Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.762
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Nanotheranostics ; 8(3): 344-379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577318

RESUMO

Modern medicine relies on a small number of key biologics, which can be found in nature but require further characterization and purification before they can be used. Since the herbal remedy is given through a dated and ineffective method of drug administration, its effectiveness is diminished. The novel form of medicine delivery has the potential to increase the effectiveness of herbal substances while decreasing their side effects. This is the main idea behind utilising different ways of drug delivery in herbal treatments. Several benefits arise from novel formulations of herbal compounds as compared to their conventional counterparts. These include enhanced penetrating ability into tissues, constant delivery of effective doses, and resistance to physical and chemical degradation. Controlled and targeted delivery that include herbal components allow for more traditional dosing while simultaneously increasing their efficacy. Enhancing the biodistribution and target site accumulation of systemically administered herbal medicines is the goal of nanomedicine formulations. The field of nanotheranostics has made significant advancements in the development of herbal compounds by combining diagnostic and therapeutic functions on a single nanoscale platform. It is critically important to create a theranostic nanoplatform that is derived from plants and is intrinsically "all-in-one" for single molecules. In addition to examining the mechanistic approach to nanoparticle synthesis, this review highlights the therapeutic effects of nanoscale phytochemical delivery systems. Furthermore, we have evaluated the scope for future advancements in this field, discussed several nanoparticles that have been developed recently for herbal imaging, and provided experimental evidence that supports their usage.


Assuntos
Sistemas de Liberação de Medicamentos , Medicina de Precisão , Distribuição Tecidual , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Nanotecnologia
2.
Nanoscale Horiz ; 9(5): 708-717, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38466219

RESUMO

Acupuncture is an ancient form of therapy, which has long been part of traditional Chinese medicine (TCM); however, its use has spread globally, to the point where it is currently practiced worldwide. Although metal needles continue to be used most commonly, through multidisciplinary research, novel technologies, including nanotechnology, have allowed acupuncture to evolve to the point of achieving greater efficiency and more sophisticated functions in clinical practice. We summarized recent advancements in the literature using nano-enabled strategies to create novel needles that enhance and expand their therapeutic effects and found that nanotechnology may help provide new evidence to verify acupuncture theory, improve the features of acupuncture needles and their clinical effects by combining with drug delivery, and even enable new therapeutic methods when combined with acupuncture needles. The use of nano-technology with acupuncture delivery looks very promising for potential clinical applications. We also envisage that with nanotechnology, innovations in acupuncture needles could generate a multi-functional toolbox for use in both diagnostic and therapeutic medicine. Such new types of acupuncture needles could be used at acupoints and data collected to guide the planning of clinical trials may be more consistent with acupuncture theory and traditional clinical applications of this therapeutic modality.


Assuntos
Terapia por Acupuntura , Nanotecnologia , Agulhas , Terapia por Acupuntura/métodos , Humanos , Nanotecnologia/métodos , Sistemas de Liberação de Medicamentos/métodos , Gerenciamento Clínico , Medicina Tradicional Chinesa/métodos , Animais
3.
Int J Nanomedicine ; 19: 2507-2528, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495752

RESUMO

Background: Cancer continues to be a prominent issue in the field of medicine, as demonstrated by recent studies emphasizing the significant role of autophagy in the development of cancer. Traditional Chinese Medicine (TCM) provides a variety of anti-tumor agents capable of regulating autophagy. However, the clinical application of autophagy-modulating compounds derived from TCM is impeded by their restricted water solubility and bioavailability. To overcome this challenge, the utilization of nanotechnology has been suggested as a potential solution. Nonetheless, the current body of literature on nanoparticles delivering TCM-derived autophagy-modulating anti-tumor compounds for cancer treatment is limited, lacking comprehensive summaries and detailed descriptions. Methods: Up to November 2023, a comprehensive research study was conducted to gather relevant data using a variety of databases, including PubMed, ScienceDirect, Springer Link, Web of Science, and CNKI. The keywords utilized in this investigation included "autophagy", "nanoparticles", "traditional Chinese medicine" and "anticancer". Results: This review provides a comprehensive analysis of the potential of nanotechnology in overcoming delivery challenges and enhancing the anti-cancer properties of autophagy-modulating compounds in TCM. The evaluation is based on a synthesis of different classes of autophagy-modulating compounds in TCM, their mechanisms of action in cancer treatment, and their potential benefits as reported in various scholarly sources. The findings indicate that nanotechnology shows potential in enhancing the availability of autophagy-modulating agents in TCM, thereby opening up a plethora of potential therapeutic avenues. Conclusion: Nanotechnology has the potential to enhance the anti-tumor efficacy of autophagy-modulating compounds in traditional TCM, through regulation of autophagy.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Nanotecnologia , Autofagia
4.
Nutrients ; 16(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474764

RESUMO

Nanotechnology in human nutrition represents an innovative advance in increasing the bioavailability and efficiency of bioactive compounds. This work delves into the multifaceted dietary contributions of nanoparticles (NPs) and their utilization for improving nutrient absorption and ensuring food safety. NPs exhibit exceptional solubility, a significant surface-to-volume ratio, and diameters ranging from 1 to 100 nm, rendering them invaluable for applications such as tissue engineering and drug delivery, as well as elevating food quality. The encapsulation of vitamins, minerals, and antioxidants within NPs introduces an innovative approach to counteract nutritional instabilities and low solubility, promoting human health. Nanoencapsulation methods have included the production of nanocomposites, nanofibers, and nanoemulsions to benefit the delivery of bioactive food compounds. Nutrition-based nanotechnology and nanoceuticals are examined for their economic viability and potential to increase nutrient absorption. Although the advancement of nanotechnology in food demonstrates promising results, some limitations and concerns related to safety and regulation need to be widely discussed in future research. Thus, the potential of nanotechnology could open new paths for applications and significant advances in food, benefiting human nutrition.


Assuntos
Suplementos Nutricionais , Nanopartículas , Humanos , Antioxidantes , Vitaminas , Nanotecnologia/métodos
5.
Biomed Pharmacother ; 173: 116426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471274

RESUMO

In the field of cancer therapy, sesquiterpene lactones (SLs) derived from diverse Dicoma species demonstrate noteworthy bioactivity. However, the translation of their full therapeutic potential into clinical applications encounters significant challenges, primarily related to solubility, bioavailability, and precise drug targeting. Despite these obstacles, our comprehensive review introduces an innovative paradigm shift that integrates the inherent therapeutic properties of SLs with the principles of green nanotechnology. To overcome issues of solubility, bioavailability, and targeted drug delivery, eco-friendly strategies are proposed for synthesizing nanocarriers. Green nanotechnology has emerged as a focal point in addressing environmental and health concerns linked to conventional treatments. This progressive approach of green nanotechnology holds promise for the development of safe and sustainable nanomaterials, particularly in the field of drug delivery. This groundbreaking methodology signifies a pioneering advancement in the creation of novel and effective anticancer therapeutics. It holds substantial potential for transforming cancer treatment and advancing the landscape of natural product research.


Assuntos
Nanoestruturas , Neoplasias , Sesquiterpenos , Humanos , Neoplasias/tratamento farmacológico , Nanotecnologia/métodos , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Lactonas/uso terapêutico
6.
Chem Soc Rev ; 53(7): 3224-3252, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38379286

RESUMO

Neoantigens play a pivotal role in the field of tumour therapy, encompassing the stimulation of anti-tumour immune response and the enhancement of tumour targeting capability. Nonetheless, numerous factors directly influence the effectiveness of neoantigens in bolstering anti-tumour immune responses, including neoantigen quantity and specificity, uptake rates by antigen-presenting cells (APCs), residence duration within the tumour microenvironment (TME), and their ability to facilitate the maturation of APCs for immune response activation. Nanotechnology assumes a significant role in several aspects, including facilitating neoantigen release, promoting neoantigen delivery to antigen-presenting cells, augmenting neoantigen uptake by dendritic cells, shielding neoantigens from protease degradation, and optimizing interactions between neoantigens and the immune system. Consequently, the development of nanotechnology synergistically enhances the efficacy of neoantigens in cancer theranostics. In this review, we provide an overview of neoantigen sources, the mechanisms of neoantigen-induced immune responses, and the evolution of precision neoantigen-based nanomedicine. This encompasses various therapeutic modalities, such as neoantigen-based immunotherapy, phototherapy, radiotherapy, chemotherapy, chemodynamic therapy, and other strategies tailored to augment precision in cancer therapeutics. We also discuss the current challenges and prospects in the application of neoantigen-based precision nanomedicine, aiming to expedite its clinical translation.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Antígenos de Neoplasias , Medicina de Precisão , Neoplasias/diagnóstico , Neoplasias/terapia , Imunoterapia , Nanotecnologia , Microambiente Tumoral
7.
Drug Deliv Transl Res ; 14(6): 1517-1534, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38225521

RESUMO

Osteoarthritis (OA) is a prevalent chronic condition that primarily impacts the articular cartilage and surrounding bone tissue, resulting in joint inflammation and structural deterioration. The etiology of OA is multifaceted and intricately linked to the oxidative stress response of joint tissue. Oxidative stress (OS) in OA leads to the creation of reactive oxygen species (ROS) and other oxidizing agents, resulting in detrimental effects on chondrocytes. This oxidative damage diminishes the flexibility and robustness of cartilage, thereby expediting the progression of joint deterioration. Therefore, the antioxidant effect is crucial in the treatment of OA. Currently, a considerable number of components found in traditional Chinese medicine (TCM) have been scientifically demonstrated to exhibit remarkable antioxidant and anti-inflammatory properties. Nevertheless, the utilization of this program is considerably constrained as a result of intrinsic deficiencies, notably stability concerns. The successful amalgamation of TCM components with nanotechnology has properly tackled these concerns and enhanced the efficacy of therapeutic results. The objective of this study is to delineate the antioxidant characteristics of nano-TCM and assess the current inventory of literature pertaining to the application of nano-TCM in the treatment of OA. In conclusion, this paper will now turn to the constraints and potential avenues for the advancement of nano-TCM within the realm of OA therapy.


Assuntos
Antioxidantes , Medicina Tradicional Chinesa , Nanotecnologia , Osteoartrite , Osteoartrite/tratamento farmacológico , Humanos , Antioxidantes/administração & dosagem , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Animais , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Estresse Oxidativo/efeitos dos fármacos
8.
Acta Biomater ; 176: 390-404, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244657

RESUMO

Non-invasive precision tumor dynamic phototherapy has broad application prospects. Traditional semiconductor materials have low photocatalytic activity and low reactive oxygen species (ROS) production rate due to their wide band gap, resulting in unsatisfactory phototherapy efficacy for tumor treatment. Employing the dye-sensitization mechanism can significantly enhance the catalytic activity of the materials. We develop a multifunctional nanoplatform (BZP) by leveraging the benefits of bismuth-based semiconductor nanomaterials. BZP possesses robust ROS generation and remarkable near-infrared photothermal conversion capabilities for improving tumor immune microenvironment and achieving superior phototherapy sensitization. BZP produces highly cytotoxic ROS species via the photocatalytic process and cascade reaction, amplifying the photocatalytic therapy effect. Moreover, the simultaneous photothermal effect during the photocatalytic process facilitates the improvement of therapeutic efficacy. Additionally, BZP-mediated phototherapy can trigger the programmed death of tumor cells, stimulate dendritic cell maturation and T cell activation, modulate the tumor immune microenvironment, and augment the therapeutic effect. Hence, this study demonstrates a promising research paradigm for tumor immune microenvironment-improved phototherapy. STATEMENT OF SIGNIFICANCE: Through the utilization of dye sensitization and rare earth doping techniques, we have successfully developed a biodegradable bismuth-based semiconductor nanocatalyst (BZP). Upon optical excitation, the near-infrared dye incorporated within BZP promptly generates free electrons, which, under the influence of the Fermi energy level, undergo transfer to BiF3 within BZP, thereby facilitating the effective separation of electron-hole pairs and augmenting the catalytic capability for reactive oxygen species (ROS) generation. Furthermore, a cascade reaction mechanism generates highly cytotoxic ROS, which synergistically depletes intracellular glutathione, thereby intensifying oxidative stress. Ultimately, this dual activation strategy, combining oxidative and thermal damage, holds significant potential for tumor immunotherapy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Neoplasias , Humanos , Feminino , Neoplasias da Mama/patologia , Espécies Reativas de Oxigênio/metabolismo , Bismuto/uso terapêutico , Nanopartículas/uso terapêutico , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Nanotecnologia , Linhagem Celular Tumoral , Microambiente Tumoral
9.
Biomacromolecules ; 25(2): 964-974, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38232296

RESUMO

Thermosensitive nanoparticles can be activated by externally applying heat, either through laser irradiation or magnetic fields, to trigger the release of drug payloads. This controlled release mechanism ensures that drugs are specifically released at the tumor site, maximizing their effectiveness while minimizing systemic toxicity and adverse effects. However, its efficacy is limited by the low concentration of drugs at action sites, which is caused by no specific target to tumor sties. Herein, hyaluronic acid (HA), a gooey, slippery substance with CD44-targeting ability, was conjugated with a thermosensitive polymer poly(acrylamide-co-acrylonitrile) to produce tumor-targeting and thermosensitive polymeric nanocarrier (HA-P) with an upper critical solution temperature (UCST) at 45 °C, which further coloaded chemo-drug doxorubicin (DOX) and photosensitizer Indocyanine green (ICG) to prepare thermosensitive nanoreactors HA-P/DOX&ICG. With photosensitizer ICG acting as the "temperature control element", HA-P/DOX&ICG nanoparticles can respond to temperature changes when receiving near-infrared irradiation and realize subsequent structure depolymerization for burst drug release when the ambient temperature was above 45 °C, achieving programmable and on-demand drug release for effective antitumor therapy. Tumor inhibition rate increased from 61.8 to 95.9% after laser irradiation. Furthermore, the prepared HA-P/DOX&ICG nanoparticles possess imaging properties, with ICG acting as a probe, enabling real-time monitoring of drug distribution and therapeutic response, facilitating precise treatment evaluation. These results provide enlightenment for the design of active tumor targeting and NIR-triggered programmable and on-demand drug release of thermosensitive nanoreactors for tumor therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Hipertermia Induzida/métodos , Fototerapia/métodos , Doxorrubicina/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Verde de Indocianina/farmacologia , Verde de Indocianina/química , Nanotecnologia , Liberação Controlada de Fármacos , Linhagem Celular Tumoral
10.
Biol Trace Elem Res ; 202(1): 360-386, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37046039

RESUMO

Green nanotechnology is an emerging field of science that focuses on the production of nanoparticles by living cells through biological pathways. This topic plays an extremely imperative responsibility in various fields, including pharmaceuticals, nuclear energy, fuel and energy, electronics, and bioengineering. Biological processes by green synthesis tools are more suitable to develop nanoparticles ranging from 1 to 100 nm compared to other related methods, owing to their safety, eco-friendliness, non-toxicity, and cost-effectiveness. In particular, the metal nanoparticles are synthesized by top-down and bottom-up approaches through various techniques like physical, chemical, and biological methods. Their characterization is very vital and the confirmation of nanoparticle traits is done by various instrumentation analyses such as UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), annular dark-field imaging (HAADF), and intracranial pressure (ICP). In this review, we provide especially information on green synthesized metal nanoparticles, which are helpful to improve biomedical and environmental applications. In particular, the methods and conditions of plant-based synthesis, characterization techniques, and applications of green silver, gold, iron, selenium, and copper nanoparticles are overviewed.


Assuntos
Nanopartículas Metálicas , Extratos Vegetais , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/química , Prata/química , Nanotecnologia , Nanopartículas Metálicas/química , Química Verde/métodos , Difração de Raios X , Antibacterianos
11.
Artigo em Inglês | MEDLINE | ID: mdl-37752098

RESUMO

Nanotechnology-based phototherapies have drawn interest in the fight against cancer because of its noninvasiveness, high flexibility, and precision in terms of cancer targeting and drug delivery based on its surface properties and size. Phototherapy has made remarkable development in recent decades. Approaches to phototherapy, which utilize nanomaterials or nanotechnology have emerged to contribute to advances around nanotechnologies in medicine, particularly for cancers. A brief overviews of the development of photodynamic therapy as well as its mechanism in cancer treatment is provided. We emphasize the design of novel nanoparticles utilized in photodynamic therapy while summarizing the representative progress during the recent years. Finally, to forecast important future research in this area, we examine the viability and promise of photodynamic therapy systems based on nanoparticles in clinical anticancer treatment applications and briefly make mention of the elimination of all reactive metabolites pertaining to nano formulations inside living organisms providing insight into clinical mechanistic processes. Future developments and therapeutic prospects for photodynamic treatments are anticipated. Our viewpoints might encourage scientists to create more potent phototherapy-based cancer therapeutic modalities. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fototerapia , Nanomedicina , Nanopartículas/uso terapêutico , Nanotecnologia , Neoplasias/tratamento farmacológico
12.
Adv Mater ; 36(5): e2308286, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37971203

RESUMO

Cancer represents a serious disease with significant implications for public health, imposing substantial economic burden and negative societal consequences. Compared to conventional cancer treatments, such as surgery and chemotherapy, energy-based therapies (ET) based on athermal and thermal ablation provide distinct advantages, including minimally invasive procedures and rapid postoperative recovery. Nevertheless, due to the complex pathophysiology of many solid tumors, the therapeutic effectiveness of ET is often limited. Nanotechnology offers unique opportunities by enabling facile material designs, tunable physicochemical properties, and excellent biocompatibility, thereby further augmenting the outcomes of ET. Numerous nanomaterials have demonstrated the ability to overcome intrinsic therapeutic resistance associated with ET, leading to improved antitumor responses. This comprehensive review systematically summarizes the underlying mechanisms of ET-associated resistance (ETR) and highlights representative applications of nanoplatforms used to mitigate ETR. Overall, this review emphasizes the recent advances in the field and presents a detailed account of novel nanomaterial designs in combating ETR, along with efforts aimed at facilitating their clinical translation.


Assuntos
Hipertermia Induzida , Nanoestruturas , Neoplasias , Humanos , Nanomedicina/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanotecnologia/métodos , Nanoestruturas/uso terapêutico
13.
Angew Chem Int Ed Engl ; 63(7): e202311309, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38140920

RESUMO

Nanomaterial-based in vivo tumor imaging and therapy have attracted extensive attention; however, they suffer from the unintelligent "always ON" or single-parameter responsive signal output, substantial off-target effects, and high cost. Therefore, achieving in vivo easy-to-read tumor imaging and precise therapy in a multi-parameter responsive and intelligent manner remains challenging. Herein, an intelligent DNA nanoreactor (iDNR) was constructed following the "AND" Boolean logic algorithm to address these issues. iDNR-mediated in situ deposition of photothermal substance polydopamine (PDA) can only be satisfied in tumor tissues with abundant membrane protein biomarkers "AND" hydrogen peroxide (H2 O2 ). Therefore, intelligent temperature-based in vivo easy-to-read tumor imaging is realized without expensive instrumentation, and its diagnostic performance matches with that of flow cytometry, and photoacoustic imaging. Moreover, precise photothermal therapy (PTT) of tumors could be achieved via intelligent heating of tumor tissues. The precise PTT of primary tumors in combination with immune checkpoint blockade (ICB) therapy suppresses the growth of distant tumors and inhibits tumor recurrence. Therefore, highly programmable iDNR is a powerful tool for intelligent biomedical applications.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Neoplasias/patologia , Fototerapia/métodos , Nanotecnologia , Linhagem Celular Tumoral , Microambiente Tumoral
14.
Nanomedicine (Lond) ; 18(27): 2081-2099, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38078442

RESUMO

This study reviews the application of nanotechnology and curcumin, a polyphenol extracted from turmeric, in treating digestive cancers, one of the most common types of malignancies worldwide. Despite curcumin's potential for inhibiting tumor growth, its clinical application is hindered by issues such as poor solubility and bioavailability. Nanomedicine, with its unique ability to enhance drug delivery and reduce toxicity, offers a solution to these limitations. The paper focuses on the development of nanoformulations of curcumin, such as nanoparticles and liposomes, that improve its bioavailability and efficacy in treating digestive cancers, including liver and colorectal cancers. The study serves as a valuable reference for future research and development in this promising therapeutic approach.


This article reviews the burgeoning field of nanotechnology and its applications in anticancer therapeutics, particularly focusing on the utilization of curcumin nanoparticles for the treatment of digestive cancers. With the global rise in the prevalence of digestive cancer, there is an urgent need for newer, more efficient and less toxic therapeutic strategies. Curcumin, a compound derived from turmeric, has shown considerable promise due to its broad-spectrum anticancer properties; however, its clinical application has been limited, as it is not absorbed well by the body and is cleared quickly. Nanotechnology presents a potential solution to these challenges, allowing for the enhanced delivery and therapeutic effectiveness of curcumin. This review delves into the advancements made in the field of curcumin nanoparticle research and the results of preclinical and clinical studies, focusing on digestive cancers. In addition, the challenges encountered in the development and clinical implementation of curcumin nanoparticles are addressed and a perspective on future directions in this promising area of research is provided. By combining the age-old wisdom of curcumin's therapeutic potential with the cutting-edge technology of nanomedicine, this review aims to shed light on the evolution and prospects of a novel therapeutic modality against digestive cancers.


Assuntos
Curcumina , Neoplasias , Humanos , Curcumina/uso terapêutico , Neoplasias/tratamento farmacológico , Nanotecnologia , Sistemas de Liberação de Medicamentos , Nanomedicina
15.
J Nanobiotechnology ; 21(1): 456, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38017573

RESUMO

Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.


Assuntos
Medicamentos de Ervas Chinesas , Nanopartículas , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Disponibilidade Biológica , Nanotecnologia , Sistemas de Liberação de Medicamentos
16.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4874-4883, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802829

RESUMO

Rheumatoid arthritis(RA) is a widely prevalent autoimmune inflammatory disease that severely affects patients' quality of life. Currently, conventional formulations against RA have several limitations, such as nonspecificity, poor efficacy, large drug dosages, frequent administration, and systemic side effects. Nanotechnology-based drug delivery systems have emerged as a promising stra-tegy for the diagnosis and treatment of RA since nanotechnology can overcome the limitations of traditional treatments and simplify the complexity of the disease. These systems enable targeted delivery of anti-inflammatory drugs to the inflamed areas through active and passive targeting, achieving specificity to the joints, overcoming the need for increased dosage and administration frequency, and reducing associated adverse reactions. This article aimed to review nanocarrier-based drug delivery systems in the field of RA and elucidate how nanosystems can be utilized to deliver therapeutic drugs to inflamed joints for controlling RA progression. By discussing the current issues and challenges faced by nanodrug delivery systems and highlighting the urgent need for solutions, this article offers theoretical support for further research on nanotechnology-based co-delivery systems in the future.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Humanos , Qualidade de Vida , Sistemas de Liberação de Medicamentos , Artrite Reumatoide/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Nanotecnologia
17.
Adv Colloid Interface Sci ; 321: 103010, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804661

RESUMO

This article provides an in-depth analysis of various fabrication methods of bimetallic nanoparticles (BNP), including chemical, biological, and physical techniques. The review explores BNP's diverse uses, from well-known applications such as sensing water treatment and biomedical uses to less-studied areas like breath sensing for diabetes monitoring and hydrogen storage. It cites results from over 1000 researchers worldwide and >300 peer-reviewed articles. Additionally, the article discusses current trends, actionable recommendations, and the importance of synthetic analysis for industry players looking to optimize manufacturing techniques for specific applications. The article also evaluates the pros and cons of various fabrication methods, highlighting the potential of plant extract synthesis for mass production of capped BNPs. However, it warns that this method may not be suitable for certain applications requiring ligand-free surfaces. In contrast, physical methods like laser ablation offer better control and reactivity, especially for applications where ligand-free surfaces are critical. The report underscores the environmental benefits of plant extract synthesis compared to chemical methods that use hazardous chemicals and pose risks to extraction, production, and disposal. The article emphasizes the need for life cycle assessment (LCA) articles in the literature, given the growing volume of research on nanotechnology materials. This article caters to researchers at all stages and applies to various fields applying nanomaterials.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Nanotecnologia/métodos , Catálise , Extratos Vegetais
18.
Front Immunol ; 14: 1258786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869003

RESUMO

In the quest for cancer treatment modalities with greater effectiveness, the combination of tumor immunotherapy and nanoparticle-based hyperthermia has emerged as a promising frontier. The present article provides a comprehensive review of recent advances and cutting-edge research in this burgeoning field and examines how these two treatment strategies can be effectively integrated. Tumor immunotherapy, which harnesses the immune system to recognize and attack cancer cells, has shown considerable promise. Concurrently, nanoparticle-based hyperthermia, which utilizes nanotechnology to promote selective cell death by raising the temperature of tumor cells, has emerged as an innovative therapeutic approach. While both strategies have individually shown potential, combination of the two modalities may amplify anti-tumor responses, with improved outcomes and reduced side effects. Key studies illustrating the synergistic effects of these two approaches are highlighted, and current challenges and future prospects in the field are discussed. As we stand on the precipice of a new era in cancer treatment, this review underscores the importance of continued research and collaboration in bringing these innovative treatments from the bench to the bedside.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Nanotecnologia , Imunoterapia , Nanopartículas/uso terapêutico
19.
Nanoscale ; 15(43): 17313-17325, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37874212

RESUMO

Endometriosis is a painful gynecological disease with a high prevalence, affecting millions of women worldwide. Innovative, non-invasive treatments, and new patient follow-up strategies are needed to deal with the harmful social and economic effects. In this scenario, considering the recent, very promising results already reported in the literature, a commitment to new research in the field of nanomedicine is urgently needed. Study findings clearly show the potential of this approach in both the diagnostic and therapeutic phases of endometriosis. Here, we offer a brief review of the recent exciting and effective applications of nanomedicine in both the diagnosis and therapy of endometriosis. Special emphasis will be placed on the emerging theranostic application of nanoproducts, and the combination of phototherapy and nanotechnology as new therapeutic modalities for endometriosis. The review will also provide interested readers with a guide to the selection process and parameters to consider when designing research into this type of approach.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/diagnóstico , Endometriose/terapia , Nanomedicina/métodos , Nanotecnologia/métodos , Fototerapia
20.
Clin Oral Investig ; 27(11): 6677-6688, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37775587

RESUMO

OBJECTIVES: Disinfection of alginate impression materials is a mandatory step to prevent cross-infection in dental clinics. However, alginate disinfection methods are time-consuming and exert a negative impact on accuracy and mechanical properties. Thus, this study aimed to prepare disinfecting agents (CHX and AgNO3) and silver nanoparticles reduced by a natural plant extract to produce a self-disinfecting dental alginate. METHODS: Conventional alginate impression material was used in this study. Silver nitrate (0.2% AgNO3 group) and chlorohexidine (0.2% CHX group) solutions were prepared using distilled water, and these solutions were later employed for alginate preparation. Moreover, a 90% aqueous plant extract was prepared from Boswellia sacra (BS) oleoresin and used to reduce silver nitrate to form silver nanoparticles that were incorporated in the dental alginate preparation (BS+AgNPs group). The plant extract was characterized by gas chromatography/mass spectrometry (GC/MS) analysis while green-synthesized silver nanoparticles (AgNPs) were characterized by UV-visible (UV-vis) spectroscopy and scanning electron microscopy (SEM). An agar disc diffusion assay was used to test the antimicrobial activity against Candida albicans, Streptococcus mutans, Escherichia coli, methicillin-resistant and susceptible Staphylococcus aureus strains, and Micrococcus luteus. Agar plates were incubated at 37 ± 1 °C for 24 h to allow microbial growth. Diameters of the circular inhibition zones formed around each specimen were measured digitally by using ImageJ software. RESULTS: Chemical analysis of the plant extract revealed the presence of 41 volatile and semi-volatile active compounds. UV-Vis spectrophotometry, SEM, and EDX confirmed the formation of spherical silver nanoparticles using the BS extract. CHX, AgNO3, and the BS+AgNPs modified groups showed significantly larger inhibition zones than the control group against all tested strains. BS+AgNPs and CHX groups showed comparable efficacy against all tested strains except for Staphylococcus aureus, where the CHX-modified alginate had a significantly higher effect. CONCLUSIONS AND CLINICAL RELEVANCE: CHX, silver nitrate, and biosynthesized silver nanoparticles could be promising inexpensive potential candidates for the preparation of a self-disinfecting alginate impression material without affecting its performance. Green synthesis of metal nanoparticles using Boswellia sacra extract could be a very safe, efficient, and nontoxic way with the additional advantage of a synergistic action between metal ions and the phytotherapeutic agents of the plant extract.


Assuntos
Alginatos , Nanopartículas Metálicas , Alginatos/farmacologia , Desinfecção , Nitrato de Prata/farmacologia , Nanopartículas Metálicas/química , Ágar/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Prata , Extratos Vegetais/farmacologia , Staphylococcus aureus , Nanotecnologia/métodos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA