Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35209022

RESUMO

Today, the use of natural biodegradable materials in the production processes is more and more adopted by industry to achieve cyclic economy targets and to improve environmental and human health indexes. Active packaging is the latest trend for food preservation. In this work, nanostructures were prepared by incorporation of thyme oil with natural natrium-montmorillonite and organo-montmorillonite with two different techniques, direct impregnation and the green evaporation-adsorption process. Such nanostructures were mixed with poly-L-lactic-acid for the first time via an extrusion molding process to develop a new packaging film. Comparisons of morphological, mechanical, and other basic properties for food packaging were carried out via XRD, FTIR, TG, SEM/EDS, oxygen and water vapor permeation, and antimicrobial and antioxidant activity for the first time. Results showed that poly-L-lactic-acid could be modified with clays and essential oils to produce improved active packaging films. The final product exhibits food odor prevention characteristics and shelf-life extension capabilities, and it could be used for active packaging. The films based on OrgMt clay seems to be more promising, while the thyme oil addition improves their behavior as active packaging. The PLLA/3%TO@OrgMt and PLLA/5%TO@OrgMt films were qualified between the tested samples as the most promising materials for this purpose.


Assuntos
Antioxidantes/química , Bentonita/química , Embalagem de Alimentos , Membranas Artificiais , Nanoestruturas/química , Óleos de Plantas/química , Poliésteres/química , Sódio/química , Timol/química , Thymus (Planta)/química , Anti-Infecciosos , Fenômenos Químicos , Fenômenos Mecânicos , Nanoestruturas/ultraestrutura , Análise Espectral
2.
Int J Biol Macromol ; 190: 693-699, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520776

RESUMO

Smart hydrogels responsive to minimally invasive near-infrared (NIR) light have great potential in localized drug delivery for cancer treatment, but they still show some limitations such as low photothermal conversion, poor photothermal stability, and improper temperature range in biomedical applications. In this paper, the two-dimensional MXene nanosheets with high photothermal conversion efficiency as well as photothermal stability was firstly prepared, then the MXene nanosheets and the therapeutic drug were embedded in the low-melting-point agarose hydrogel network to fabricate the drug-loaded MXene/agarose hydrogel (MXene@Hydrogel). With the addition of low concentration of MXene (20 ppm), the MXene@Hydrogel could quickly rise to 60 °C under NIR irradiation and melt to release the encapsulated drugs. Importantly, the drug on/off release and the kinetics could be easily controlled with varied agarose concentration, MXene concentration, light intensity, and exposure time. In addition, the drug doxorubicin retained the anticancer activity after released from the MXene@Hydrogel network under NIR irradiation. With the excellent biocompatibility, the newly fabricated NIR-responsive MXene@Hydrogel offers a novel way for the development of smart hydrogel-based drug delivery system for localized cancer treatment.


Assuntos
Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Hidrogéis/química , Hipertermia Induzida , Nanoestruturas/química , Fototerapia , Sefarose/química , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Melanoma Experimental/patologia , Camundongos , Nanoestruturas/ultraestrutura
3.
Sci Rep ; 11(1): 13266, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168234

RESUMO

Layered molybdenum diselenide (MoSe2) nanosheets were formed by the weak Van der Waals forces of attraction between Se and Mo atoms. MoSe2 has a larger space between the adjacent layers and smaller band gaps in the range of 0.85 to ~ 1.6 eV. In this study, MoSe2 nanosheets decorated nickel oxide (NiO) nanorods have been synthesized by hydrothermal method using sodium molybdate and selenium metal powder. NiO/MoSe2 composite formation was confirmed by powder X-ray diffraction analysis. In addition, the presence of MoSe2 nanosheets on NiO nanorods were confirmed by field emission scanning electron microscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The Nyquist plots of NiO/MoSe2 coated glassy carbon electrode (GCE) was indicated that it had lower charge transfer resistance compared to NiO/GCE and MoSe2/GCE. Furthermore, as-prepared NiO/MoSe2/GCE was used to detect glucose in alkaline solution by cyclic voltammetry and amperometry techniques. The NiO/MoSe2/GCE was exhibited a linear response for the oxidation of glucose from 50 µM to 15.5 mM (R2 = 0.9842) at 0.5 V by amperometry. The sensor response time and the limit of detection were found to be 2 s and 0.6 µM for glucose. Moreover, selectivity of the NiO/MoSe2 sensor was tested in the presence of common interferent molecules such as hydrogen peroxide, fructose, lactose, ascorbic acid, uric acid, and dopamine. It was found that NiO/MoSe2/GCE did not respond to these interfering biomolecules. In addition, NiO/MoSe2/GCE had shown high stability, reproducibility and repeatability. Finally, the practical application of the sensor was demonstrated by detecting glucose in human blood serum with the acceptable recovery.


Assuntos
Glicemia/análise , Eletrodos , Molibdênio , Nanotubos , Níquel , Selênio , Humanos , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Nanotubos/ultraestrutura , Espectroscopia Fotoeletrônica , Difração de Raios X
4.
Int J Nanomedicine ; 16: 2405-2417, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33814907

RESUMO

PURPOSE: Ciprofloxacin (CIP) has poor lung targeting after oral inhalation. This study developed optimized inhalable nanostructured lipid carriers (NLCs) for CIP to enhance deposition and accumulation in deeper parts of the lungs for treatment of noncystic fibrosis bronchiectasis (NCFB). METHODS: NLC formulations based on stearic acid and oleic acid were successfully prepared by hot homogenization and in vitro-characterized. CIP-NLCs were formulated into nanocomposite micro particles (NCMPs) for administration in dry powder inhalation (DPI) formulations by spray-drying (SD) using different ratios of chitosan (CH) as a carrier. DPI formulations were evaluated for drug content and in vitro deposition, and their mass median aerodynamic diameter (MMAD), fine particle fraction (FPF), fine particle dose (FPD), and emitted dose (ED) were determined. RESULTS: The CIP-NLCs were in the nanometric size range (102.3 ± 4.6 nm), had a low polydispersity index (0.267 ± 0.12), and efficient CIP encapsulation (98.75% ± 0.048%), in addition to a spherical and smooth shape with superior antibacterial activity. The in vitro drug release profile of CIP from CIP-NLCs showed 80% release in 10 h. SD of CIP-NLCs with different ratios of CH generated NCMPs with good yield (>65%). The NCMPs had a corrugated surface, but with increasing lipid:CH ratios, more spherical, smooth, and homogenous NCMPs were obtained. In addition, there was a significant change in the FPF with increasing lipid:CH ratios (P ˂ 0.05). NCMP-1 (lipid:CH = 1:0.5) had the highest FPD (45.0 µg) and FPF (49.2%), while NCMP-3 (lipid:CH = 1:1.5) had the lowest FPF (37.4%). All NCMP powders had an MMAD in the optimum size range of 3.9-5.1 µm. CONCLUSION: Novel inhalable CIP NCMP powders are a potential new approach to improved target ability and delivery of CIP for NCFB treatment.


Assuntos
Bronquiectasia/tratamento farmacológico , Ciprofloxacina/uso terapêutico , Portadores de Fármacos/química , Lipídeos/química , Nanoestruturas/química , Administração por Inalação , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Quitosana/química , Ciprofloxacina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Liberação Controlada de Fármacos , Inaladores de Pó Seco , Fibrose , Cinética , Lipossomos , Pulmão , Testes de Sensibilidade Microbiana , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Eletricidade Estática
5.
Molecules ; 26(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440778

RESUMO

Nitrogen-containing flame retardants have been extensively applied due to their low toxicity and smoke-suppression properties; however, their poor charring ability restricts their applications. Herein, a representative nitrogen-containing flame retardant, polyheptanazine, was investigated. Two novel, cost-effective phosphorus-doped polyheptazine (PCN) and cobalt-anchored PCN (Co@PCN) flame retardants were synthesized via a thermal condensation method. The X-ray photoelectron spectroscopy (XPS) results indicated effective doping of P into triazine. Then, flame-retardant particles were introduced into thermoplastic polyurethane (TPU) using a melt-blending approach. The introduction of 3 wt% PCN and Co@PCN could remarkably suppress peak heat release rate (pHRR) (48.5% and 40.0%), peak smoke production rate (pSPR) (25.5% and 21.8%), and increasing residues (10.18 wt%→17.04 wt% and 14.08 wt%). Improvements in charring stability and flame retardancy were ascribed to the formation of P-N bonds and P=N bonds in triazine rings, which promoted the retention of P in the condensed phase, which produced additional high-quality residues.


Assuntos
Compostos Aza/química , Retardadores de Chama , Heptanos/química , Poliuretanos/química , Cobalto/química , Retardadores de Chama/análise , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fósforo/química , Pirólise , Temperatura
6.
Nat Commun ; 11(1): 2778, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513979

RESUMO

The use of photothermal agents (PTAs) in cancer photothermal therapy (PTT) has shown promising results in clinical studies. The rapid degradation of PTAs may address safety concerns but usually limits the photothermal stability required for efficacious treatment. Conversely, PTAs with high photothermal stability usually degrade slowly. The solutions that address the balance between the high photothermal stability and rapid degradation of PTAs are rare. Here, we report that the inherent Cu2+-capturing ability of black phosphorus (BP) can accelerate the degradation of BP, while also enhancing photothermal stability. The incorporation of Cu2+ into BP@Cu nanostructures further enables chemodynamic therapy (CDT)-enhanced PTT. Moreover, by employing 64Cu2+, positron emission tomography (PET) imaging can be achieved for in vivo real-time and quantitative tracking. Therefore, our study not only introduces an "ideal" PTA that bypasses the limitations of PTAs, but also provides the proof-of-concept application of BP-based materials in PET-guided, CDT-enhanced combination cancer therapy.


Assuntos
Cobre/química , Hipertermia Induzida , Neoplasias/terapia , Fósforo/química , Fototerapia , Tomografia por Emissão de Pósitrons , Animais , Morte Celular , Linhagem Celular Tumoral , Terapia Combinada , Cobre/farmacocinética , Humanos , Íons , Camundongos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Oligopeptídeos/química , Fósforo/farmacocinética , Polietilenoglicóis/química , Espectrofotometria Ultravioleta , Nanomedicina Teranóstica
7.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210135

RESUMO

This study was aimed at creating new films and determine some functional packaging properties of pectin:nanochitosan films with ratios of pectin:nanochitosan (P:NSC) of 100:0; 75:25; 50:50; 25:75 and 0:100 (%w/w). The effects of the proportions of pectin:nanochitosan incorporation on the thickness, mechanical properties, water vapor permeability, water-solubility, and oxygen permeability were investigated. The microstructural studies were done using scanning electron microscopy (SEM). The interactions between pectin and nanochitosan were elucidated by Attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The results showed that the blending of pectin with nanochitosan at proportions of 50:50 increased the tensile strength to 8.96 MPa, reduced the water solubility to 37.5%, water vapor permeability to 0.2052 g·mm/m2·day·kPa, and the oxygen permeability to 47.67 cc·mm/m2·day. The results of the contact angle test indicated that P:NCS films were hydrophobic, especially, pectin:nanochitosan films inhibited the growth of Colletotrichum gloeosporioides, Saccharomyces cerevisiae, Aspergillus niger, and Escherichia coli. So, P:NCS films with a proportion of 50:50 can be used as active films to extend the shelf life of food.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Quitosana/química , Filmes Comestíveis , Nanoestruturas , Pectinas/química , Fenômenos Químicos , Fenômenos Mecânicos , Testes de Sensibilidade Microbiana , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier
8.
ACS Appl Mater Interfaces ; 12(7): 8050-8061, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31994376

RESUMO

Theranostic agents based on near-infrared absorption which integrate both imaging and therapeutic functions have attracted considerable attention. However, because of the interference signal, indiscriminate treatment usually causes side effects on normal tissues during tumor treatment. To address this limitation, we propose a new synergistically triggered mechanism, release and self-assembly of Au nanospheres, for tumor theranostics based on the synergistic effect of H+ and glutathione on the tumor microenvironment. In vitro experiments reveal that Au nanospheres release from Au@ZIF-8 at a high concentration of H+ or glutathione. Importantly, Au aggregation only appears in the synergistic effect of glutathione and lower pH and exhibits strong coupling plasmonic resonance absorption in the near-infrared region and can be used as the theranostics agent. This statement was further verified by biological transmission electron microscopy and in vivo imaging. Au@ZIF-8 is stable and produces no photoacoustic signal in normal tissue; in contrast, in the presence of overexpressed glutathione and H+, Au nanospheres release from Au@ZIF-8, assemble to aggregates, and exhibit a strong signal at the tumor site for imaging and efficient photothermal therapy. This work provides a new strategy for designing theranostic agents with sequentially responsive steps to avoid interference diagnosis signals from normal tissues and reduce damage to normal tissue during treatment.


Assuntos
Glutationa/química , Hipertermia Induzida/métodos , Imidazóis/química , Nanosferas/química , Neoplasias/tratamento farmacológico , Técnicas Fotoacústicas/métodos , Nanomedicina Teranóstica/métodos , Microambiente Tumoral/efeitos dos fármacos , Animais , Liberação Controlada de Fármacos , Ouro/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanosferas/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Neoplasias/patologia , Fototerapia/métodos , Povidona/química , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Adv Mater ; 32(13): e1902333, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31353752

RESUMO

2D nanomaterials with unique nanosheet structures, large surface areas, and extraordinary physicochemical properties have attracted tremendous interest. In the area of nanomedicine, research on graphene and its derivatives for diverse biomedical applications began as early as 2008. Since then, many other types of 2D nanomaterials, including transition metal dichalcogenides, transition metal carbides, nitrides and carbonitrides, black phosphorus nanosheets, layered double hydroxides, and metal-organic framework nanosheets, have been explored in the area of nanomedicine over the past decade. In particular, a large surface area makes 2D nanomaterials highly efficient drug delivery nanoplatforms. The unique optical and/or X-ray attenuation properties of 2D nanomaterials can be harnessed for phototherapy or radiotherapy of cancer. Furthermore, by integrating 2D nanomaterials with other functional nanoparticles or utilizing their inherent physical properties, 2D nanomaterials may also be engineered as nanoprobes for multimodal imaging of tumors. 2D nanomaterials have shown substantial potential for cancer theranostics. Herein, the latest progress in the development of 2D nanomaterials for cancer theranostic applications is summarized. Current challenges and future perspectives of 2D nanomaterials applied in nanomedicine are also discussed.


Assuntos
Nanoestruturas/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/terapia , Medicina de Precisão/métodos , Nanomedicina Teranóstica/métodos , Animais , Humanos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos
10.
Colloids Surf B Biointerfaces ; 187: 110673, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31812452

RESUMO

Soluplus® (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer) is a solubilizing copolymer commonly applied as carrier in solid dispersions of poorly soluble drugs. This polymer is used to increase the apparent solubility of drugs with low aqueous solubility and consequently enhance drug absorption by the human gastrointestinal tract. To select the appropriate carrier to compose solid dispersions, in vitro supersaturation studies were applied as a pre-formulation tool, using different dissolution media. During in vitro supersaturation studies performed for the poorly soluble drug candesartan cilexetil, it was found that Soluplus® may interact with components of the biorelevant medium Fasted State Simulated Intestinal Fluid, lowering the drug apparent solubility. Dynamic Light Scattering and Transmission Electron Microscopy analyses were performed, as well as fluorescence measurements, aiming to characterize the interaction behavior and determine the polarity of the microenvironment. It was evidenced that Soluplus® interacted preferentially with lecithin, forming mixed micelles with a more polar microenvironment, which lowered the candesartan cilexetil solubilization capacity and consequently reduced its apparent solubility in the biorelevant medium. These findings are important to emphasize the key role of the media selection for in vitro solubility-supersaturation studies, where media that could mimic the human gastrointestinal environment are recommended.


Assuntos
Benzimidazóis/química , Compostos de Bifenilo/química , Polietilenoglicóis/química , Polivinil/química , Tetrazóis/química , Soluções Tampão , Meios de Cultura/química , Difusão Dinâmica da Luz , Fluorescência , Trato Gastrointestinal/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Lecitinas/química , Micelas , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Solubilidade
11.
PLoS One ; 14(10): e0222789, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31613894

RESUMO

The aim of this study was to evaluate Egyptian date palm pollen (DPP) grains composition, physical and functional potentials in comparing with two forms; 80% ethanol extract, and nanoencapsulated form. Functional yoghurt fortified with DPP in three forms was prepared and their physicochemical, microstructure, texture and sensory characteristics were assessed. The micro morphology was explored via Scanning Electron Microscope (SEM). Fourier Transform Infrared (FTIR) spectroscopy was employed for functional groups detection. Phenolic compounds were detected by High Performance Liquid Chromatography (HPLC) while fatty acids were identified via Gas Liquid Chromatography (GLC). Cytotoxicity of DPP nanocapsules was evaluated against RPE1 cell line (BJ1). The Egyptian date palm pollen grains evaluation revealed its rich content of protein and carbohydrate (36.28 and 17.14 g/ 100g), high content of Fe, Zn and Mg (226.5, 124.4 and 318 mg/100g), unsaturated fatty acids ω-3, ω-6 and ω-9 (8.76, 20.26 and 7.11 g/100g, which was increased by ethanol extraction) and phenolic compounds especially catechin (191.73 µg/mL) which was pronounced in DPP antioxidant potentials (IC50 35.54 mg/g). The FTIR analyses indicated the presence of soluble amides (proteins) and polysaccharides (fibers) functional groups in DPP. Fortification with nanoencapsulated DPP proved to be safe and the recommended form due to the announced positive characteristics. Yoghurt fortification with DPP forms enhanced viscosity, syneresis and Water Holding Capacity (WHC), which can be considered a symbiotic functional product as it contained both probiotics (106 CFU/g) and prebiotics represented in DPP forms.


Assuntos
Composição de Medicamentos/métodos , Alimento Funcional/análise , Phoeniceae/química , Pólen/química , Iogurte/análise , Antioxidantes/química , Antioxidantes/isolamento & purificação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Carboidratos da Dieta/isolamento & purificação , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/isolamento & purificação , Humanos , Ferro/análise , Magnésio/análise , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Zinco/análise
12.
ACS Nano ; 13(9): 9841-9867, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31490658

RESUMO

This review describes promising laser-based approaches to produce silicon nanostructures, including laser ablation of solid Si targets in residual gases and liquids and laser pyrolysis of silane. These methods are different from, and complementary to, widely used porous silicon technology and alternative synthesis routes. One can use these methods to make stable colloidal dispersions of silicon nanoparticles in both organic and aqueous media, which are suitable for a multitude of applications across the important fields of energy and healthcare. Size tailoring allows production of Si quantum dots with efficient photoluminescence that can be tuned across a broad spectral range from the visible to near-IR by varying particle size and surface functionalization. These nanoparticles can also be integrated with other nanomaterials to make multifunctional composites incorporating magnetic and/or plasmonic components. In the energy domain, this review highlights applications to photovoltaics and photodetectors, nanostructured silicon anodes for lithium ion batteries, and hydrogen generation from water. Application to nanobiophotonics and nanomedicine profits from the excellent biocompatibility and biodegradability of nanosilicon. These applications encompass several types of bioimaging and various therapies, including photodynamic therapy, RF thermal therapy, and radiotherapy. The review concludes with a discussion of challenges and opportunities in the applications of laser-processed nanosilicon.


Assuntos
Atenção à Saúde , Lasers , Nanoestruturas/química , Silício/química , Animais , Técnicas Biossensoriais , Humanos , Imagem Multimodal , Nanoestruturas/ultraestrutura
13.
Biomaterials ; 219: 119379, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31376746

RESUMO

Engineering interfacial structure of biomaterials have drawn much attention due to it can improve the diagnostic accuracy and therapy efficacy of nanomedicine, even introducing new moiety to construct theranostic agents. Nanosized magnetic resonance imaging contrast agent holds great promise for the clinical diagnosis of disease, especially tumor and brain disease. Thus, engineering its interfacial structure can form new theranostic platform to achieve effective disease diagnosis and therapy. In this study, we engineered the interfacial structure of typical MRI contrast agent, Gd2O3, to form a new theranostic agent with improved relaxivity for MRI guided synergetic chemodynamic/photothermal therapy. The synthesized Mn doped gadolinium oxide nanoplate exhibit improved T1 contrast ability due to large amount of efficient paramagnetic metal ions and synergistic enhancement caused by the exposed Mn and Gd cluster. Besides, the introduced Mn element endow this nanomedicine with the Fenton-like ability to generate OH from excess H2O2 in tumor site to achieve chemodynamic therapy (CDT). Furthermore, polydopamine engineered surface allow this nanomedicine with effective photothermal conversion ability to rise local temperature and accelerate the intratumoral Fenton process to achieve synergetic CDT/photothermal therapy (PTT). This work provides new guidance for designing magnetic resonance imaging guided synergetic CDT/PTT to achieve tumor detection and therapy.


Assuntos
Antineoplásicos/farmacologia , Gadolínio/química , Hipertermia Induzida , Imageamento por Ressonância Magnética , Nanopartículas/química , Fototerapia , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Meios de Contraste/química , Humanos , Indóis/química , Lasers , Camundongos Nus , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Neoplasias/diagnóstico , Neoplasias/patologia , Neoplasias/terapia , Polietilenoglicóis/química , Polímeros/química , Superóxidos/química , Microambiente Tumoral/efeitos dos fármacos
14.
Int J Nanomedicine ; 14: 5073-5085, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31371948

RESUMO

PURPOSE: To potentiate the anticancer activity of curcumin (CUR) by improving its cell penetration potentials through formulating it into nanostructured lipid carriers (NLCs) and using the prepared NLCs in photodynamic therapy. METHODS: A 3×4 factorial design was used to obtain 12 CUR-NLCs using two factors on different levels: (1) the solid lipid type at four levels and (2) the solid to liquid lipid ratio at three levels. Olive oil, Tween 80 and lecithin were chosen as liquid lipid, surfactant and co-surfactant, respectively. CUR-NLCs prepared by high shear hot homogenization method were evaluated by determination of particle size (PS), polydispersity index, zeta potential (ZP), entrapment efficiency percent, drug loading percent and in vitro drug release. Optimization was based on the evaluation results using response surface modeling (RSM). Optimized formulae were tested for their in vitro release pattern and for dark and photo-cytotoxic anticancer activity on breast cancer cell line in comparison to free CUR. RESULTS: Evaluation tests showed the appropriateness of NLCs prepared from glyceryl monooleate and Geleol™ helped choosing two optimized formulae, PE3 and GE3. PE3 (prepared using glyceryl monooleate) showed enhanced release rates compared to GE3 (prepared from Geleol) and superior cytotoxic anticancer activity compared to both GE3 and free CUR under both light and dark conditions. The small mean PS, spherical shape as well as the negative ZP enhanced the internalization of the NLCs within cells. Modulation and inhibition of P-glycoprotein expression by glyceryl monooleate synergized the cytotoxic activity of CUR. CONCLUSION: CUR loading in NLCs enhanced its cell penetration and cytotoxic anticancer properties both in dark and in light conditions.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Curcumina/uso terapêutico , Portadores de Fármacos/química , Lipídeos/química , Nanoestruturas/química , Ácidos Oleicos/química , Azeite de Oliva/química , Fotoquimioterapia , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Liberação Controlada de Fármacos , Feminino , Humanos , Células MCF-7 , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Eletricidade Estática
15.
Anal Bioanal Chem ; 411(25): 6645-6653, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31372699

RESUMO

Carbon dot (CD)-based fluorescent probes have been widely exploited; however, multi-component detection using CDs without tedious surface modification is always a challenging task. Here, we develop a convenient and simple CD-based "on-off-on" fluorescent probe for detection of copper(II) ion (Cu2+), ascorbic acid (AA), and acid phosphatase (ACP). Cu2+ leads to the fluorescence quenching of CDs. The limit of detection (LOD) for Cu2+ is 2.4 µM. When AA is added into the CDs + Cu2+ solution, Cu2+ is reduced by AA to Cu+, causing the fluorescence recovery of CDs. The fluorescent intensity linearly correlates with the concentration of AA in the range of 100-2800 µM with LOD of 60 µM. Besides, the probe has potential application for detection of AA in real samples such as VC tablets, orange juice, and fresh orange. The probe can also indirectly detect ACP that enzymatically hydrolyzes ascorbic acid-phosphate (AAP) to produce AA. This work expands the application of CDs in the multi-component detection and provides a facile fluorescent probe for detection of AA in real samples. Graphical abstract.


Assuntos
Fosfatase Ácida/análise , Ácido Ascórbico/análise , Carbono/química , Cobre/análise , Corantes Fluorescentes/química , Cátions Bivalentes/análise , Sucos de Frutas e Vegetais/análise , Limite de Detecção , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Solanum tuberosum/enzimologia , Espectrometria de Fluorescência/métodos , Comprimidos
16.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340560

RESUMO

BACKGROUND: Due to current antibiotic resistance worldwide, there is an urgent need to find new alternative antibacterial approaches capable of dealing with multidrug-resistant pathogens. Most recent studies have demonstrated the antibacterial activity and non-cytotoxicity of carbon nanomaterials such as graphene oxide (GO) and carbon nanofibers (CNFs). On the other hand, light-emitting diodes (LEDs) have shown great potential in a wide range of biomedical applications. METHODS: We investigated a nanotechnological strategy consisting of GO or CNFs combined with light-emitting diod (LED) irradiation as novel nanoweapons against two clinically relevant Gram-positive multidrug-resistant pathogens: methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE). The cytotoxicity of GO and CNFs was studied in the presence of human keratinocyte HaCaT cells. RESULTS: GO or CNFs exhibited no cytotoxicity and high antibacterial activity in direct contact with MRSE and MRSA cells. Furthermore, when GO or CNFs were illuminated with LED light, the MRSE and MRSA cells lost viability. The rate of decrease in colony forming units from 0 to 3 h, measured per mL, increased to 98.5 ± 1.6% and 95.8 ± 1.4% for GO and 99.5 ± 0.6% and 99.7 ± 0.2% for CNFs. CONCLUSIONS: This combined antimicrobial approach opens up many biomedical research opportunities and provides an enhanced strategy for the prevention and treatment of Gram-positive multidrug-resistant infections.


Assuntos
Antibacterianos/farmacologia , Grafite/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Nanoestruturas/química , Nanotubos de Carbono/química , Staphylococcus epidermidis/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Técnicas de Cocultura , Relação Dose-Resposta à Radiação , Humanos , Queratinócitos/citologia , Queratinócitos/fisiologia , Queratinócitos/efeitos da radiação , Luz , Resistência a Meticilina/efeitos da radiação , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos da radiação , Nanoestruturas/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Fototerapia/métodos , Staphylococcus epidermidis/crescimento & desenvolvimento
17.
Nanomedicine ; 20: 102016, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31158499

RESUMO

Nanoengineering the topology of titanium (Ti) implants has the potential to enhance cytocompability and biocompatibility properties as implant surfaces play a decisive role in determining clinical success. Despite developments in various surface engineering strategies, antibacterial properties of Ti still need to be enhanced. Here a facile, cost-effective hydrothermal route was used to develop nano-patterned structures on a Ti surface. Changing hydrothermal treatment parameters such as temperature, pressure, and time, resulted in various topographies, crystal phases, and hydrophobicity. Specifically, hydrothermal treatment performed at 225 °C for 5 h, presented a novel topography with nanoflower features, exhibited no mammalian cell cytotoxicity for a time period of 14 days, and increased calcium deposition from osteoblasts. Treated samples also demonstrated antibacterial properties (without resorting to the use of antibiotics) against Staphylococcus aureus and methicillin resistant Staphylococcus aureus. In conclusion, hydrothermal oxidation on an etched Ti surface can generate surface properties that have excellent prospects for the biomedical field.


Assuntos
Materiais Biocompatíveis/farmacologia , Nanoestruturas/química , Temperatura , Titânio/farmacologia , Água/farmacologia , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Nanoestruturas/ultraestrutura , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Oxirredução , Molhabilidade , Difração de Raios X
18.
Colloids Surf B Biointerfaces ; 180: 141-149, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039515

RESUMO

The synthesis and applications of anisotropic nanostructures have attracted much attention in the last decade. The nanoflower-type structures are one of the nanomaterials with anisotropic structures most investigated because of owing to high densities of edges, corners, and stepped atoms present on their nano-petals. Here, silver nanoparticles obtained by a one-step green synthesis method using extract from Kalanchoe Daigremontiana´s leaves are reported. To identify the compounds responsible for reduction of silver ions, the functional groups present in plant extract were investigated by UV-vis and FTIR. Ag nanoparticles were characterized by UV-vis, XPS, ζ-potential, XRD, and SEM-EDS. Different solvents were used to eliminate agglomeration of the silver nanoparticles. These solvents produced nanoflower-like morphology with abundant nano-petals. This is the first report of the synthesis of Ag nanoflowers formed by green synthesis method using Kalanchoe Daigremontiana extract. The synthesized Ag nanoflowers are faced center cubic structure in nature with a petal thickness approximately of 25 nm. Photocatalytic activity of the different Ag nanostructures was evaluated through the degradation of methylene blue, where the degradation time as low as 1 min is reported. Furthermore these green synthesized Ag nanoflowers were found to show high antibacterial activity against Gram-negative bacteria Escherichia coli and Gram-positive Staphylococcus aureus.


Assuntos
Antibacterianos/química , Química Verde , Kalanchoe/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Prata/química , Anisotropia , Antibacterianos/farmacologia , Catálise , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Nanopartículas Metálicas/ultraestrutura , Azul de Metileno/química , Nanoestruturas/ultraestrutura , Oxirredução , Tamanho da Partícula , Processos Fotoquímicos , Extratos Vegetais/química , Folhas de Planta/química , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
19.
Biomed Pharmacother ; 116: 108983, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31125822

RESUMO

The zinc oxide nanomaterials (ZnO-NMs), owing to their broad biomedical applications have lately attracted the incredible interest in the development of therapeutic agents against microbial infections. In this contribution, we have biosynthesized ZnO-NMs with a size of ˜ 40 nm from the Bougainvillea flower extracts. The FTIR and SEM-EDX mapping analysis confirmed the size, shape and biogenic origin of ZnO-NPs. Furthermore, the purified ZnO-NMs were applied for antibacterial studies against susceptible and resistant bacterial strains and to elucidate the possible mechanism of their activity. The XTT assay and confocal imaging confirmed the ZnO-NMs materials anti-biofilm activities against medically important pathogens, i.e., S. aureus and E. coli. Moreover, the absence of cytotoxicity against healthy kidney cells (HEK-293) and erythrocytes confirmed their biocompatible nature. Furthermore, the biosynthesized ZnO-NMs showed potent anticancer activity against the breast cancer cell line (MCF-7). These biosynthesized ZnO-NMs are having excellent antimicrobial and anticancer activities and are highly biocompatible due to biogenic nature. During antimicrobial study, Zno-NMs showed excellent minimum inhibitory concentration 16 µg concentration againt E. coli, P. aeruginosa and S. aureus. While in anticancer activity, of ZnO-NMs with 15 µg/ml dose showed good response against MCF-7 cell line. Further, this killing was mechanically confirmed by ROS generation by the ZnO-NMs, which cause cell lysis by the peroxidation of membrane lipid. So, this biogenic ZnO-NMs can be used in the future for nanomaterial-based drug development.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Flores/química , Nanoestruturas/química , Nyctaginaceae/química , Extratos Vegetais/farmacologia , Óxido de Zinco/farmacologia , Apoptose/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Caspase 9/metabolismo , Ciclo Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , DNA/metabolismo , Dano ao DNA , Escherichia coli/efeitos dos fármacos , Escherichia coli/ultraestrutura , Células HEK293 , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Nanoestruturas/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/ultraestrutura , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
20.
Chem Commun (Camb) ; 55(41): 5817-5820, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31041939

RESUMO

A novel Au-Se nanoprobe with remarkable anti-interference ability for glutathione was developed for real-time in situ monitoring of the upstream and downstream regulatory relationship between uPA and MMP-9 proteins in the pathway.


Assuntos
Ouro/química , Metaloproteinase 9 da Matriz/análise , Nanoestruturas/química , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Selênio/química , Ativador de Plasminogênio Tipo Uroquinase/análise , Glutationa/química , Humanos , Células MCF-7 , Nanoestruturas/ultraestrutura , Neoplasias/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA