RESUMO
Cancers, including glioblastoma multiforme (GBM), undergo coordinated reprogramming of metabolic pathways that control glycolysis and oxidative phosphorylation (OXPHOS) to promote tumor growth in diverse tumor microenvironments. Adaptation to limited nutrient availability in the microenvironment is associated with remodeling of mitochondrial morphology and bioenergetic capacity. We recently demonstrated that NF-κB-inducing kinase (NIK) regulates mitochondrial morphology to promote GBM cell invasion. Here, we show that NIK is recruited to the outer membrane of dividing mitochondria with the master fission regulator, Dynamin-related protein1 (DRP1). Moreover, glucose deprivation-mediated metabolic shift to OXPHOS increases fission and mitochondrial localization of both NIK and DRP1. NIK deficiency results in decreased mitochondrial respiration, ATP production, and spare respiratory capacity (SRC), a critical measure of mitochondrial fitness. Although IκB kinase α and ß (IKKα/ß) and NIK are required for OXPHOS in high glucose media, only NIK is required to increase SRC under glucose deprivation. Consistent with an IKK-independent role for NIK in regulating metabolism, we show that NIK phosphorylates DRP1-S616 in vitro and in vivo. Notably, a constitutively active DRP1-S616E mutant rescues oxidative metabolism, invasiveness, and tumorigenic potential in NIK-/- cells without inducing IKK. Thus, we establish that NIK is critical for bioenergetic stress responses to promote GBM cell pathogenesis independently of IKK. Our data suggest that targeting NIK may be used to exploit metabolic vulnerabilities and improve therapeutic strategies for GBM.
Assuntos
Neoplasias Encefálicas/enzimologia , Metabolismo Energético , Glioblastoma/enzimologia , Mitocôndrias/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Dinaminas/genética , Dinaminas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Dinâmica Mitocondrial , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Microambiente Tumoral , Quinase Induzida por NF-kappaBRESUMO
Cancer incidence rates are on the increase worldwide. The most common brain cancer in adults is glioblastoma. Currently available treatment modalities are limited and natural products such as mushrooms could enhance them. Apart from nutritional value, mushrooms are an excellent source of bioactive compounds and therefore could be used to treat various disorders. The aim of the study was to assess the anti-glioma potential of selected mushrooms on U87MG, LN-18 glioblastoma and SVGp12 normal human astroglial cell lines. The materials were Cantharellus cibarius, Coprinus comatus, Lycoperdon perlatum and Lactarius delicious. Aqueous, 70 % ethanol or 95 % ethanol extracts from mushrooms were used for analysis including assessment of antioxidant activity by DPPH assay, cell viability by MTT assay, DNA biosynthesis by thymidine incorporation assay, activity of metalloproteinase by gelatin zymography and cell cycle assay by flow cytometry. Mushroom extracts influenced the viability and DNA biosynthesis of cancer cells. Activity of ethanol mushroom extracts was stronger than that of aqueous extracts. Anti-glioma mechanism consisted in inhibition of cancer cell proliferation and induction of apoptosis associated with arrest of cells in subG1 or G2/M phase of cell cycle, and inhibition of metalloproteinases activity. Among investigated mushrooms, L. deliciosus and C. comatus showed the greatest anti-glioma potential.
Assuntos
Agaricales , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Agaricales/química , Antineoplásicos/isolamento & purificação , Basidiomycota/química , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Coprinus/química , Replicação do DNA/efeitos dos fármacos , Glioblastoma/enzimologia , Glioblastoma/patologia , Humanos , Metaloproteinases da Matriz/metabolismo , Estresse Oxidativo/efeitos dos fármacosRESUMO
Glioblastoma multiforme (GBM) is the most malignant primary brain tumor and has the highest mortality rate among cancers and high resistance to radiation and cytotoxic chemotherapy. Although some targeted therapies can partially inhibit oncogenic mutation-driven proliferation of GBM cells, therapies harnessing synthetic lethality are 'coincidental' treatments with high effectiveness in cancers with gene mutations, such as GBM, which frequently exhibits DNA-PKcs mutation. By implementing a highly efficient high-throughput screening (HTS) platform using an in-house-constructed genome-wide human microRNA inhibitor library, we demonstrated that miR-1193 inhibition sensitized GBM tumor cells with DNA-PKcs deficiency. Furthermore, we found that miR-1193 directly targets YY1AP1, leading to subsequent inhibition of FEN1, an important factor in DNA damage repair. Inhibition of miR-1193 resulted in accumulation of DNA double-strand breaks and thus increased genomic instability. RPA-coated ssDNA structures enhanced ATR checkpoint kinase activity, subsequently activating the CHK1/p53/apoptosis axis. These data provide a preclinical theory for the application of miR-1193 inhibition as a potential synthetic lethal approach targeting GBM cancer cells with DNA-PKcs deficiency.
Assuntos
Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Proteína Quinase Ativada por DNA/deficiência , Glioblastoma/enzimologia , Glioblastoma/genética , MicroRNAs/metabolismo , Mutações Sintéticas Letais/genética , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/metabolismo , Quebras de DNA de Cadeia Dupla , Proteína Quinase Ativada por DNA/metabolismo , Endonucleases Flap/metabolismo , Instabilidade Genômica , Humanos , MicroRNAs/genética , Modelos Biológicos , Reprodutibilidade dos Testes , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator de Transcrição YY1/metabolismoRESUMO
BACKGROUND: Monoamine oxidase (MAO) A catalyzes oxidative deamination of monoamine neurotransmitters and dietary amines and regulates brain development and functions. Recently, we showed that MAO A mediates the progression and migration of glioma and MAO A inhibitors reduce glioma cell growth. Glioblastoma (GBM) is a common and most malignant brain tumor which is difficult to treat. Temozolomide (TMZ) is the current standard chemotherapy for glioma, but tumors usually become resistant and recur. So far, no effective therapy for TMZ-resistant glioma is available. Natural plant antimicrobial solution (PAMs) is a Chinese herbal medicine which has been used for decades without toxicity and has multiple medical functions including anti- inflammatory effects. Here, we report the effects of PAMs on glioblastoma growth. METHODS: The growth of TMZ -sensitive (U251S),-resistant (U251R) human glioma cells, and mouse glioma cell line GL-26 were assessed by MTS colorimetric assay, colony formation, and cell migration assays. Male C57BL/6 mice were implanted subcutaneously or intracranial with luciferase-positive mouse glioma GL-26 cells and treated with vehicle; MAO A inhibitor clorgyline (10 mg/kg); TMZ (1 mg/kg); PAMs (48 mg/kg) alone or in combination with TMZ (1 mg/kg) for 14 days. At the end of the treatment, mice were sacrificed, MAO A catalytic activity in tumors was measured, and tumor sizes were determined by imaging and weight. RESULTS: These results show that PAMs inhibits MAO A catalytic activity in all three glioma cell lines studied U251S, U251R, and GL-26. PAMs reduced glioma growth and has greater effects in combination with low dose of TMZ than PAMS or TMZ alone in all three cell lines as shown by MTS, colony formation, and cell migration assays. Using the subcutaneous or intracranial GL-26 glioma mouse model, PAMs reduced the tumor growth and MAO A activity, similar to the MAO A inhibitor clorgyline. Combining PAMs with non-toxic dose TMZ increased survival to a greater extent than those of PAMs or TMZ alone. CONCLUSIONS: This is the first study which suggests that PAMs alone or co-administration with low doses of TMZ may be a potential adjuvant to reduce the toxicity of TMZ and to abrogate drug resistance for the effective treatment of glioma.
Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Glioblastoma/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/enzimologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Quimioterapia Combinada , Glioblastoma/enzimologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Temozolomida/farmacologiaRESUMO
The possible application of BRAF-targeted therapy in brain tumors is growing continuously. We have analyzed clinical strategies that address BRAF activation in primary brain tumors and verified current recommendations regarding screening for BRAF mutations. There is preliminary evidence for a range of positive responses in certain brain tumor types harboring the BRAF V600E mutation. National Comprehensive Cancer Network Guidelines for central nervous system cancers recommend screening for the BRAF V600E mutation in pilocytic astrocytoma, pleomorphic xanthoastrocytoma, and ganglioglioma. We suggest additional testing in glioblastomas WHO grade IV below the age of 30 years, especially those with epithelioid features, papillary craniopharyngiomas, and pediatric low-grade astrocytomas. BRAF-targeted therapy should be limited to the setting of a clinical trial. If the patient harboring a V600E mutation does not qualify for a trial, multimodality treatment is recommended. Dual inhibition of both RAF and MEK is expected to provide more potent and durable effects than anti-BRAF monotherapy. First-generation RAF inhibitors should be avoided. Gain-of-function mutations of EGFR and KIAA fusions may compromise BRAF-targeted therapy. BRAF alterations that result in MAPK pathway activation are common events in several types of brain tumors. BRAF V600E mutation emerges as a promising molecular target. The proposed algorithm was designed to help oncologists to provide the best therapeutic options for brain tumor patients.
Assuntos
Neoplasias Encefálicas/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Algoritmos , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Feminino , Humanos , MasculinoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Xihuang pill, as a famous traditional Chinese medicine formula, is used for tumor treatment in China. The anti-tumor activities and mechanisms of Xihuang pill still remain unclear. AIM OF THE STUDY: The Akt/mTOR signaling pathway plays an important role in mediating cell proliferation and apoptosis in glioblastoma. This study aimed to investigate whether Xihuang pill could potentiate temozolomide-induced apoptosis of glioblastoma U87 and U251â¯cells in vivo and its underlying mechanisms related to Akt/mTOR pathway. MATERIALS AND METHODS: Human glioblastoma U87 and U251 xenograft models were established. Immunocytochemistry and Western blot were performed to evaluate the anti-proliferative effect, apoptosis and Akt/mTOR signaling mediators. RESULTS: The results showed that Xihuang pill (0.5, 1â¯g/kg) or temozolomide (10â¯mg/kg) treatment alone inhibited tumor growth in glioblastoma U87 and U251 xenografts. When Xihuang pill (1â¯g/kg) and temozolomide (10â¯mg/kg) were co-administrated, the activities of antitumor growth were markedly increased. Meanwhile, Xihuang pill (0.5, 1â¯g/kg) or temozolomide (10â¯mg/kg) treatment alone decreased the levels of Ki67 and PCNA expression in glioblastoma U87 and U251 xenografts. In combination treatment group, the inhibitory effects on Ki67 and PCNA expression were significantly enhanced in glioblastoma U87 and U251 xenografts compared to temozolomide treatment alone. Examining the apoptotic index by TUNEL assay showed similar results. Furthermore, Xihuang pill markedly down-regulated the Bcl-2/Bax ratio and inhibited the activation of Akt/mTOR pathway in glioblastoma U87 and U251 xenografts. In addition, no significant signs of toxicities were related to Xihuang pill and/or temozolomide treatment. CONCLUSIONS: The present study suggested that Xihuang pill might potentiate temozolomide-induced apoptosis of glioblastoma cells in vivo through inhibiting Akt/mTOR-dependent pathway.
Assuntos
Antineoplásicos Alquilantes/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Glioblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Temozolomida/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Antígeno Ki-67/metabolismo , Camundongos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/metabolismoRESUMO
The identification of signaling pathways that are involved in gliomagenesis is crucial for targeted therapy design. In this study we assessed the biological and therapeutic effect of ingenol-3-dodecanoate (IngC) on glioma. IngC exhibited dose-time-dependent cytotoxic effects on large panel of glioma cell lines (adult, pediatric cancer cells, and primary cultures), as well as, effectively reduced colonies formation. Nevertheless, it was not been able to attenuate cell migration, invasion, and promote apoptotic effects when administered alone. IngC exposure promoted S-phase arrest associated with p21CIP/WAF1 overexpression and regulated a broad range of signaling effectors related to survival and cell cycle regulation. Moreover, IngC led glioma cells to autophagy by LC3B-II accumulation and exhibited increased cytotoxic sensitivity when combined to a specific autophagic inhibitor, bafilomycin A1. In comparison with temozolomide, IngC showed a mean increase of 106-fold in efficacy, with no synergistic effect when they were both combined. When compared with a known compound of the same class, namely ingenol-3-angelate (I3A, Picato®), IngC showed a mean 9.46-fold higher efficacy. Furthermore, IngC acted as a potent inhibitor of protein kinase C (PKC) activity, an emerging therapeutic target in glioma cells, showing differential actions against various PKC isotypes. These findings identify IngC as a promising lead compound for the development of new cancer therapy and they may guide the search for additional PKC inhibitors.
Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/enzimologia , Diterpenos/farmacologia , Euphorbia/química , Glioma/enzimologia , Proteína Quinase C/antagonistas & inibidores , Antineoplásicos/química , Autofagia , Neoplasias Encefálicas/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diterpenos/química , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/tratamento farmacológico , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Vitamin D is a fat-soluble vitamin and plays an important role in calcium absorption and bone development, whose lack can cause a variety of diseases, including cancer. Human epidemiological studies suggested that vitamin D3 deficiency might increase glioma incidence, but molecular mechanism is less understood. In this study, we show that 1,25-dihydroxyvitamin D3 (the active form of vitamin D3) induces senescence of glioma cells and increases the expression of senescence markers, INK4A and cyclin-dependent kinase inhibitor 1A (CDKN1A). 1,25-Dihydroxyvitamin D3 also upregulates the expression of histone demethylase, KDM6B. Knockdown of KDM6B attenuates 1,25-dihydroxyvitamin D3-induced senescence and upregulation of INK4A and CDKN1A. KDM6B promotes the transcription of INK4A by eliminating the trimethylation of repressive marker H3K27me3 near its promoter. This study reveals a new regulatory mechanism involved in vitamin D3 inhibition on gliomas, which is beneficial to prevention and adjuvant therapy of glioma.
Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Calcitriol/farmacologia , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Glioma/tratamento farmacológico , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioma/enzimologia , Glioma/genética , Glioma/patologia , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Regiões Promotoras Genéticas , Transdução de SinaisRESUMO
Objective: To analyze the clinicopathological characteristics and prognosis of diffuse midline glioma (DMG) with H3K27M mutation. Methods: Thirty cases of DMG were collected in Guangdong Sanjiu Brain Hospital from October 2016 to May 2018. The patients' clinicopathological data including age, tumor site and histological grade, treatment and follow-up data were collected and analyzed. Results: There were 21 males and 9 females, with a mean age of 26 years (range 5-53 years). Fourteen tumors were located in thalamus, 12 in brainstem (one involved both thalamus and brainstem), and one each in hypothalamus, fourth ventricle, and sellar region, respectively. Two cases presented as diffuse intracranial lesions. Three cases (10.0%) were of WHO grade â , 10 cases (33.3%) were grade â ¡, eight cases (26.7%) were grade â ¢, and nine cases (30.0%) were grade â £.All patients with gradeâ tumors were older than 20 years. Histologically, all were pilocytic astrocytoma-like. Immunohistochemical staining demonstrated that all tumors were IDH1 negative. Twenty-eight tumors showed diffuse expression of H3K27M, and two showed focal expression. Twenty-one tumors(100.0%, 21/21) showed absent expression of H3K27me3. Sixteen tumors (57.1%, 16/28) showed strongly positive expression of p53, and ATRX was negative in eight tumors (38.1%, 8/21). The Ki-67 proliferation index ranged from 5% to 40%. Eight cases (including two cases of H3K27M expression of individual cells) showed K27M mutation in H3F3A gene. Intracranial and spinal cord dissemination occurred in six cases (20.0%, 6/30). Median progression-free survival (PFS) was 9.5 months and median overall survival (OS) was 34 months. Mean PFS was 11.2 months and mean OS was 24.3 months. Compared with adults (>20 years old), children/adolescents (no more than 20 years old) had significantly shorter median OS (8 months vs. 34 months, P=0.013). There was no significant difference in PFS and OS between DMGs located in the brain stem/thalamus and other sites within midline (P>0.05). There was no significant difference in PFS and OS between WHO grade â DMGs and WHO grade â ¡-â £ DMGs (P>0.05). Conclusions: DMGs occur more commonly in children and adolescents with male predominance. DMGs present with WHO â -â £ tumors morphologically, and pilocytic astrocytoma-like lesions with WHO â are more common in adults. Expression of H3K27M but not H3K27me3 is helpful for diagnosis of DMG. The prognosis of children/adolescents is significantly worse than that of adults, whereas histological grade and tumor location do not affect prognosis.
Assuntos
Neoplasias Encefálicas/enzimologia , Glioma/enzimologia , Histona Desmetilases com o Domínio Jumonji/genética , Mutação , Adolescente , Adulto , Fatores Etários , Astrocitoma/química , Astrocitoma/enzimologia , Astrocitoma/mortalidade , Astrocitoma/patologia , Neoplasias Encefálicas/química , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias do Tronco Encefálico/química , Neoplasias do Tronco Encefálico/enzimologia , Neoplasias do Tronco Encefálico/patologia , Criança , Pré-Escolar , Feminino , Glioma/química , Glioma/mortalidade , Glioma/patologia , Histonas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Tálamo , Adulto JovemRESUMO
Stress is integral to tumour evolution, and cancer cell survival depends on stress management. We found that cancer-associated stress chronically activates the bioenergetic sensor AMP kinase (AMPK) and, to survive, tumour cells hijack an AMPK-regulated stress response pathway conserved in normal cells. Analysis of The Cancer Genome Atlas data revealed that AMPK isoforms are highly expressed in the lethal human cancer glioblastoma (GBM). We show that AMPK inhibition reduces viability of patient-derived GBM stem cells (GSCs) and tumours. In stressed (exercised) skeletal muscle, AMPK is activated to cooperate with CREB1 (cAMP response element binding protein-1) and promote glucose metabolism. We demonstrate that oncogenic stress chronically activates AMPK in GSCs that coopt the AMPK-CREB1 pathway to coordinate tumour bioenergetics through the transcription factors HIF1α and GABPA. Finally, we show that adult mice tolerate systemic deletion of AMPK, supporting the use of AMPK pharmacological inhibitors in the treatment of GBM.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias Encefálicas/enzimologia , Proliferação de Células , Metabolismo Energético , Glioblastoma/enzimologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Animais , Antineoplásicos/farmacologia , Apoptose , Autofagia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Fator de Transcrição de Proteínas de Ligação GA/genética , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Carga Tumoral , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Glioblastoma multiforme (GBM) is a highly infiltrative brain cancer with a dismal prognosis. High levels of brain fatty acid binding protein (B-FABP) are associated with increased migration/infiltration in GBM cells, with a high ratio of arachidonic acid (AA) to docosahexaenoic acid (DHA) driving B-FABP-mediated migration. Since several protein kinase Cs (PKCs) are overexpressed in GBM and linked to migration, we explored a possible relationship between B-FABP and levels/activity of different PKCs, as a function of AA and DHA supplementation. We report that ectopic expression of B-FABP in U87 cells alters the levels of several PKCs, particularly PKCζ. Upon analysis of PKCζ RNA levels in a panel of GBM cell lines and patient-derived GBM neurospheres, we observed a trend towards moderate positive correlation (r = 0.624, p = 0.054) between B-FABP and PKCζ RNA levels. Analysis of PKC activity in U87 GBM cells revealed decreased typical PKC activity (23.4%) in B-FABP-expressing cells compared with nonexpressing cells, with no difference in novel and atypical PKC activities. AA and DHA modulated both conventional and atypical PKC activities in a B-FABP-dependent manner, but had no effect on novel PKC activity. These results suggest that conventional and atypical PKCs are potential downstream effectors of B-FABP/fatty acid-mediated alterations in GBM growth properties.
Assuntos
Ácido Araquidônico/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Glioblastoma/tratamento farmacológico , Proteína Quinase C/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/enzimologia , Glioblastoma/patologia , Humanos , Proteína Quinase C/genética , Transdução de Sinais/efeitos dos fármacosRESUMO
The mitochondrial phospholipid cardiolipin (CL) has been implicated with mitochondrial morphology, function, and cell proliferation. Changes in CL are often paralleled by changes in the lipid environment of mitochondria that may contribute to mitochondrial function and proliferation. This study aimed to separate the effects of CL content and CL composition from cellular free fatty acid distribution on bioenergetics and proliferation in C6 glioma cells. To this end, cardiolipin synthase and the CL remodelling enzyme, tafazzin, were knocked-down by siRNA in C6 cells. After 72â¯h of cultivation, we analysed CL composition by means of LC/MS/MS, distribution of cellular fatty acids by means of gas chromatography, and determined oxygen consumption and proliferation. Knock-down of cardiolipin synthase affected the cellular CL content in the presence of linoleic acid (LA) in the culture medium. Knock-down of tafazzin had no consequence with respect to the pattern of cellular fatty acids but caused a decrease in cell proliferation. It significantly changed the distribution of molecular CL species, increased CL content, decreased oxygen consumption, and decreased cell proliferation when cultured in the presence of linoleic acid (LA). The addition of linoleic acid to the culture medium caused significant changes in the pattern of cellular fatty acids and the composition of molecular CL species. These data suggest that tafazzin is required for efficient bioenergetics and for proliferation of glioma cells. Supplementation of fatty acids can be a powerful tool to direct specific changes in these parameters.
Assuntos
Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Glioma/enzimologia , Glioma/patologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Aciltransferases , Animais , Cardiolipinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Citrato (si)-Sintase/metabolismo , Técnicas de Silenciamento de Genes , Ácido Linoleico/metabolismo , Proteínas de Membrana/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Transferases (Outros Grupos de Fosfato Substituídos)/genéticaRESUMO
The present study is the first investigation of the inhibitory effect of Rhaponticum carthamoides transformed roots (TR) extract on the proliferation of grade II and III human glioma cells. TR extract showed the cytotoxic effect and inhibited the colony formation of both glioma cell lines in dose-dependent manner. The root extract induced apoptosis by increasing of the reactive oxygen species (about threefold compared to the control cells) leading to a disruption of mitochondrial membrane potential. Additionally, the mRNA levels of the apoptotic factors such as Bax, Tp53, caspase-3, and caspase-9 were observed to increase. These results indicate that the TR extract possesses anticancer activity by inhibiting glioma cell proliferation and inducing apoptotic cell death, and may be used as a promising anticancer agent.
Assuntos
Neoplasias Encefálicas/patologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Glioma/patologia , Leuzea/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/metabolismo , Caspase 3/genética , Caspase 9/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática , Glioma/enzimologia , Glioma/metabolismo , Humanos , Leuzea/crescimento & desenvolvimento , Leuzea/metabolismo , Pessoa de Meia-Idade , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proteína Supressora de Tumor p53/efeitos dos fármacos , Proteína X Associada a bcl-2/genéticaRESUMO
Mutations in codon 132 of isocitrate dehydrogenase (IDH) 1 are frequent in diffuse glioma, acute myeloid leukemia, chondrosarcoma and intrahepatic cholangiocarcinoma. These mutations result in a neomorphic enzyme specificity which leads to a dramatic increase of intracellular D-2-hydroxyglutarate (2-HG) in tumor cells. Therefore, mutant IDH1 protein is a highly attractive target for inhibitory drugs. Here, we describe the development and properties of BAY 1436032, a pan-inhibitor of IDH1 protein with different codon 132 mutations. BAY 1436032 strongly reduces 2-HG levels in cells carrying IDH1-R132H, -R132C, -R132G, -R132S and -R132L mutations. Cells not carrying IDH mutations were unaffected. BAY 1436032 did not exhibit toxicity in vitro or in vivo. The pharmacokinetic properties of BAY 1436032 allow for oral administration. In two independent experiments, BAY 1436032 has been shown to significantly prolong survival of mice intracerebrally transplanted with human astrocytoma carrying the IDH1R132H mutation. In conclusion, we developed a pan-inhibitor targeting tumors with different IDH1R132 mutations.
Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Astrocitoma/tratamento farmacológico , Benzimidazóis/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Compostos de Anilina/química , Compostos de Anilina/farmacocinética , Compostos de Anilina/toxicidade , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Astrocitoma/enzimologia , Astrocitoma/genética , Benzimidazóis/química , Benzimidazóis/farmacocinética , Benzimidazóis/toxicidade , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/toxicidade , Escherichia coli , Feminino , Glutaratos/metabolismo , Células HEK293 , Humanos , Isocitrato Desidrogenase/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sarcoma/tratamento farmacológico , Sarcoma/enzimologia , Sarcoma/genética , Células Sf9 , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Targeting the vascular endothelial growth factor signaling axis in glioblastoma inevitably leads to tumor recurrence and a more aggressive phenotype. Therefore, other angiogenic pathways, like the angiopoietin/tunica interna endothelial cell kinase (TIE) signaling axis, have become additional targets for therapeutic intervention. Here, we explored whether targeting the receptor tyrosine kinase TIE-2 using a novel, highly potent, orally available small molecule TIE-2 inhibitor (BAY-826) improves tumor control in syngeneic mouse glioma models. BAY-826 inhibits TIE-2 phosphorylation in vitro and in vivo as demonstrated by suppression of Angiopoietin-1- or Na3 VO4 -induced TIE-2 phosphorylation in glioma cells or extracts of lungs from BAY-826-treated mice. There was a trend toward prolonged survival upon single-agent treatment in two of four models (SMA-497 and SMA-540) and there was a significant survival benefit in one model (SMA-560). Co-treatment with BAY-826 and irradiation was ineffective in one model (SMA-497), but provided synergistic prolongation of survival in another (SMA-560). Decreased vessel densities and increased leukocyte infiltration were observed, but might be independent processes as the effect was also observed in single treatment modalities. These data demonstrate that TIE-2 inhibition may improve tumor response to treatment in highly vascularized tumors such as glioblastoma.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/enzimologia , Modelos Animais de Doenças , Glioma/enzimologia , Receptor TIE-2/antagonistas & inibidores , Receptor TIE-2/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Glioma/tratamento farmacológico , Isoenxertos , Camundongos , Camundongos Endogâmicos C57BL , Resultado do Tratamento , Carga TumoralRESUMO
Standard interventions for glioma include surgery, radiation and chemotherapies but the prognosis for malignant cases such as glioblastoma multiforme remain grim. Even with targeted therapeutic agent, bevacitumab, malignant glioma often develops resistance and recurrence. Thus, developing alternative interventions (therapeutic targets, biomarkers) is urgently required. Bruton's tyrosine kinase (Btk) has been long implicated in B cell malignancies but surprisingly it has recently been shown to also play a tumorigenic role in solid tumors such as ovarian and prostate cancer. Bioinformatics data indicates that Btk is significantly higher in clinical glioma samples as compared to normal brain cells and Btk expression level is associated with stage progression. This prompts us to investigate the potential role of Btk as a therapeutic target for glioma. Here, we demonstrate Btk expression is associated with GBM tumorigenesis. Down-regulation of Btk in GBM cell lines showed a significantly reduced abilities in colony formation, migration and GBM sphere-forming potential. Mechanistically, Btk-silenced cells showed a concomitant reduction in the expression of CD133 and Akt/mTOR signaling. In parallel, Ibrutinib (a Btk inhibitor) treatment led to a similar anti-tumorigenic response. Using xenograft mouse model, tumorigenesis was significantly reduced in Btk-silenced or ibrutinib-treated mice as compared to control counterparts. Finally, our glioma tissue microarray analysis indicated a higher Btk staining in the malignant tumors than less malignant and normal brain tissues. Collectively, Btk may represent a novel therapeutic target for glioma and ibrunitib may be used as an adjuvant treatment for malignant GBM.
Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Adenina/análogos & derivados , Adulto , Tirosina Quinase da Agamaglobulinemia , Idoso , Animais , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Feminino , Glioma/enzimologia , Glioma/patologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fenótipo , Piperidinas , Proteínas Tirosina Quinases/genética , Pirazóis/farmacologia , Pirimidinas/farmacologiaRESUMO
Oviductus Ranae is the dry oviducts of Rana temporaria chensinensis, and it has been reported to have a range of biological activities. This study aimed to investigate the effects of Oviductus Ranae protein hydrolysate (ORPH) on human glioma C6 cell proliferation and apoptosis in vitro and in vivo. Following in vitro treatment, cell viability and colony formation assays showed that ORPH inhibited C6 cell proliferation. In addition, the results of western blotting also demonstrated that ORPH effectively regulated the expression of the apoptosis related proteins, cleaved caspase-3, Bax and Bcl-2, DNA staining and flow cytometry analysis demonstrated that ORPH significantly promoted apoptosis in this cell line, a finding that was confirmed in vivo using terminal deoxynucleotidyl transferase dUTP nick end labeling. Further investigation demonstrated that ORPH increased apoptosis by modulating the release of inflammatory cytokines and the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway; this was demonstrated using a PI3K/AKT inhibitor (NVP-BEZ235). In summary, the present study suggested that ORPH promoted apoptosis and inhibited glioma cell proliferation by influencing the PI3K/AKT signaling pathway.
Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Materia Medica/farmacologia , Hidrolisados de Proteína/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/enzimologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Glioma/enzimologia , Humanos , Inflamação/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND: Poor central nervous system penetration of cytotoxic drugs due to the blood brain barrier (BBB) is a major limiting factor in the treatment of brain tumors. Most recurrent glioblastomas (GBM) occur within the peritumoral region. In this study, we describe a hyperthemic method to induce temporary disruption of the peritumoral BBB that can potentially be used to enhance drug delivery. METHODS: Twenty patients with probable recurrent GBM were enrolled in this study. Fourteen patients were evaluable. MRI-guided laser interstitial thermal therapy was applied to achieve both tumor cytoreduction and disruption of the peritumoral BBB. To determine the degree and timing of peritumoral BBB disruption, dynamic contrast-enhancement brain MRI was used to calculate the vascular transfer constant (Ktrans) in the peritumoral region as direct measures of BBB permeability before and after laser ablation. Serum levels of brain-specific enolase, also known as neuron-specific enolase, were also measured and used as an independent quantification of BBB disruption. RESULTS: In all 14 evaluable patients, Ktrans levels peaked immediately post laser ablation, followed by a gradual decline over the following 4 weeks. Serum BSE concentrations increased shortly after laser ablation and peaked in 1-3 weeks before decreasing to baseline by 6 weeks. CONCLUSIONS: The data from our pilot research support that disruption of the peritumoral BBB was induced by hyperthemia with the peak of high permeability occurring within 1-2 weeks after laser ablation and resolving by 4-6 weeks. This provides a therapeutic window of opportunity during which delivery of BBB-impermeant therapeutic agents may be enhanced. TRIAL REGISTRATION: ClinicalTrials.gov NCT01851733.
Assuntos
Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/cirurgia , Glioblastoma/metabolismo , Glioblastoma/cirurgia , Hipertermia Induzida , Terapia a Laser/métodos , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/enzimologia , Meios de Contraste/metabolismo , Glioblastoma/diagnóstico , Glioblastoma/enzimologia , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Fosfopiruvato Hidratase/sangue , Cirurgia Assistida por ComputadorRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Hedyotis diffusa Willd (Rubiaceae) (HDW) has been widely applied for the treatment of tumors, inflammation and toxication in traditional Chinese medicine. The antitumor effect of HDW on glioblastoma has been rarely reported. We aim to evaluate the activity of this extract and explore the underlying mechanism in U87 human glioblastoma cell line. MATERIALS AND METHODS: Cytotoxicity of HDW extract on U87 cells was measured by MTT assay. Apoptosis, cell cycle arrest and mitochondrial membrane potential (MMP) collapse induced by HDW extract were determined by flow cytometry. Caspase activity was analyzed based on colorimetric assay with a microplate spectrophotometer. Protein expression was examined by Western blot. RESULTS: HDW extract suppressed U87 cells growth in a dose- and time-dependent manner. Flow cytometry showed that HDW extract induced significant apoptosis, S/G2-M phase arrest and MMP collapse in U87 cells. Furthermore, dose-dependent activation of caspase-3, Bcl-2, Bax and ERK was observed with HDW extract treatment. Decreased Bcl-2/Bax ratio and Akt suppression were readily found as well. CONCLUSIONS: Induction of mitochondria-mediated apoptosis played an essential role in antitumor activity of HDW extract in U87 cells, in which ERKs and Akt signaling proteins were also involved. These findings contributed to the feasibility of using HDW extract in glioblastoma treatment and the understanding of the molecular mechanism.
Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glioblastoma/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rubiaceae/química , Neoplasias Encefálicas/enzimologia , Linhagem Celular Tumoral , Citometria de Fluxo , Glioblastoma/enzimologia , Humanos , Extratos VegetaisRESUMO
Glioblastoma is a highly aggressive type of brain cancer which currently has limited options for treatment. It is imperative to develop combination therapies that could cause apoptosis in glioblastoma. The aim of this study was to characterize the affect of modified ICA-1, a PKC-iota inhibitor, on the growth pattern of various glioblastoma cell lines. T98G and U87 glioblastoma cells were treated with ICA-1 alone and the absolute cell numbers of each group were determined for cell growth expansion analysis, cell viability analysis, and cell death analysis. Low dose ICA-1 treatment alone significantly inhibited cell growth expansion of high density glioblastoma cells without inducing cell death. However, the high dose ICA-1 treatment regimen provided significant apoptosis for glioblastoma cells. Furthermore, this study was conducted to use a two layer molecular level approach for treating glioblastoma cells with ICA-1 plus an apoptosis agent, tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL), to induce apoptosis in such chemo-refractory cancer cells. Following ICA-1 plus TRAIL treatment, apoptosis was detected in glioblastoma cells via the TUNEL assay and via flow cytometric analysis using Annexin-V FITC/PI. This study offers the first evidence for ICA-1 alone to inhibit glioblastoma cell proliferation as well as the novel combination of ICA-1 with TRAIL to cause robust apoptosis in a caspase-3 mediated mechanism. Furthermore, ICA-1 plus TRAIL simultaneously modulates down-regulation of PKC-iota and c-Jun.