Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Agric Food Chem ; 69(49): 14926-14937, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34859673

RESUMO

Catechins are critical constituents for the sensory quality and health-promoting benefits of tea. Cytochrome P450 monooxygenases are required for catechin biosynthesis and are dependent on NADPH-cytochrome P450 reductases (CPRs) to provide reducing equivalents for their activities. However, CPRs have not been identified in tea, and their relationship to catechin accumulation also remains unknown. Thus, three CsCPR genes were identified in this study, all of which had five CPR-related conserved domains and were targeted to the endoplasmic reticulum. These three recombinant CsCPR proteins could reduce cytochrome c using NADPH as an electron donor. Heterologous co-expression in yeast demonstrated that all the three CsCPRs could support the enzyme activities of CsC4H and CsF3'H. Correlation analysis indicated that the expression level of CsCPR1 (or CsCPR2 or CsCPR3) was positively correlated with 3',4',5'-catechin (or total catechins) content. Our results indicate that the CsCPRs are involved in the biosynthesis of catechins in tea leaves.


Assuntos
Camellia sinensis , Catequina , Camellia sinensis/genética , Sistema Enzimático do Citocromo P-450/genética , NADPH-Ferri-Hemoproteína Redutase/genética , Proteínas de Plantas/genética
2.
Molecules ; 26(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34771064

RESUMO

Ginseng (Panax ginseng C.A. Mey.) is a precious Chinese traditional medicine, for which ginsenosides are the most important medicinal ingredients. Cytochrome P450 enzymes (CYP450) and their primary redox molecular companion NADPH cytochrome P450 reductase (CPR) play a key role in ginsenoside biosynthesis pathway. However, systematic studies of CPR genes in ginseng have not been reported. Numerous studies on ginsenoside synthesis biology still use Arabidopsis CPR (AtCPR1) as a reductase. In this study, we isolated two CPR genes (PgCPR1, PgCPR2) from ginseng adventitious roots. Phylogenetic tree analysis showed that both PgCPR1 and PgCPR2 are grouped in classⅡ of dicotyledonous CPR. Enzyme experiments showed that recombinant proteins PgCPR1, PgCPR2 and AtCPR1 can reduce cytochrome c and ferricyanide with NADPH as the electron donor, and PgCPR1 had the highest enzymatic activities. Quantitative real-time PCR analysis showed that PgCPR1 and PgCPR2 transcripts were detected in all examined tissues of Panax ginseng and both showed higher expression in stem and main root. Expression levels of the PgCPR1 and PgCPR2s were both induced after a methyl jasmonate (MeJA) treatment and its pattern matched with ginsenoside accumulation. The present investigation suggested PgCPR1 and PgCPR2 are associated with the biosynthesis of ginsenoside. This report will assist in future CPR family studies and ultimately improving ginsenoside production through transgenic engineering and synthetic biology.


Assuntos
NADPH-Ferri-Hemoproteína Redutase/genética , Panax/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , Biologia Computacional , Regulação da Expressão Gênica de Plantas/genética , Modelos Moleculares , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Filogenia
3.
Plant J ; 105(5): 1309-1325, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33617106

RESUMO

Secretions from glandular trichomes potentially protect plants against a variety of aggressors. In the tomato clade of the Solanum genus, glandular trichomes of wild species produce a rich source of chemical diversity at the leaf surface. Previously, 7-epi-zingiberene produced in several accessions of Solanum habrochaites was found to confer resistance to whiteflies (Bemisia tabaci) and other insect pests. Here, we report the identification and characterisation of 9-hydroxy-zingiberene (9HZ) and 9-hydroxy-10,11-epoxyzingiberene (9H10epoZ), two derivatives of 7-epi-zingiberene produced in glandular trichomes of S. habrochaites LA2167. Using a combination of transcriptomics and genetics, we identified a gene coding for a cytochrome P450 oxygenase, ShCYP71D184, that is highly expressed in trichomes and co-segregates with the presence of the zingiberene derivatives. Transient expression assays in Nicotiana benthamiana showed that ShCYP71D184 carries out two successive oxidations to generate 9HZ and 9H10epoZ. Bioactivity assays showed that 9-hydroxy-10,11-epoxyzingiberene in particular exhibits substantial toxicity against B. tabaci and various microorganisms including Phytophthora infestans and Botrytis cinerea. Our work shows that trichome secretions from wild tomato species can provide protection against a wide variety of organisms. In addition, the availability of the genes encoding the enzymes for the pathway of 7-epi-zingiberene derivatives makes it possible to introduce this trait in cultivated tomato by precision breeding.


Assuntos
Hemípteros/metabolismo , Sesquiterpenos Monocíclicos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Solanum/metabolismo , Animais , Botrytis/efeitos dos fármacos , Botrytis/patogenicidade , Hemípteros/genética , Hemípteros/microbiologia , Sesquiterpenos Monocíclicos/toxicidade , NADPH-Ferri-Hemoproteína Redutase/genética , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/patogenicidade , Solanum/genética
4.
J Agric Food Chem ; 68(24): 6683-6691, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32468814

RESUMO

In this study, we investigated an efficient enzymatic strategy for producing potentially valuable phloretin metabolites from phlorizin, a glucoside of phloretin that is rich in apple pomace. Almond ß-glucosidase efficiently removed phlorizin's glucose moiety to produce phloretin. CYP102A1 engineered by site-directed mutagenesis, domain swapping, and random mutagenesis catalyzed the highly regioselective C-hydroxylation of phloretin into 3-OH phloretin with high conversion yields. Under the optimal hydroxylation conditions of 15 g cells L-1 and a 20 mM substrate for whole-cell biocatalysis, phloretin was regioselectively hydroxylated into 3.1 mM 3-OH phloretin each hour. Furthermore, differentiation of 3T3-L1 preadipocytes into adipocytes and lipid accumulation were dramatically inhibited by 3-OH phloretin but promoted by phloretin. Consistent with these inhibitory effects, the expression of adipogenic regulator genes was downregulated by 3-OH phloretin. We propose a platform for the sustainable production and value creation of phloretin metabolites from apple pomace capable of inhibiting adipogenesis.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , Florizina/química , Extratos Vegetais/química , Adipócitos/citologia , Animais , Proteínas de Bactérias/metabolismo , Biocatálise , Sistema Enzimático do Citocromo P-450/metabolismo , Frutas/química , Inibidores do Crescimento/química , Inibidores do Crescimento/farmacologia , Malus/química , Camundongos , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Floretina/química , Florizina/farmacologia , Extratos Vegetais/farmacologia , Engenharia de Proteínas
5.
Biochem Biophys Res Commun ; 509(3): 822-827, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30638657

RESUMO

Dioscorea zingiberensis is a perennial medicinal herb rich in a variety of pharmaceutical steroidal saponins. Squalene epoxidase (SE) is the key enzyme in the biosynthesis pathways of triterpenoids and sterols, and catalyzes the epoxidation of squalene in coordination with NADPH-cytochrome P450 reductase (CPR). In this study, we cloned DzSE and DzCPR gene sequences from D. zingiberensis leaves, encoding proteins with 514 and 692 amino acids, respectively. Recombinant proteins were successfully expressed in vitro, and enzymatic analysis indicated that, when SE and CPR were incubated with the substrates squalene and NADPH, 2,3-oxidosqualene was formed as the product. Subcellular localization revealed that both the DzSE and DzCPR proteins are localized to the endoplasmic reticulum. The changes in transcription of DzSE and DzCPR were similar in several tissues. DzSE expression was enhanced in a time-dependent manner after methyl jasmonate (MeJA) treatments, while DzCPR expression was not inducible.


Assuntos
Dioscorea/enzimologia , NADPH-Ferri-Hemoproteína Redutase/metabolismo , NADP/metabolismo , Proteínas de Plantas/metabolismo , Esqualeno Mono-Oxigenase/metabolismo , Esqualeno/metabolismo , Acetatos/metabolismo , Ciclopentanos/metabolismo , Dioscorea/genética , Dioscorea/metabolismo , Regulação da Expressão Gênica de Plantas , NADPH-Ferri-Hemoproteína Redutase/genética , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esqualeno/análogos & derivados , Esqualeno Mono-Oxigenase/genética
6.
Zhongguo Zhong Yao Za Zhi ; 43(2): 309-315, 2018 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-29552849

RESUMO

Andrographolide is a main active ingredient in traditional Chinese medicine Andrographis paniculata,with a variety of pharmacological activity,widely used in clinical practice. However its biosynthetic pathway has not been resolved. Cytochrome P450 reductase provides electrons for CYP450 and plays an important role in the CYP450 catalytic process. In this study,the coding sequence of A. paniculata CPR was screened and cloned by homologous alignment,named ApCPR4. The ApCPR4 protein was obtained by prokaryotic expression. After isolation and purification,the enzyme activity was identified in vitro. The results showed that ApCPR4 could reduce the cytochrome c and ferricyanide in NADPH-dependent manner. In order to verify its in vivo function,ApCPR4 and CYP76AH1 were co-transformed into yeast engineering bacteria. The results showed that ApCPR4 could help CYP76AH1 catalyze the formation of rustols in yeast. Real-time quantitative PCR results showed that the expression of ApCPR4 increased gradually in leaves treated with methyl jasmonate (MeJA). The expression pattern was consistent with the trend of induction and accumulation of andrographolide by MeJA,suggesting that ApCPR4 was associated with biosynthesis of andrographolide.


Assuntos
Andrographis/enzimologia , NADPH-Ferri-Hemoproteína Redutase/genética , Proteínas de Plantas/genética , Acetatos , Andrographis/genética , Vias Biossintéticas , Clonagem Molecular , Ciclopentanos , Diterpenos/metabolismo , Oxilipinas , Folhas de Planta/enzimologia
7.
J Biosci Bioeng ; 125(1): 30-37, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28818427

RESUMO

The green microalga Botryococcus braunii of the B race accumulates various lipophilic compounds containing a 10,11-oxidosqualene epoxide moiety in addition to large amounts of triterpene hydrocarbons. While 2,3-squalene epoxidases have already been isolated and characterized from the alga, the enzyme that catalyzes the 10,11-epoxidation of squalene has remained elusive. In order to obtain a molecular tool to explore a 10,11-squalene epoxidase, cDNA cloning of an NADPH-dependent cytochrome P450 reductase (CPR) that is required by both squalene epoxidases and cytochrome P450 enzymes was carried out. The isolated cDNA contained an open reading frame (1998 bp) that encoded for a protein with 665 amino acid residues with a predicted molecular weight of 71.46 kDa and a theoretical pI of 5.49. Analysis of the deduced amino acid sequence revealed the presence of conserved motifs, including FMN, FAD, and NADPH binding domains, which are typical of other CPRs and necessary for enzyme activity. By truncation of the N-terminal transmembrane anchor and addition of a 6× His-tag, BbCPR was heterologously produced in Escherichia coli and purified by Ni-NTA affinity chromatography. The purified recombinant enzyme showed optimal reducing activity of cytochrome c at around a neutral pH at a temperature range of 30-37°C. For steady state kinetic parameters, the recombinant enzyme had a km for cytochrome c and NADPH of 11.7±1.6 and 9.4±1.4 µM, and a kcat for cytochrome c and NADPH of 2.78±0.09 and 3.66±0.11 µmol/min/mg protein, respectively. This is the first study to perform the functional characterization of a CPR from eukaryotic microalgae.


Assuntos
Clorófitas/enzimologia , Microalgas/enzimologia , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Sequência de Aminoácidos , Clorófitas/genética , Cromatografia de Afinidade , Clonagem Molecular , Citocromos c/metabolismo , DNA Complementar/genética , Escherichia coli/genética , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Concentração de Íons de Hidrogênio , Microalgas/genética , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Fases de Leitura Aberta/genética , Temperatura
8.
Int J Biol Macromol ; 102: 208-217, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28410952

RESUMO

Andrographis paniculata (Burm.f.) Wall. ex Nees is widely used as medicinal herb in Southern and Southeastern Asia and andrographolide is its main medicinal constituent. Based on the structure of andrographolide, it has been proposed that cytochrome P450 enzymes play vital roles on its biosynthesis. NADPH:cytochrome P450 reductase (CPR) is the most important redox partner of multiple P450s. In this study, three CPRs were identified in the genomic data of A. paniculata (namely ApCPR1, ApCPR2, and ApCPR3), and their coding regions were cloned. They varied from 62% to 70% identities to each other at the amino acid sequence level. ApCPR1 belongs to Class I of dicotyledonous CPR while both ApCPR2 and ApCPR3 are grouped to Class II. The recombinant enzymes ApCPR1 and ApCPR2 reduced cytochrome c and ferricyanide in an NADPH-dependent manner. In yeast, they supported the activity of CYP76AH1, a ferruginol-forming enzyme. However, ApCPR3 did not show any enzymatic activities either in vitro or in vivo. Quantitative real-time PCR analysis showed that both ApCPR1 and ApCPR2 expressed in all tissues examined, but ApCPR2 showed higher expression in leaves. Expression of ApCPR2 was inducible by MeJA and its pattern matched with andrographolide accumulation. Present investigation suggested ApCPR2 involves in the biosynthesis of secondary metabolites including andrographolide.


Assuntos
Andrographis/enzimologia , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Sequência de Aminoácidos , Andrographis/genética , Andrographis/metabolismo , Biocatálise , Clonagem Molecular , Diterpenos/metabolismo , Genômica , NADPH-Ferri-Hemoproteína Redutase/química
9.
Wei Sheng Wu Xue Bao ; 57(3): 447-58, 2017 Mar 04.
Artigo em Chinês | MEDLINE | ID: mdl-29756698

RESUMO

Objective: A flavonoid 3'-hydroxylase from tea plant was engineered to synthesize B-3',4'-dihydroxylated flavones such as eriodictyol, dihydroquercetin and quercetin. Methods: Four articifical P450 constructs harboring both flavonoid 3'-hydroxylase gene from Camellia sinensis (CsF3'H) and P450 reductase gene from Arabidopsis thaliana (ATR1 or ATR2) were introduced into Escherichia coli strains TOP10, DH5α and BL21, resultantly engineering strains S1 to S12. The plasmid pYES-Dest52-CsF3'H harboring CsF3'H gene was introduced into yeast Saccharomyces cerevisiae WAT11 designated as strain S13. The plasmid pES-HIS-CsF3H::AtFLS 9 AA was constructed through fusing flavanone 3-hydroxylase gene from Camellia sinensis (CsF3H) and flavonol synthase gene from Arabidopsis thaliana (AtFLS). Plasmid pES-URA-CsF3'H and pES-HIS-CsF3H::AtFLS 9 AA were then co-introduced into yeast S. cerevisiae WAT11 designated as strain S14. Results: Strain S6 generated highest bioconversion efficiency at 25℃ among all E. coli strains during 24 h fernentation. Supplemented with 1000 µmol/L naringenin, dihydrokaempferol and kaempferol, the maximum amounts of eriodictyol, dihydroquercetin and quercetin produced by strain S13 were 734.32 µmol/L, 446.07 µmol/L and 594.64 µmol/L respectively. Supplemented with 5 mmol/L naringenin, the maximum amounts of eriodictyol, kaempferol, quercetin, dihydroquercetin and dihydrokaempferol produced by strain S14 were 1412.16 µmol/L, 490.25 µmol/L, 445.75 µmol/L, 66.75 µmol/L and 73.50 µmol/L during 36-48 h fermentaion respectively. Conclusion: CsF3'H was engineered for biosynthesis of B-3',4'-dihydroxylated flavone.


Assuntos
Camellia sinensis/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/genética , Flavonas/biossíntese , Engenharia Metabólica , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Arabidopsis/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Escherichia coli/metabolismo , Flavonas/química , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo
10.
PLoS One ; 8(2): e57068, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437311

RESUMO

Withania somnifera (L.) Dunal, a highly reputed medicinal plant, synthesizes a large array of steroidal lactone triterpenoids called withanolides. Although its chemical profile and pharmacological activities have been studied extensively during the last two decades, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. Cytochrome P450 reductase is the most imperative redox partner of multiple P450s involved in primary and secondary metabolite biosynthesis. We describe here the cloning and characterization of two paralogs of cytochrome P450 reductase from W. somnifera. The full length paralogs of WsCPR1 and WsCPR2 have open reading frames of 2058 and 2142 bp encoding 685 and 713 amino acid residues, respectively. Phylogenetic analysis demonstrated that grouping of dual CPRs was in accordance with class I and class II of eudicotyledon CPRs. The corresponding coding sequences were expressed in Escherichia coli as glutathione-S-transferase fusion proteins, purified and characterized. Recombinant proteins of both the paralogs were purified with their intact membrane anchor regions and it is hitherto unreported for other CPRs which have been purified from microsomal fraction. Southern blot analysis suggested that two divergent isoforms of CPR exist independently in Withania genome. Quantitative real-time PCR analysis indicated that both genes were widely expressed in leaves, stalks, roots, flowers and berries with higher expression level of WsCPR2 in comparison to WsCPR1. Similar to CPRs of other plant species, WsCPR1 was un-inducible while WsCPR2 transcript level increased in a time-dependent manner after elicitor treatments. High performance liquid chromatography of withanolides extracted from elicitor-treated samples showed a significant increase in two of the key withanolides, withanolide A and withaferin A, possibly indicating the role of WsCPR2 in withanolide biosynthesis. Present investigation so far is the only report of characterization of CPR paralogs from W. somnifera.


Assuntos
Clonagem Molecular , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Withania/enzimologia , Withania/genética , Sequência de Aminoácidos , DNA Complementar , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Isoenzimas , Modelos Moleculares , Dados de Sequência Molecular , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/classificação , Especificidade de Órgãos/genética , Filogenia , Conformação Proteica , Alinhamento de Sequência , Vitanolídeos/metabolismo
11.
Yao Xue Xue Bao ; 48(10): 1618-23, 2013 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-24417091

RESUMO

Tanshinones are the bioactive components of the Chinese medicinal herb Salvia miltiorrhiza, while its biosynthetic pathway remains to be characterized. Rapid identification and characterization of the genes correlated to tanshinones biosynthesis is very important. As one of the intermediates of tanshinones biosynthesis, the ferruginol content is relative low in both root and engineered bacteria. It is urgent to construct an efficient system for conversion of miltiradiene to ferruginol to obtain large amount of ferruginol as the substrates for further identifying other downstream genes involved in tanshinones biosynthesis. In this study, we constructed the whole-cell yeast biocatalysts co-expressing miltiradiene oxidase CYP76AH1 and cytochrome P450 reductases (SmCPR1) from Salvia miltiorrhiza, and then characterized it with RT-PCR. After permeabilization, the yeast whole-cell could catalyze turnover of miltiradiene to ferruginol efficiently through single-step biotransformation with a conversion efficiency up to 69.9%. The yeast whole-cell biocatalyst described here not only provide an efficient platform for producing ferruginol in recombinant yeast but also an alternative strategy for identifying other CYP genes involved in tanshinones biosynthesis.


Assuntos
Abietanos/biossíntese , Diterpenos/metabolismo , Saccharomyces cerevisiae , Salvia miltiorrhiza/química , Abietanos/química , Vias Biossintéticas , Biotransformação , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Eletroforese em Gel de Ágar , Amplificação de Genes , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Fases de Leitura Aberta , Plasmídeos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
Drug Metab Dispos ; 40(2): 283-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22039172

RESUMO

CYP2S1 is an extrahepatic cytochrome P450 (P450) that shows marked individuality in constitutive and inducible expression. CYP2S1 mRNA expression is increased in psoriasis and by treatments for psoriasis, including retinoids and UV radiation, although endogenous substrates remain poorly characterized. Because previous model systems have overexpressed modified CYP2S1 in bacteria, human HaCaT keratinocyte cells were screened for constitutive and regulatable CYP2S1 expression and CYP2S1 activity in HaCaT cells compared with a novel Chinese hamster ovary (CHO)-based cell line engineered to stably coexpress CYP2S1 and NADPH cytochrome P450 reductase. Constitutive mRNA expression for CYP2S1 and additional P450s, retinoid acid receptors (RARα, RARß, RARγ), and retinoid X receptors (RXRα, RXRß and RXRγ) was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis in HaCaT cells. Cells were then exposed to retinoids or to UV radiation (UVR), and changes in CYP2S1 mRNA abundance were further examined by qRT-PCR analysis. P450 expression in HaCaT cells was similar to human skin, with abundant CYP2S1 expression. RARα and RARγ (but not RARß) and all RXR isoforms were also detectable. All-trans retinoic acid (atRA) induced CYPS1 mRNA expression more potently than 9-cis RA or 13-cis RA. P450-dependent atRA metabolism was demonstrated in HaCaT cells, with a very similar metabolite profile to that produced by our CYP2S1-expressing CHO cells. CYP2S1 mRNA expression was also induced by UVR, more potently than CYP1B1, a known UVR-inducible P450. Our results demonstrate regulatable and functional CYP2S1 expression in HaCaT cells, thus identifying a human cell line model with utility for further analysis of CYP2S1 regulation and substrate specificity.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fármacos Dermatológicos/farmacologia , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/efeitos da radiação , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Células CHO , Linhagem Celular , Cricetinae , Citocromo P-450 CYP1B1 , Sistema Enzimático do Citocromo P-450/genética , Fármacos Dermatológicos/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Queratinócitos/metabolismo , Microssomos/enzimologia , Microssomos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Concentração Osmolar , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Tretinoína/metabolismo , Tretinoína/farmacologia , Raios Ultravioleta
13.
Planta Med ; 77(10): 1048-53, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21267809

RESUMO

Considerable difference in artemisinin and its direct precursors, artemisinic acid and dihydroartemisinic acid, was detected between two chemotypes within the species Artemisia annua (A. annua). These two chemotypes showed differential metabolic response to methyl jasmonate (MeJA) elicitation. Exogenous application of MeJA resulted in an accumulation of dihydroartemisinic acid and artemisinin in Type I plants. In Type II plants, however, artemisinic acid and artemisinin level decreased dramatically under MeJA elicitation. Squalene and other sesquiterpenes, (e.g., caryophyllene, germacrene D), were stimulated by MeJA in both chemotypes. The effect of MeJA elicitation was also studied at the transcription level. Real time RT-PCR analysis showed a coordinated activation of most artemisinin pathway genes by MeJA in Type I plants. The lack of change in cytochrome P450 reductase (CPR) transcript in Type I plants indicates that the rate-limiting enzymes in artemisinin biosynthesis have yet to be identified. Other chemotype-specific electron donor proteins likely exist in A. annua to meet the demand for P450-mediated reactions in MeJA-mediated cellular processes. In Type II plants, mRNA expression patterns of most pathway genes were consistent with the reduced artemisinin level. Intriguingly, the mRNA transcript of aldehyde dehydrogenase1 (ADHL1), an enzyme which catalyzes the oxidation of artemisinic and dihydroartemisinic aldehydes, was upregulated by MeJA. The differential metabolic response to MeJA suggests a chemotype-dependent metabolic flux control towards artemisinin and sterol production in the species A. annua.


Assuntos
Acetatos/farmacologia , Artemisia annua/química , Artemisia annua/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Terpenos/metabolismo , Família Aldeído Desidrogenase 1 , Alquil e Aril Transferases/genética , Artemisia annua/efeitos dos fármacos , Artemisia annua/genética , Artemisininas/química , Artemisininas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Isoenzimas/genética , NADPH-Ferri-Hemoproteína Redutase/genética , Oxirredutases/genética , Folhas de Planta/química , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sesquiterpenos Policíclicos , RNA Mensageiro , Retinal Desidrogenase/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Sesquiterpenos de Germacrano/metabolismo , Esqualeno/metabolismo , Terpenos/química
14.
Planta Med ; 74(12): 1510-6, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18816428

RESUMO

To investigate the dynamic fluctuation of terpenoid relevant transcriptomics in transgenic ARTEMISIA ANNUA plants that express the genomic integrated antisense squalene synthase gene ( ASSS), we have quantified the transcript levels of the sterol anabolic SS gene as well as artemisinin biogenetic amorphadiene synthase (ADS), cytochrome P450 monooxygenase (CYP71AV1) and cytochrome P450 reductase (CPR) genes by real-time fluorescent quantitative polymerase chain reaction (RFQ-PCR). The SS mRNA level in transgenic plants sharply droped to 7.4 % - 55.3 % (i. e., 44.7 - 92.6 % reduction as the wild-type control), strongly implying that the expression of endogenous SS gene is significantly suppressed by the exogenous ASSS gene. In a synchronous fashion, ADS, CYP71AV1 and CPR mRNA levels elevated with the decline of SS mRNA level in transgenic plants, and the maximal ADS, CYP71AV1 and CPR mRNA levels in transgenic plants were 3.0-, 4.4- and 2.5-fold, respectively, higher than those in the control. Without a lethal effect but with a distinguishable impact on the organogenesis and morphology of transgenic plants, the down-regulation of SS gene has also led to the coordinated overexpression of ADS, CYP71AV1 and CPR genes together with the overproduction of artemisinin although no fully perfect correlation among the available experimental data has been shown.


Assuntos
Artemisia annua/genética , Artemisininas/metabolismo , Genes de Plantas , Fitosteróis/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Artemisia annua/enzimologia , Artemisia annua/metabolismo , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo
15.
Zhongguo Zhong Yao Za Zhi ; 32(18): 1917-21, 2007 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-18051907

RESUMO

OBJECTIVE: To investigate the effects of the ethyl acetate extract of Semen Hoveniae (ESH) on liver microsomal cytochrome P450 isoenzyme in rats. METHOD: The rats were given orally the ESH in the doses of 0.14, 0.17, 0.2 g x kg (equivalent to the crude herb) for 10 days respectively. Rat liver microsomal cytochrome P450, NADPH-Cyt C reductase, erythromycin N-demethylase (ERD), Aniline hydroxylase (ANH), aminopyrine N-demethylase (ADM) activities were quantitated by UV chromatography. The levels of mRNA expression of CYP1A1, CYP2C11, CYP2E1 and CYP3A1 were detected by semi-quantitative reverse transcripatase-polymerase chain reaction (RT-PCR). RESULT: The cytochrome P450 content, NADPH-Cyt C reductase activities and erythromycin N-demethylase (ERD) activities were not affected. Aniline hydroxylase (ANH) activities in liver were decreased by up to35.1%; aminopyrine N-demethylase (ADM) activitiesin liver were increased by up to 42.4%. The mRNA expression of CYP1A1, CYP2C11 and CYP3A1 were found to be increased markedly. CONCLUSION: A specific effect of ESH on liver microsomal cytochrome P450 isoenzyme in rats was observed in this investigation. ESH had various effects on liver microsomal cytochrome P450 isoenzyme.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Rhamnaceae/química , Acetatos/química , Aminopirina N-Desmetilase/metabolismo , Anilina Hidroxilase/genética , Anilina Hidroxilase/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Família 2 do Citocromo P450 , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Microssomos Hepáticos/enzimologia , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Plantas Medicinais/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/química , Esteroide 16-alfa-Hidroxilase/genética , Esteroide 16-alfa-Hidroxilase/metabolismo
16.
Protein Expr Purif ; 47(2): 467-76, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16434211

RESUMO

Cytochrome P450s (CYPs) hold a balance in studying pharmacokinetics, toxico-kinetics, drug metabolism, and drug-drug interactions, which require association with cytochrome P450 reductase (CPR) to achieve optimal activity. A novel system of Saccharomyces cerevisiae useful for expression studies of mammalian microsomal CYPs was established. Human CPR (hCPR) was co-expressed with human CYP3A4 (hCYP3A4) in this system, and two expression plasmids pTpLC and pYeplac195-3A4 containing the cDNA of hCPR and hCYP3A4 were constructed, respectively. The two plasmids were applied first and controlled by phosphoglycerate kinase (PGK) promoter. S. cerevisiae BWG1-7alpha transformed with the expression plasmids produced the respective proteins in the expected molecular sizes reactive with both anti-hCYP3A4 immunoglobulin (Ig) and anti-hCPR Ig. The activity of hCPR in yeast BWG-CPR was 443.2 nmol reduced cytochrome c/min/mg, which was about three times the CPR activity of the microsome prepared from the parental yeast. The protein amount of hCYP3A4 in BWG-CPR/3A4 was 35.53 pmol/mg, and the 6beta-hydroxylation testosterone formation activity of hCYP3A4 expressed was 7.5 nmol/min/nmol CYP, 30 times higher than the activity of hCYP3A4 expressed in the parental yeast, and almost two times the activity of hCYP3A4 from homologous human liver microsome. Meanwhile, BWG-CPR/3A4 retained 100 generations under nonselective culture conditions, indicating this yeast was a mitotically stable transformant. BWG-CPR was further tested daily by the PCR amplification of hCPR of yeast genome, Western blot analysis, and the activity assay of hCPR of yeast microsome. This special expression host for CYPs was validated to be stable and efficient for the expression of CYPs, applying as an effective selection model for the drug metabolism in vitro.


Assuntos
Androgênios/farmacocinética , Sistema Enzimático do Citocromo P-450/biossíntese , Avaliação Pré-Clínica de Medicamentos , NADPH-Ferri-Hemoproteína Redutase/biossíntese , Saccharomyces cerevisiae/metabolismo , Testosterona/farmacocinética , Androgênios/farmacologia , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/genética , Expressão Gênica , Humanos , NADPH-Ferri-Hemoproteína Redutase/genética , Plasmídeos/genética , Saccharomyces cerevisiae/genética , Testosterona/farmacologia
17.
J Ind Microbiol Biotechnol ; 32(2): 67-74, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15739102

RESUMO

Three human cytochrome P450s, 3A4, 2C9 and 1A2, were each co-expressed with NADPH-P450 reductase in Escherichia coli and used in the preparative synthesis of drug metabolites. Low dissolved oxygen (DO) concentration (<1%) during expression was found to be critical for producing active P450s. Control of temperature, pH and glycerol supplementation in 10-L fermentations enhanced enzyme expression 31-86%. Additional improvements were obtained by altering media formulations, resulting in bicistronic expression levels of 890, 1,800 and 1,010 nmol/L for 3A4, 2C9 and 1A2, respectively. The P450 titers achieved in fermentors exceeded those in flask fermentations by 3- to 6-fold in this study and up to 10-fold when compared with previously reported literature. Intact cells and isolated membranes obtained from 10-L fermentations were used to establish an efficient bioconversion system for the generation of metabolites. To demonstrate the utility of this approach, known metabolites of the anabolic steroid testosterone, the anti-inflammatory agent diclofenac and the analgesic agent phenacetin, were generated using 3A4, 2C9 and 1A2, respectively. The reaction conditions were optimized for pH, temperature, DO concentration, use of co-solvent and glucose supplementation. Conversion yields of 29-93% were obtained from 1-L reactions, enabling isolation of 59 mg 6beta-hydroxytestosterone, 110 mg 4'-hydroxydiclofenac and 88 mg acetaminophen.


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Citocromo P-450 CYP1A2/genética , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/genética , NADPH-Ferri-Hemoproteína Redutase/genética , Preparações Farmacêuticas/metabolismo , Acetaminofen/metabolismo , Hidrocarboneto de Aril Hidroxilases/metabolismo , Biotransformação/genética , Clonagem Molecular , Meios de Cultura/química , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/metabolismo , Diclofenaco/análogos & derivados , Diclofenaco/metabolismo , Escherichia coli/metabolismo , Fermentação , Glicerol , Hidroxitestosteronas/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Oxigênio , Fenacetina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Testosterona/metabolismo
18.
Biochemistry ; 44(10): 3821-30, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15751958

RESUMO

Adrenodoxin (Adx), a [2Fe-2S] vertebrate-type ferredoxin, transfers electrons from the NADPH-dependent flavoprotein Adx reductase (AdR) to mitochondrial cytochrome P450 enzymes of the CYP11A and CYP11B families, which catalyze key reactions in steroid hormone biosynthesis. Adx is a known phosphoprotein, but the kinases that phosphorylate Adx have remained mostly obscure. The aim of this study was to identify previously unknown Adx phosphorylating kinases and to acquire a deeper insight into the functional consequences of such a modification. Here, we show for the first time that bovine Adx is a substrate of protein kinase CK2, whereas bovine CYP11A1, CYP11B1, and AdR are not phosphorylated by this kinase. CK2 phosphorylation of mature Adx requires the presence of both the catalytic alpha-subunit and the regulatory beta-subunit of CK2 and takes place exclusively at residue Thr-71, which is located within the redox partner interaction domain of the protein. We created two Adx mutants, Adx-T71E (imitating a phosphorylation) and Adx-T71V (which cannot be phosphorylated at this site), respectively, and investigated how these mutations affected the interaction of Adx with its redox partners. These data were supplemented with detailed spectroscopic and functional assays using the phosphorylated protein. All Adx species behaved like wild type (Adx-WT) with respect to their redox potential, iron-sulfur cluster symmetry, and overall backbone structure. Substrate conversion assays catalyzed by CYP11A1 showed an increase in product formation when Adx-T71E or CK2-phosphorylated Adx were used as electron carrier instead of Adx-WT, whereas the activity toward CYP11B1 was not altered using these Adx species. Additionally, Adx-T71E represents the only full-length Adx mutant which leads to an increase in CYP11A1 product formation. Therefore, characterizing this full-length mutant helps to improve our knowledge on the functional effects of phosphorylations on complex redox systems.


Assuntos
Adrenodoxina/metabolismo , Caseína Quinase II/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Adrenodoxina/genética , Animais , Células COS , Caseína Quinase II/genética , Bovinos , Chlorocebus aethiops , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Mutagênese Sítio-Dirigida , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Oxirredução , Fosforilação , Espectrofotometria Ultravioleta , Esteroide 11-beta-Hidroxilase/genética , Esteroide 11-beta-Hidroxilase/metabolismo , Treonina/genética , Transfecção
19.
Plant Cell Physiol ; 44(4): 395-403, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12721380

RESUMO

Camptothecin derivatives are clinically used anti-tumor compounds that biogenetically belong to a group of monoterpenoid indole alkaloids (TIA). We have already established a hairy root culture of Ophiorrhiza pumila (Rubiaceae) that produces camptothecin. The present study describes the cloning and characterization of cDNAs encoding strictosidine synthase (OpSTR; EC 4.3.3.2) and tryptophan decarboxylase (OpTDC; EC 4.1.1.28), two key enzymes in the biosynthesis of TIA from hairy roots of O. pumila. We also isolated the cDNA coding for NADPH:cytochrome P450 reductase (OpCPR; EC 1.6.2.4) that is presumed to be indirectly involved in camptothecin synthesis. The recombinant OpSTR and OpTDC proteins exhibit STR and TDC activities, respectively, when expressed in Escherichia coli. The tissue-specific and stress-inducible expression patterns of OpSTR and OpTDC were quite similar, unlike those of OpCPR. The high expression of OpSTR and OpTDC observed in hairy roots, roots and stems were closely correlated with STR protein accumulation as observed by immunoblot analysis. Plant stress compounds like salicylic acid repressed expression of OpSTR and OpTDC, suggesting coordinate regulation of these genes for camptothecin biosynthesis.


Assuntos
Adenina/análogos & derivados , Camptotecina/biossíntese , Raízes de Plantas/genética , Rubiaceae/genética , Acetatos/farmacologia , Adenina/farmacologia , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Sequência de Bases , Compostos de Benzil , Carbono-Nitrogênio Liases/genética , Carbono-Nitrogênio Liases/metabolismo , Clonagem Molecular , Ciclopentanos/farmacologia , DNA Complementar/química , DNA Complementar/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Cinetina , Dados de Sequência Molecular , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Ácidos Naftalenoacéticos/farmacologia , Oxilipinas , Filogenia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Purinas , Rubiaceae/efeitos dos fármacos , Rubiaceae/metabolismo , Ácido Salicílico/farmacologia , Análise de Sequência de DNA
20.
Curr Genet ; 37(1): 65-73, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10672447

RESUMO

The white rot fungus Phanerochaete chrysosporium metabolizes a range of xenobiotics via P450 mono-oxygenation, particularly under peroxidase-suppressing culture conditions. Here we report the cloning and analysis of the gene from this fungus for the cytochrome P450 oxidoreductase (CPR) and its differentially terminated cDNAs. Using a PCR-based approach with degenerate primers, a 285-bp genomic fragment was isolated from the two widely studied strains BKM-F 1767 and ME 446, and was identified as a CPR gene segment based on sequence comparison with the database. A clone containing the full-length CPR gene was isolated from a BKM-F 1767 genomic library using the PCR-generated segment as a probe, and the 3937-bp insert was sequenced by gene walking. Based on the detection of conserved CPR motifs, a coding region of 2381 bp was identified with a 991-bp segment 5' to the putative ATG start codon. Two cDNAs with differentially terminated transcripts were isolated and sequenced. Comparison of the gene and the cDNA sequences confirmed the presence of three introns (62 bp, 50 bp, and 58 bp). Sequence identity and a phylogenetic comparison of the deduced protein (736 aa) with other CPRs in the database suggested that P. chrysosporium CPR is the largest CPR known and is more closely related to animal (36-38%) and yeast (37-38%) CPRs than to plant CPRs (33-35%). The availability of this gene will facilitate further studies on understanding the potent xenobiotic mono-oxygenation systems in this model white rot fungus.


Assuntos
DNA Complementar/genética , Genes Fúngicos/genética , NADPH-Ferri-Hemoproteína Redutase/genética , Phanerochaete/enzimologia , Phanerochaete/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , DNA Complementar/análise , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Biblioteca Gênica , Humanos , Íntrons/genética , Dados de Sequência Molecular , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Filogenia , Elementos de Resposta/genética , Alinhamento de Sequência , TATA Box/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA