Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 57: 377-384, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30831486

RESUMO

BACKGROUND: Neurofibromatosis type 1 (NF1) is one of the most common hereditary neurocutaneous disorders. The malignant peripheral nerve sheath tumor (MPNST), transformed from NF1 related plexiform neurofibroma, is a rapidly growing and highly invasive tumor. No effective chemotherapeutic agent is currently available. Calebin-A is a derivative from turmeric Curcuma longa. Given the anti-inflammatory and anticancer potentials of curcumin, whether Calebin-A also had the tumoricidal effect upon MPNST cells is still elusive. PURPOSE: To determine whether Calebin-A has the potential for anti-MPNST effect. METHODS: The MTT and FACS analysis of normal Schwann (HSC) and MPNST cells have been employed to determine the tumoricidal effect of Calebin-A. The expression of the signal pathway molecules was assessed by Western blotting. The CHIP with quantitative PCR assay was performed to quantify the promoter DNA binding to acetylated histone 3 (acetyl H3). The enzyme activities of histone acetyltransferase (HAT) and deacetylase (HDAC) have been evaluated by commercial kits. The measurements of tumor size of the xenograft mouse model were also performed. RESULTS: Calebin-A inhibited the proliferation of MPNST and primary neurofibroma cells in a dose-dependent manner. The flow cytometry analysis of the MPNST cells after treatment of 25 µm of Calebin-A demonstrated an increase of population in the G0/G1 phase but decrease in G2/M phase. Before treatment, the expression of Axl, Tyro3, and acetyl H3 was significantly higher in MPNST cells when compared to HSC. The expression of phosphorylated-AKT, -ERK1/2, survivin, hTERT, and acetyl H3 proteins were reduced after treatment. The CHIP assay shows the promoter DNA copies of survivin (BRIC5) and hTERT genes are significantly reduced post-treatment. The enzyme activity of HAT was significantly reduced, but not that of HDAC. Two HAT inhibitors, epigallocatechin-3-gallate (EGCG) and anacardic acid (AA) have also demonstrated a significant inhibitory effect on MPNST cells. Finally, the measurements of tumor size showed a significant reduction of the xenograft tumors after treatment of Calebin-A. CONCLUSION: Both in vitro and in vivo studies showed Calebin-A could inhibit the proliferation of MPNST with suppression of survivin and hTERT. The reduced expression of these two factors might be through the epigenetic histone modification resulting from the decreased activity of HAT.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cinamatos/farmacologia , Histona Acetiltransferases/metabolismo , Monoterpenos/farmacologia , Neoplasias de Bainha Neural/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Histona Desacetilases/metabolismo , Humanos , Masculino , Camundongos Endogâmicos BALB C , Neoplasias de Bainha Neural/enzimologia , Neoplasias de Bainha Neural/patologia , Neurofibroma Plexiforme/patologia , Neurofibromatose 1/patologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Survivina/genética , Survivina/metabolismo , Telomerase/genética , Telomerase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Oncogene ; 24(14): 2367-74, 2005 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-15735744

RESUMO

Neurofibromatosis type 1 (NF1) is a common genetic disorder of the nervous system resulting in neurofibromas and malignant peripheral nerve sheath tumors (MPNST). In this study, we report the modulation of murine and human MPNST cell growth by the fatty acids docosahexaenoic acid (DHA) and arachidonic acid (AA). DHA demonstrated a tendency to stimulate cell growth at low doses and induce apoptosis at high doses, paralleled by the activation of ERK and caspase-3. Furthermore, high-dose DHA reversed the stimulation of MPNST cell growth by a number of growth factors suggested to have a pathogenic effect in NF1 and inhibited MPNST growth in vivo. AA was found to have a reciprocal activity in vitro, stimulating MPNST cell growth at comparable concentrations and reducing DHA activation of ERK. These findings introduce fatty acids as a possible regulator of MPNST development in NF1 patients.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Neoplasias de Bainha Neural/patologia , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Imuno-Histoquímica , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias de Bainha Neural/enzimologia , Fosforilação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA