Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 168: 115626, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852098

RESUMO

Healing of wounds is the most deteriorating diabetic experience. Felty germander (Teucrium polium) possesses antioxidant, anti-inflammatory and antimicrobial activities that could accelerate wound healing. Further, nanohydrogels help quicken healing and are ideal biomaterials for drug delivery. In the current study, the chemical profiling, and standardization of T. polium methanolic extract by LC-ESI/TOF/MS/MS and quantitative HPLC-DAD analyses were achieved. The wound healing enhancement in diabetic rats by T. polium nanopreparation (TP-NP) as chitosan nanogel (CS-NG) and investigating the potential mechanisms were investigated. The prepared hydrogel-based TP-NP were characterized with respect to particle size, zeta potential, pH, viscosity, and release of major components. LC-ESI/TOF/MS/MS metabolomic profiling of T. polium revealed the richness of the plant with phenolic compounds, particularly flavonoids. In addition, several terpenoids were detected. Kaempferol content of T. polium was estimated to be 7.85 ± 0.022 mg/ g of dry extract. The wound healing activity of TP-NP was explored in streptozotocin-induced diabetic rats. Diabetic animals were subjected to surgical wounding (1 cm diameter). Then they were divided in 5 groups (10 each). These included Group 1 (untreated control rats), Group 2 received the vehicle of CS-NG; Group 3 (0.5 g of TP prepared in hydrogel), Group 4 (0.5 g of TP-NP), Group 5 represented a positive control treated with 0.5 g of a commercial product. All treatments were applied topically for 21 days. Application of TP-NP on skin wounds of diabetic animals accelerated the healing process as evidenced by epithelium regeneration, formation of granulation tissue followed by epidermal proliferation, along with keratinization as verified by H&E. This was confirmed through enhanced collagen synthesis, as shown by raised hydroxyproline content and Col1A1 gene expression. Moreover, TP-NP significantly alleviated wound oxidative burst and diminished the expressions of inflammatory biomarkers. Meanwhile, TP-NP could enhance the expressions of transforming growth factor beta1 (TGF-ß1), in addition to the angiogenic markers; vascular endothelia growth factor A (VEGFA) and platelet-derived growth factor receptor alpha (PDGFRα). Collectively, chitosan nanogel of T. polium accelerates wound healing in diabetic rats, which could be explained - at least partly - through alleviating oxidative stress and inflammation coupled with pro-angiogenic capabilities.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Teucrium , Ratos , Animais , Teucrium/química , Nanogéis/uso terapêutico , Quitosana/uso terapêutico , Extratos Vegetais/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Cicatrização , Hidrogéis/uso terapêutico
2.
Int J Biol Macromol ; 253(Pt 3): 126999, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37730000

RESUMO

In this study, manganese-doped albumin-gelatin composite nanogels (MAGN) were prepared and used to load berberine (Ber) for the treatment of gouty arthritis (GA). The nanodrug delivery system (Ber-MAGN) can target inflammatory joints due to the intrinsic high affinity of albumin for SPARC, which is overexpressed at the inflammatory site of GA. Characterization of the pharmaceutical properties in vitro showed that Ber-MAGN had good dispersion, and the particle size was 121 ± 10.7 nm. The sustained release effect significantly improved the bioavailability of berberine. In vitro and in vivo experimental results showed that Ber-MAGN has better therapeutic effects in relieving oxidative stress and suppressing inflammation. Therefore, Ber-MAGN, as a potential pharmaceutical preparation for GA, provides a new reference for the clinical treatment plan of GA.


Assuntos
Artrite Gotosa , Berberina , Ratos , Animais , Artrite Gotosa/tratamento farmacológico , Berberina/farmacologia , Gelatina , Manganês , Nanogéis/uso terapêutico
3.
Carbohydr Polym ; 310: 120721, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36925247

RESUMO

Nowadays, the photothermal therapy (PTT) has received widespread attention and research by rapidly killing tumors with local high temperature. However, due to the irregular edges of tumor and the blurred boundary between normal and necrotic tissues, the desirable treatment cannot be achieved by the single PTT, and excessive heat will cause serious inflammation in local tissues. Herein, an injectable composite hydrogel is prepared by the oxidized hyaluronic acid (OHA) and hydroxypropyl chitosan (HPCS) via the imine bonds, which is employed as the delivery substrate for functional substances. In the gel medium, the mesoporous polydopamine (MPDA) nanoparticles are incorporated as the high efficiency photothermal agent and a reservoir of DOX, which can achieve the good photothermal conversion performance and pulsed drug release. Besides, the addition of the curcumin-cyclodextrin host-guest inclusion complex (CUR@NH2-CD) in the composite hydrogel could reduce the inflammation caused by PTT. The composite hydrogel shows favorable the Hepa1-6 tumor inhibition in vivo by virtue of the comprehensive effect of the admired photothermal efficacy of MPDA, chemotherapy of DOX and anti-inflammatory of CUR. It can be predicted that the composite hydrogel has a broad prospect in the field of comprehensive therapy for tumor.


Assuntos
Quitosana , Nanopartículas , Neoplasias , Humanos , Quitosana/uso terapêutico , Terapia Fototérmica , Ácido Hialurônico/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Nanogéis/uso terapêutico , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/química , Inflamação/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Hidrogéis/química
4.
PLoS One ; 17(1): e0263026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35061861

RESUMO

The present study is aimed at enhancing the solubility of rosuvastatin (RST) by designing betacyclodextrin/polyvinypyrrolidone-co-poly (2-acrylamide-2-methylpropane sulphonic acid) crosslinked hydrophilic nanogels in the presence of crosslinker methylene bisacrylamide through free-radical polymerization method. Various formulations were fabricated by blending different amounts of betacyclodextrin, polyvinylpyrrolidone, 2-acrylamide-2-methylpropane sulphonic acid, and methylene bisacrylamide. The developed chemically crosslinked nanogels were characterized by FTIR, SEM, PXRD, TGA, DSC, sol-gel analysis, zeta size, micromeritics properties, drug loading percentage, swelling, solubility, and release studies. The FTIR spectrum depicts the leading peaks of resultant functional groups of blended constituents while a fluffy and porous structure was observed through SEM images. Remarkable reduction in crystallinity of RST in developed nanogels revealed by PXRD. TGA and DSC demonstrate the good thermal stability of nanogels. The size analysis depicts the particle size of the developed nanogels in the range of 178.5 ±3.14 nm. Drug loading percentage, swelling, solubility, and release studies revealed high drug loading, solubilization, swelling, and drug release patterns at 6.8 pH paralleled to 1.2 pH. In vivo experiments on developed nanogels in comparison to marketed brands were examined and better results regarding pharmacokinetic parameters were observed. The compatibility and non-toxicity of fabricated nanogels to biological systems was supported by a toxicity study that was conducted on rabbits. Efficient fabrication, excellent physicochemical properties, improved dissolution, high solubilization, and nontoxic nanogels might be a capable approach for the oral administration of poorly water-soluble drugs.


Assuntos
Portadores de Fármacos , Nanogéis , Rosuvastatina Cálcica , Animais , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Nanogéis/química , Nanogéis/uso terapêutico , Coelhos , Rosuvastatina Cálcica/química , Rosuvastatina Cálcica/farmacocinética , Rosuvastatina Cálcica/farmacologia , Solubilidade , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacocinética , beta-Ciclodextrinas/farmacologia
5.
Molecules ; 26(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34577079

RESUMO

Antimicrobial resistance is a dramatic global threat; however, the slow progress of new antibiotic development has impeded the identification of viable alternative strategies. Natural antioxidant-based antibacterial approaches may provide potent therapeutic abilities to effectively block resistance microbes' pathways. While essential oils (EOs) have been reported as antimicrobial agents, its application is still limited ascribed to its low solubility and stability characters; additionally, the related biomolecular mechanisms are not fully understood. Hence, the study aimed to develop a nano-gel natural preparation with multiple molecular mechanisms that could combat bacterial resistance in an acne vulgaris model. A nano-emulgel of thyme/clove EOs (NEG8) was designed, standardized, and its antimicrobial activity was screened in vitro and in vivo against genetically identified skin bacterial clinical isolates (Pseudomonas stutzeri, Enterococcus faecium and Bacillus thuringiensis). As per our findings, NEG8 exhibited bacteriostatic and potent biofilm inhibition activities. An in vivo model was also established using the commercially available therapeutic, adapalene in contra genetically identified microorganism. Improvement in rat behavior was reported for the first time and NEG8 abated the dermal contents/protein expression of IGF-1, TGF-ß/collagen, Wnt/ß-catenin, JAK2/STAT-3, NE, 5-HT, and the inflammatory markers; p(Ser536) NF-κBp65, TLR-2, and IL-6. Moreover, the level of dopamine, protective anti-inflammatory cytokine, IL-10 and PPAR-γ protein were enhanced, also the skin histological structures were improved. Thus, NEG8 could be a future potential topical clinical alternate to synthetic agents, with dual merit mechanism as bacteriostatic antibiotic action and non-antibiotic microbial pathway inhibitor.


Assuntos
Acne Vulgar/tratamento farmacológico , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Comportamento Animal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polietilenoglicóis/farmacologia , Polietilenoimina/farmacologia , Pele/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Biofilmes/efeitos dos fármacos , Sinais (Psicologia) , Fatores de Transcrição Forkhead/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Nanogéis/química , Nanogéis/uso terapêutico , PPAR gama/metabolismo , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Polietilenoglicóis/química , Polietilenoglicóis/uso terapêutico , Polietilenoimina/química , Polietilenoimina/uso terapêutico , Ratos , Pele/metabolismo , Syzygium/química , Thymus (Planta)/química , Receptor 2 Toll-Like/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo
6.
J Microencapsul ; 37(1): 77-90, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31795796

RESUMO

Aim: Methotrexate (Mtx) is prescribed to reduce pain and inflammation in arthritis patients; however, improved repair and mobility of joints still are the major concerns. Magnesium oil (MO) improves joint mobility and repair; therefore, MO-assisted transdermal delivery of Mtx was aimed.Methods: MO integrated Mtx nanoemulsion (Mtx-MONE) was prepared with uniform size (175 ± 35.4 nm), pH (6.15 ± 0.3) near to skin pH, and high entrapment efficiency (65 ± 8.6%). Mtx-MONE was transformed to nanogel (Mtx-MONEG) with semisolid consistency (43,408 ± 77.72 cP) and good spreadability (3.63 ± 0.033 mJ).Results: Mtx-MONEG showed significant reduction in oedema, arthritic scores, level of inflammatory cytokines, and improved walking as compared to diseased control. MO offered additional improvements in joints, mobility, and repair.Conclusion: Transdermal delivery of Mtx has been successfully achieved by Mtx-MONEG. Tremendous recovery from inflammation, improved joints mobility and repair, and reduced pain strongly support the use of MO as an adjutant of Mtx for improved transdermal application.


Assuntos
Anti-Inflamatórios/uso terapêutico , Artrite Experimental/tratamento farmacológico , Magnésio/uso terapêutico , Metotrexato/uso terapêutico , Nanogéis/uso terapêutico , Administração Cutânea , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Artrite Experimental/imunologia , Artrite Experimental/patologia , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/uso terapêutico , Liberação Controlada de Fármacos , Feminino , Magnésio/administração & dosagem , Magnésio/farmacocinética , Metotrexato/administração & dosagem , Metotrexato/farmacocinética , Nanogéis/administração & dosagem , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA