and 16 ℃ (753.60, 921.85 and 756.75 mAU, respectively) than that at 24 and 30 ℃ (394.35 and 290.70 mAU). Pigment precursors' accumulation in garlic was mainly realized by glutathione and NADPH metabolism under low-temperature storage, through enhancements of activities or expressions for GR (GSR), GST (GST), γ-GT (GGT1, GGT2), 6PGDH (PGD) and ICDHc (IDH1). This study enriched the mechanism of garlic greening.


Assuntos
Alho , Antioxidantes/metabolismo , Cisteína/metabolismo , Alho/metabolismo , Glutationa/metabolismo , NADP/metabolismo , Pigmentos Biológicos/metabolismo , Temperatura , Cor
15.
Chin J Integr Med ; 29(5): 448-458, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36609953

RESUMO

OBJECTIVE: To investigate the molecular mechanisms underlying the beneficial effect of electroacupuncture (EA) in experimental models of Alzheimer's disease (AD) in vivo. METHODS: Senescence-accelerated mouse prone 8 (SAMP8) mice were used as AD models and received EA at Yingxiang (LI 20, bilateral) and Yintang (GV 29) points for 20 days. For certain experiments, SAMP8 mice were injected intravenously with human fibrin (2 mg). The Morris water maze test was used to assess cognitive and memory abilities. The changes of tight junctions of blood-brain barrier (BBB) in mice were observed by transmission electron microscope. The expressions of fibrin, amyloid- ß (Aß), and ionized calcium-binding adapter molecule 1 (IBa-1) in mouse hippocampus (CA1/CA3) were detected by reverse transcription-quantitative polymerase chain reaction (qRT-PCR), Western blot or immunohistochemical staining. The expression of fibrin in mouse plasma was detected by enzyme-linked immunosorbent assay. The expressions of tight junction proteins zonula occludens-1 and claudin-5 in hippocampus were detected by qRT-PCR and immunofluorescence staining. Apoptosis of hippocampal neurons was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. RESULTS: Fibrin was time-dependently deposited in the hippocampus of SAMP8 mice and this was inhibited by EA treatment (P<0.05 or P<0.01). Furthermore, EA treatment suppressed the accumulation of Aß in the hippocampus of SAMP8 mice (P<0.01), which was reversed by fibrin injection (P<0.05 or P<0.01). EA improved SAMP8 mice cognitive impairment and BBB permeability (P<0.05 or P<0.01). Moreover, EA decreased reactive oxygen species levels and neuroinflammation in the hippocampus of SAMP8 mice, which was reversed by fibrin injection (P<0.05 or P<0.01). Mechanistically, EA inhibited the promoting effect of fibrin on the high mobility group box protein 1 (HMGB1)/toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE)/nicotinamide adenine dinucleotide phosphate (NADPH) signaling pathways (P<0.01). CONCLUSION: EA may potentially improve cognitive impairment in AD via inhibition of fibrin/A ß deposition and deactivation of the HMGB1/TLR4 and RAGE/NADPH signaling pathways.


Assuntos
Doença de Alzheimer , Eletroacupuntura , Proteína HMGB1 , Camundongos , Humanos , Animais , NADP/metabolismo , Receptor 4 Toll-Like , Proteína HMGB1/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Barreira Hematoencefálica/metabolismo , Doenças Neuroinflamatórias , Doença de Alzheimer/terapia , Hipocampo/metabolismo , Peptídeos beta-Amiloides/metabolismo
16.
Autophagy ; 19(7): 1997-2014, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36647288

RESUMO

Mutations in the Krebs cycle enzyme IDH1 (isocitrate dehydrogenase (NADP(+)) 1) are associated with better prognosis in gliomas. Though IDH1 mutant (IDH1R132H) tumors are characterized by their antiproliferative signatures maintained through hypermethylation of DNA and chromatin, mechanisms affecting cell death pathways in these tumors are not well elucidated. On investigating the crosstalk between the IDH1 mutant epigenome, ferritinophagy and inflammation, diminished expression of PRMT1 (protein arginine methyltransferase 1) and its associated asymmetric dimethyl epigenetic mark H4R3me2a was observed in IDH1R132H gliomas. Reduced expression of PRMT1 was concurrent with diminished levels of PTX3, a key secretory factor involved in cancer-related inflammation. Lack of PRMT1 H4R3me2a in IDH1 mutant glioma failed to epigenetically activate the expression of PTX3 with a reduction in YY1 (YY1 transcription factor) binding on its promoter. Transcriptional activation and subsequent secretion of PTX3 from cells was required for maintaining macroautophagic/autophagic balance as pharmacological or genetic ablation of PTX3 secretion in wild-type IDH1 significantly increased autophagic flux. Additionally, PTX3-deficient IDH1 mutant gliomas exhibited heightened autophagic signatures. Furthermore, we demonstrate that the PRMT1-PTX3 axis is important in regulating the levels of ferritin genes/iron storage and inhibition of this axis triggered ferritinophagic flux. This study highlights the conserved role of IDH1 mutants in augmenting ferritinophagic flux in gliomas irrespective of genetic landscape through inhibition of the PRMT1-PTX3 axis. This is the first study describing ferritinophagy in IDH1 mutant gliomas with mechanistic details. Of clinical importance, our study suggests that the PRMT1-PTX3 ferritinophagy regulatory circuit could be exploited for therapeutic gains.Abbreviations: 2-HG: D-2-hydroxyglutarate; BafA1: bafilomycin A1; ChIP: chromatin immunoprecipitation; FTH1: ferritin heavy chain 1; FTL: ferritin light chain; GBM: glioblastoma; HMOX1/HO-1: heme oxygenase 1; IHC: immunohistochemistry; IDH1: isocitrate dehydrogenase(NADP(+))1; MDC: monodansylcadaverine; NCOA4: nuclear receptor coactivator 4; NFE2L2/Nrf2: NFE2 like bZIP transcription factor 2; PTX3/TSG-14: pentraxin 3; PRMT: protein arginine methyltransferase; SLC40A1: solute carrier family 40 member 1; Tan IIA: tanshinone IIA; TCA: trichloroacetic acid; TEM: transmission electron microscopy; TNF: tumor necrosis factor.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Isocitrato Desidrogenase/uso terapêutico , Proteína-Arginina N-Metiltransferases/genética , NADP , Autofagia/genética , Glioma/patologia , Mutação/genética , Fator de Transcrição YY1 , Neoplasias Encefálicas/patologia , Proteínas Repressoras/genética
17.
Plant J ; 113(2): 416-429, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36479950

RESUMO

Crop photosynthesis (A) and productivity are often limited by a combination of nutrient stresses, such that changes in the availability of one nutrient may affect the availability of another nutrient, in turn influencing A. In this study, we examined the synergistic effects of phosphorus (P) and potassium (K) on leaf A in a nutrient amendment experiment, in which P and K were added individually or in combination to Brassica napus grown under P and K co-limitation. The data revealed that the addition of P gradually removed the dominant limiting factor (i.e. the limited availability of P) and improved leaf A. Strikingly, the addition of K synergistically improved the overall uptake of P, mainly by boosting plant growth, and compensated for the physiological demand for P by prioritizing investment in metabolic pools of P (P-containing metabolites and inorganic phosphate, Pi). The enlarged pool of metabolically active P was partially associated with the upregulation of Pi regeneration through release from triose phosphates rather than replacement of P-containing lipids. This process mitigated P restrictions on A by maintaining the ATP/NADPH and NADPH/NADP+ ratios and increasing the content and activity of Rubisco. Our findings demonstrate that sufficient K increased Pi-limited A by enhancing metabolic P fractions and Rubisco activity. Thus, ionic synergism may be exploited to mitigate nutrient-limiting factors to improve crop productivity.


Assuntos
Brassica napus , Fósforo , Fósforo/metabolismo , Fosfatos/metabolismo , Potássio/metabolismo , Brassica napus/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , NADP/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo
18.
Artigo em Inglês | WPRIM | ID: wpr-982293

RESUMO

OBJECTIVE@#To investigate the molecular mechanisms underlying the beneficial effect of electroacupuncture (EA) in experimental models of Alzheimer's disease (AD) in vivo.@*METHODS@#Senescence-accelerated mouse prone 8 (SAMP8) mice were used as AD models and received EA at Yingxiang (LI 20, bilateral) and Yintang (GV 29) points for 20 days. For certain experiments, SAMP8 mice were injected intravenously with human fibrin (2 mg). The Morris water maze test was used to assess cognitive and memory abilities. The changes of tight junctions of blood-brain barrier (BBB) in mice were observed by transmission electron microscope. The expressions of fibrin, amyloid- β (Aβ), and ionized calcium-binding adapter molecule 1 (IBa-1) in mouse hippocampus (CA1/CA3) were detected by reverse transcription-quantitative polymerase chain reaction (qRT-PCR), Western blot or immunohistochemical staining. The expression of fibrin in mouse plasma was detected by enzyme-linked immunosorbent assay. The expressions of tight junction proteins zonula occludens-1 and claudin-5 in hippocampus were detected by qRT-PCR and immunofluorescence staining. Apoptosis of hippocampal neurons was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining.@*RESULTS@#Fibrin was time-dependently deposited in the hippocampus of SAMP8 mice and this was inhibited by EA treatment (P<0.05 or P<0.01). Furthermore, EA treatment suppressed the accumulation of Aβ in the hippocampus of SAMP8 mice (P<0.01), which was reversed by fibrin injection (P<0.05 or P<0.01). EA improved SAMP8 mice cognitive impairment and BBB permeability (P<0.05 or P<0.01). Moreover, EA decreased reactive oxygen species levels and neuroinflammation in the hippocampus of SAMP8 mice, which was reversed by fibrin injection (P<0.05 or P<0.01). Mechanistically, EA inhibited the promoting effect of fibrin on the high mobility group box protein 1 (HMGB1)/toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE)/nicotinamide adenine dinucleotide phosphate (NADPH) signaling pathways (P<0.01).@*CONCLUSION@#EA may potentially improve cognitive impairment in AD via inhibition of fibrin/A β deposition and deactivation of the HMGB1/TLR4 and RAGE/NADPH signaling pathways.


Assuntos
Camundongos , Humanos , Animais , NADP/metabolismo , Receptor 4 Toll-Like , Proteína HMGB1/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Barreira Hematoencefálica/metabolismo , Doenças Neuroinflamatórias , Eletroacupuntura , Doença de Alzheimer/terapia , Hipocampo/metabolismo , Peptídeos beta-Amiloides/metabolismo
19.
J Cell Mol Med ; 26(21): 5414-5425, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36201630

RESUMO

Prevalence of heart failure (HF) continues to rise over time and is a global difficult problem; new drug targets are urgently needed. In recent years, pyroptosis is confirmed to promote cardiac remodelling and HF. Echinacoside (ECH) is a natural phenylethanoid glycoside and is the major active component of traditional Chinese medicine Cistanches Herba, which is reported to possess powerful anti-oxidation and anti-inflammatory effects. In addition, we previously reported that ECH reversed cardiac remodelling and improved heart function, but the effect of ECH on pyroptosis has not been studied. So, we investigated the effects of ECH on cardiomyocyte pyroptosis and the underlying mechanisms. In vivo, we established HF rat models induced by isoproterenol (ISO) and pre-treated with ECH. Indexes of heart function, pyroptotic marker proteins, ROS levels, and the expressions of NOX2, NOX4 and ER stress were measured. In vitro, primary cardiomyocytes of neonatal rats were treated with ISO and ECH; ASC speckles and caspase-1 mediated pyroptosis in cardiomyocytes were detected. Hoechst/PI staining was also used to evaluate pyroptosis. ROS levels, pyroptotic marker proteins, NOX2, NOX4 and ER stress levels were all tested. In vivo, we found that ECH effectively inhibited pyroptosis, down-regulated NOX2 and NOX4, decreased ROS levels, suppressed ER stress and improved heart function. In vitro, ECH reduced cardiomyocyte pyroptosis and suppressed NADPH/ROS/ER stress. We concluded that ECH inhibited cardiomyocyte pyroptosis and improved heart function via suppressing NADPH/ROS/ER stress.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Isoproterenol/farmacologia , Piroptose , Espécies Reativas de Oxigênio/metabolismo , NADP/metabolismo , Remodelação Ventricular , Glicosídeos/farmacologia , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo
20.
ChemSusChem ; 15(22): e202200888, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36129761

RESUMO

Enzymatic processes, particularly those capable of performing redox reactions, have recently been of growing research interest. Substrate specificity, optimal activity at mild temperatures, high selectivity, and yield are among the desirable characteristics of these oxidoreductase catalyzed reactions. Nicotinamide adenine dinucleotide (phosphate) or NAD(P)H-dependent oxidoreductases have been extensively studied for their potential applications like biosynthesis of chiral organic compounds, construction of biosensors, and pollutant degradation. One of the main challenges associated with making these processes commercially viable is the regeneration of the expensive cofactors required by the enzymes. Numerous efforts have pursued enzymatic regeneration of NAD(P)H by coupling a substrate reduction with a complementary enzyme catalyzed oxidation of a co-substrate. While offering excellent selectivity and high total turnover numbers, such processes involve complicated downstream product separation of a primary product from the coproducts and impurities. Alternative methods comprising chemical, electrochemical, and photochemical regeneration have been developed with the goal of enhanced efficiency and operational simplicity compared to enzymatic regeneration. Despite the goal, however, the literature rarely offers a meaningful comparison of the total turnover numbers for various regeneration methodologies. This comprehensive Review systematically discusses various methods of NAD(P)H cofactor regeneration and quantitatively compares performance across the numerous methods. Further, fundamental barriers to enhanced cofactor regeneration in the various methods are identified, and future opportunities are highlighted for improving the efficiency and sustainability of commercially viable oxidoreductase processes for practical implementation.


Assuntos
NAD , Niacinamida , Biocatálise , NAD/química , Oxirredução , NADP/metabolismo , Oxirredutases/metabolismo , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA