Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0299911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451925

RESUMO

INTRODUCTION: The functional evaluation of auditory-nerve activity in spontaneous conditions has remained elusive in humans. In animals, the frequency analysis of the round-window electrical noise recorded by means of electrocochleography yields a frequency peak at around 900 to 1000 Hz, which has been proposed to reflect auditory-nerve spontaneous activity. Here, we studied the spectral components of the electrical noise obtained from cochlear implant electrocochleography in humans. METHODS: We recruited adult cochlear implant recipients from the Clinical Hospital of the Universidad de Chile, between the years 2021 and 2022. We used the AIM System from Advanced Bionics® to obtain single trial electrocochleography signals from the most apical electrode in cochlear implant users. We performed a protocol to study spontaneous activity and auditory responses to 0.5 and 2 kHz tones. RESULTS: Twenty subjects including 12 females, with a mean age of 57.9 ± 12.6 years (range between 36 and 78 years) were recruited. The electrical noise of the single trial cochlear implant electrocochleography signal yielded a reliable peak at 3.1 kHz in 55% of the cases (11 out of 20 subjects), while an oscillatory pattern that masked the spectrum was observed in seven cases. In the other two cases, the single-trial noise was not classifiable. Auditory stimulation at 0.5 kHz and 2.0 kHz did not change the amplitude of the 3.1 kHz frequency peak. CONCLUSION: We found two main types of noise patterns in the frequency analysis of the single-trial noise from cochlear implant electrocochleography, including a peak at 3.1 kHz that might reflect auditory-nerve spontaneous activity, while the oscillatory pattern probably corresponds to an artifact.


Assuntos
Implante Coclear , Implantes Cocleares , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Estimulação Acústica/métodos , Audiometria de Resposta Evocada/métodos , Nervo Coclear/fisiologia , Ruído , Masculino
2.
J Acoust Soc Am ; 153(4): 2376, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37092943

RESUMO

The auditory nerve (AN) compound action potential (CAP) is an important tool for assessing auditory disorders and monitoring the health of the auditory periphery during surgical procedures. The CAP has been mathematically conceptualized as the convolution of a unit response (UR) waveform with the firing rate of a population of AN fibers. Here, an approach for predicting experimentally recorded CAPs in humans is proposed, which involves the use of human-based computational models to simulate AN activity. CAPs elicited by clicks, chirps, and amplitude-modulated carriers were simulated and compared with empirically recorded CAPs from human subjects. In addition, narrowband CAPs derived from noise-masked clicks and tone bursts were simulated. Many morphological, temporal, and spectral aspects of human CAPs were captured by the simulations for all stimuli tested. These findings support the use of model simulations of the human CAP to refine existing human-based models of the auditory periphery, aid in the design and analysis of auditory experiments, and predict the effects of hearing loss, synaptopathy, and other auditory disorders on the human CAP.


Assuntos
Perda Auditiva , Ruído , Humanos , Potenciais de Ação/fisiologia , Estimulação Acústica , Simulação por Computador , Nervo Coclear , Limiar Auditivo/fisiologia , Cóclea
3.
Int J Audiol ; 62(2): 172-181, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35130459

RESUMO

OBJECTIVE: The auditory nerve overlapped waveform response (ANOW), a new measure that can be recorded non-invasively from humans, holds promise for providing more accurate assessment of low frequency hearing thresholds than currently used objective measures. This research aims to investigate the robustness and the nature of the ANOW response in humans. DESIGN: Repeated within-session recordings of the ANOW response using low-frequency Tone Bursts (TBs) were obtained at multiple stimulus levels. ANOW's absolute amplitude and phase locking value (PLV) measures were analysed to obtain normative data and to test the reliability of the ANOW response. STUDY SAMPLE: Thirteen normal hearing adults within the age range of 25 to 40 years. RESULTS: ANOW response was obtained to both 250 Hz and 500 Hz TBs and was traced down to 30-40 dB nHL. ANOW response showed significantly higher amplitude and stronger phase locking using 250 Hz TB compared to 500 Hz TB. High degree of test retest reliability of the ANOW response was found using 250 Hz TB at presentation levels higher than 40 dB nHL. CONCLUSIONS: ANOW response is recordable noninvasively using low-frequency TBs and shows higher robustness as the stimulus frequency decreases.


Assuntos
Audiometria de Resposta Evocada , Audição , Humanos , Adulto , Estimulação Acústica , Reprodutibilidade dos Testes , Limiar Auditivo/fisiologia , Audição/fisiologia , Nervo Coclear , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia
4.
J Assoc Res Otolaryngol ; 23(6): 835-858, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36333573

RESUMO

Cochlear implant (CI) recipients with preserved acoustic low-frequency hearing in the implanted ear are a growing group among traditional CI users who benefit from hybrid electric-acoustic stimulation (EAS). However, combined ipsilateral electric and acoustic stimulation also introduces interactions between the two modalities that can affect the performance of EAS users. A computational model of a single auditory nerve fiber that is excited by EAS was developed to study the interaction between electric and acoustic stimulation. Two existing models of sole electric or acoustic stimulation were coupled to simulate responses to combined EAS. Different methods of combining both models were implemented. In the coupled model variant, the refractoriness of the simulated fiber leads to suppressive interaction between electrically evoked and acoustically evoked spikes as well as spontaneous activity. The second model variant is an uncoupled EAS model without electric-acoustic interaction. By comparing predictions between the coupled and the noninteracting EAS model, it was possible to infer electric-acoustic interaction at the level of the auditory nerve. The EAS model was used to simulate fiber populations with realistic inter-unit variability, where each unit was represented by the single-fiber model. Predicted thresholds and dynamic ranges, spike rates, latencies, jitter, and vector strengths were compared to empirical data. The presented EAS model provides a framework for future studies of peripheral electric-acoustic interaction.


Assuntos
Implante Coclear , Implantes Cocleares , Percepção da Fala , Estimulação Acústica/métodos , Limiar Auditivo/fisiologia , Nervo Coclear , Acústica , Estimulação Elétrica/métodos , Simulação por Computador , Percepção da Fala/fisiologia
5.
J Assoc Res Otolaryngol ; 23(6): 859-873, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36214911

RESUMO

The middle-ear system relies on a balance of mass and stiffness characteristics for transmitting sound from the external environment to the cochlea and auditory neural pathway. Phase is one aspect of sound that, when transmitted and encoded by both ears, contributes to binaural cue sensitivity and spatial hearing. The study aims were (i) to investigate the effects of middle-ear stiffness on the auditory brainstem neural encoding of phase in human adults with normal pure-tone thresholds and (ii) to investigate the relationships between middle-ear stiffness-induced changes in wideband acoustic immittance and neural encoding of phase. The auditory brainstem neural encoding of phase was measured using the auditory steady-state response (ASSR) with and without middle-ear stiffness elicited via contralateral activation of the middle-ear muscle reflex (MEMR). Middle-ear stiffness was quantified using a wideband acoustic immittance assay of acoustic absorbance. Statistical analyses demonstrated decreased ASSR phase lag and decreased acoustic absorbance with contralateral activation of the MEMR, consistent with increased middle-ear stiffness changing the auditory brainstem neural encoding of phase. There were no statistically significant correlations between stiffness-induced changes in wideband acoustic absorbance and ASSR phase. The findings of this study may have important implications for understanding binaural cue sensitivity and horizontal plane sound localization in audiologic and otologic clinical populations that demonstrate changes in middle-ear stiffness, including cochlear implant recipients who use combined electric and binaural acoustic hearing and otosclerosis patients.


Assuntos
Orelha Média , Testes Auditivos , Adulto , Humanos , Orelha Média/fisiologia , Testes Auditivos/métodos , Audição , Nervo Coclear , Tronco Encefálico , Limiar Auditivo/fisiologia , Estimulação Acústica
6.
J Assoc Res Otolaryngol ; 23(6): 803-814, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35948693

RESUMO

Neural coding of the slow amplitude fluctuations of sound (i.e., temporal envelope) is thought to be essential for speech understanding; however, such coding by the human auditory nerve is poorly understood. Here, neural coding of the temporal envelope by the human auditory nerve is inferred from measurements of the compound action potential in response to an amplitude modulated carrier (CAPENV) for modulation frequencies ranging from 20 to 1000 Hz. The envelope following response (EFR) was measured simultaneously with CAPENV from active electrodes placed on the high forehead and tympanic membrane, respectively. Results support the hypothesis that phase locking to higher modulation frequencies (> 80 Hz) will be stronger for CAPENV, compared to EFR, consistent with the upper-frequency limits of phase locking for auditory nerve fibers compared to auditory brainstem/cortex neurons. Future work is needed to determine the extent to which (1) CAPENV is a useful tool for studying how temporal processing of the auditory nerve is affected by aging, hearing loss, and noise-induced cochlear synaptopathy and (2) CAPENV reveals the relationship between auditory nerve temporal processing and perception of the temporal envelope.


Assuntos
Audiometria de Resposta Evocada , Nervo Coclear , Humanos , Estimulação Acústica/métodos , Ruído , Cóclea , Percepção Auditiva/fisiologia , Limiar Auditivo
7.
Eur Arch Otorhinolaryngol ; 279(6): 2845-2855, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34318333

RESUMO

OBJECTIVES: In pediatric audiology, objective techniques for hearing threshold estimation in infants and children with profound or severe hearing loss play a key role. Auditory brainstem responses (ABR) and auditory steady-state responses (ASSR) are available for frequency-dependent hearing threshold estimations and both techniques show strong correlations but sometimes with considerable differences. The aim of the study was to compare hearing threshold estimations in children with and without cochlear and cochlear nerve malformations. METHODS: Two groups with profound or severe hearing loss were retrospectively compared. In 20 ears (15 children) with malformation of the inner ear and/or cochlear nerve hypoplasia and a control group of 20 ears (11 children) without malformation, ABR were measured with the Interacoustics Eclipse EP25 ABR system® (Denmark) with narrow-band CE-chirps® at 500, 1000, 2000 and 4000 Hz and compared to ASSR at the same center frequencies under similar conditions. RESULTS: ABR and ASSR correlated significantly in both groups (r = 0.413 in malformation group, r = 0.82 in control group). The malformation group showed a significantly lower percentage of "equal" hearing threshold estimations than the control group. In detail, patients with isolated cochlear malformation did not differ significantly from the control group, whereas patients with cochlear nerve hypoplasia showed significantly greater differences. CONCLUSION: ABR and ASSR should be used jointly in the diagnostic approach in children with suspected profound or severe hearing loss. A great difference in hearing threshold estimation between these techniques could hint at the involvement of cochlear nerve or cochlear nerve hypoplasia itself.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico , Perda Auditiva , Estimulação Acústica/métodos , Limiar Auditivo/fisiologia , Criança , Nervo Coclear , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva/diagnóstico , Humanos , Lactente , Estudos Retrospectivos
8.
Nat Commun ; 12(1): 6403, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737329

RESUMO

The reticulotegmental nucleus (RtTg) has long been recognized as a crucial component of brainstem reticular formation (RF). However, the function of RtTg and its related circuits remain elusive. Here, we report a role of the RtTg in startle reflex, a highly conserved innate defensive behaviour. Optogenetic activation of RtTg neurons evokes robust startle responses in mice. The glutamatergic neurons in the RtTg are significantly activated during acoustic startle reflexes (ASR). Chemogenetic inhibition of the RtTg glutamatergic neurons decreases the ASR amplitudes. Viral tracing reveals an ASR neural circuit that the cochlear nucleus carrying auditory information sends direct excitatory innervations to the RtTg glutamatergic neurons, which in turn project to spinal motor neurons. Together, our findings describe a functional role of RtTg and its related neural circuit in startle reflexes, and demonstrate how the RF connects auditory system with motor functions.


Assuntos
Tronco Encefálico/fisiologia , Reflexo de Sobressalto/fisiologia , Estimulação Acústica , Animais , Vias Auditivas/fisiologia , Nervo Coclear/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
9.
J Neurophysiol ; 125(4): 1213-1222, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33656936

RESUMO

Permanent threshold elevation after noise exposure or aging is caused by loss of sensory cells; however, animal studies show that hair cell loss is often preceded by degeneration of the synapses between sensory cells and auditory nerve fibers. Silencing these neurons is likely to degrade auditory processing and may contribute to difficulties understanding speech in noisy backgrounds. Reduction of suprathreshold ABR amplitudes can be used to quantify synaptopathy in inbred mice. However, ABR amplitudes are highly variable in humans, and thus more challenging to use. Since noise-induced neuropathy preferentially targets fibers with high thresholds and low spontaneous rate and because phase locking to temporal envelopes is particularly strong in these fibers, measuring envelope following responses (EFRs) might be a more robust measure of cochlear synaptopathy. A recent auditory model further suggests that modulation of carrier tones with rectangular envelopes should be less sensitive to cochlear amplifier dysfunction and, therefore, a better metric of cochlear neural damage than sinusoidal amplitude modulation. In this study, we measure performance scores on a variety of difficult word-recognition tasks among listeners with normal audiograms and assess correlations with EFR magnitudes to rectangular versus sinusoidal modulation. Higher harmonics of EFR magnitudes evoked by a rectangular-envelope stimulus were significantly correlated with word scores, whereas those evoked by sinusoidally modulated tones did not. These results support previous reports that individual differences in synaptopathy may be a source of speech recognition variability despite the presence of normal thresholds at standard audiometric frequencies.NEW & NOTEWORTHY Recent studies suggest that millions of people may be at risk of permanent impairment from cochlear synaptopathy, the age-related and noise-induced degeneration of neural connections in the inner ear. This study examines electrophysiological responses to stimuli designed to improve detection of neural damage in subjects with normal hearing sensitivity. The resultant correlations with word recognition performance are consistent with a contribution of cochlear neural damage to deficits in hearing in noise abilities.


Assuntos
Envelhecimento/fisiologia , Audiometria , Limiar Auditivo/fisiologia , Cóclea/fisiologia , Nervo Coclear/fisiologia , Percepção da Fala/fisiologia , Estimulação Acústica , Adolescente , Adulto , Fatores Etários , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ruído , Reconhecimento Psicológico/fisiologia , Adulto Jovem
10.
PLoS Comput Biol ; 17(2): e1008155, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33617548

RESUMO

Significant scientific and translational questions remain in auditory neuroscience surrounding the neural correlates of perception. Relating perceptual and neural data collected from humans can be useful; however, human-based neural data are typically limited to evoked far-field responses, which lack anatomical and physiological specificity. Laboratory-controlled preclinical animal models offer the advantage of comparing single-unit and evoked responses from the same animals. This ability provides opportunities to develop invaluable insight into proper interpretations of evoked responses, which benefits both basic-science studies of neural mechanisms and translational applications, e.g., diagnostic development. However, these comparisons have been limited by a disconnect between the types of spectrotemporal analyses used with single-unit spike trains and evoked responses, which results because these response types are fundamentally different (point-process versus continuous-valued signals) even though the responses themselves are related. Here, we describe a unifying framework to study temporal coding of complex sounds that allows spike-train and evoked-response data to be analyzed and compared using the same advanced signal-processing techniques. The framework uses a set of peristimulus-time histograms computed from single-unit spike trains in response to polarity-alternating stimuli to allow advanced spectral analyses of both slow (envelope) and rapid (temporal fine structure) response components. Demonstrated benefits include: (1) novel spectrally specific temporal-coding measures that are less confounded by distortions due to hair-cell transduction, synaptic rectification, and neural stochasticity compared to previous metrics, e.g., the correlogram peak-height, (2) spectrally specific analyses of spike-train modulation coding (magnitude and phase), which can be directly compared to modern perceptually based models of speech intelligibility (e.g., that depend on modulation filter banks), and (3) superior spectral resolution in analyzing the neural representation of nonstationary sounds, such as speech and music. This unifying framework significantly expands the potential of preclinical animal models to advance our understanding of the physiological correlates of perceptual deficits in real-world listening following sensorineural hearing loss.


Assuntos
Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Modelos Neurológicos , Estimulação Acústica , Animais , Chinchila/fisiologia , Nervo Coclear/fisiologia , Biologia Computacional , Modelos Animais de Doenças , Perda Auditiva Neurossensorial/fisiopatologia , Perda Auditiva Neurossensorial/psicologia , Humanos , Modelos Animais , Dinâmica não Linear , Psicoacústica , Som , Análise Espaço-Temporal , Inteligibilidade da Fala/fisiologia , Percepção da Fala/fisiologia , Pesquisa Translacional Biomédica
11.
J Assoc Res Otolaryngol ; 22(1): 51-66, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33188506

RESUMO

Animal models of noise-induced hearing loss (NIHL) show a dramatic mismatch between cochlear characteristic frequency (CF, based on place of innervation) and the dominant response frequency in single auditory-nerve-fiber responses to broadband sounds (i.e., distorted tonotopy, DT). This noise trauma effect is associated with decreased frequency-tuning-curve (FTC) tip-to-tail ratio, which results from decreased tip sensitivity and enhanced tail sensitivity. Notably, DT is more severe for noise trauma than for metabolic (e.g., age-related) losses of comparable degree, suggesting that individual differences in DT may contribute to speech intelligibility differences in patients with similar audiograms. Although DT has implications for many neural-coding theories for real-world sounds, it has primarily been explored in single-neuron studies that are not viable with humans. Thus, there are no noninvasive measures to detect DT. Here, frequency following responses (FFRs) to a conversational speech sentence were recorded in anesthetized male chinchillas with either normal hearing or NIHL. Tonotopic sources of FFR envelope and temporal fine structure (TFS) were evaluated in normal-hearing chinchillas. Results suggest that FFR envelope primarily reflects activity from high-frequency neurons, whereas FFR-TFS receives broad tonotopic contributions. Representation of low- and high-frequency speech power in FFRs was also assessed. FFRs in hearing-impaired animals were dominated by low-frequency stimulus power, consistent with oversensitivity of high-frequency neurons to low-frequency power. These results suggest that DT can be diagnosed noninvasively. A normalized DT metric computed from speech FFRs provides a potential diagnostic tool to test for DT in humans. A sensitive noninvasive DT metric could be used to evaluate perceptual consequences of DT and to optimize hearing-aid amplification strategies to improve tonotopic coding for hearing-impaired listeners.


Assuntos
Estimulação Acústica/efeitos adversos , Nervo Coclear , Perda Auditiva Provocada por Ruído , Percepção da Fala , Animais , Chinchila , Nervo Coclear/lesões , Humanos , Masculino , Condução Nervosa , Ruído , Fala
12.
J Assoc Res Otolaryngol ; 22(1): 33-49, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33078291

RESUMO

Sensorineural hearing loss is a prevalent problem that adversely impacts quality of life by compromising interpersonal communication. While hair cell damage is readily detectable with the clinical audiogram, this traditional diagnostic tool appears inadequate to detect lost afferent connections between inner hair cells and auditory nerve (AN) fibers, known as cochlear synaptopathy. The envelope-following response (EFR) is a scalp-recorded response to amplitude modulation, a critical acoustic feature of speech. Because EFRs can have greater amplitude than wave I of the auditory brainstem response (ABR; i.e., the AN-generated component) in humans, the EFR may provide a more sensitive way to detect cochlear synaptopathy. We explored the effects of kainate- (kainic acid) induced excitotoxic AN injury on EFRs and ABRs in the budgerigar (Melopsittacus undulatus), a parakeet species used in studies of complex sound discrimination. Kainate reduced ABR wave I by 65-75 % across animals while leaving otoacoustic emissions unaffected or mildly enhanced, consistent with substantial and selective AN synaptic loss. Compared to wave I loss, EFRs showed similar or greater percent reduction following kainate for amplitude-modulation frequencies from 380 to 940 Hz and slightly less reduction from 80 to 120 Hz. In contrast, forebrain-generated middle latency responses showed no consistent change post-kainate, potentially due to elevated "central gain" in the time period following AN damage. EFR reduction in all modulation frequency ranges was highly correlated with wave I reduction, though within-animal effect sizes were greater for higher modulation frequencies. These results suggest that even low-frequency EFRs generated primarily by central auditory nuclei might provide a useful noninvasive tool for detecting synaptic injury clinically.


Assuntos
Nervo Coclear/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico , Ácido Caínico/toxicidade , Melopsittacus , Estimulação Acústica , Animais , Limiar Auditivo , Cóclea/efeitos dos fármacos , Cóclea/fisiologia , Nervo Coclear/lesões , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Perda Auditiva , Humanos , Qualidade de Vida
13.
PLoS One ; 15(5): e0233224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32428025

RESUMO

Epidemiological evidence shows an association between hearing loss and dementia in elderly people. However, the mechanisms that connect hearing impairments and cognitive decline are still unknown. Here we propose that a suprathreshold auditory-nerve impairment is associated with cognitive decline and brain atrophy. METHODS: audiological, neuropsychological, and brain structural 3-Tesla MRI data were obtained from elders with different levels of hearing loss recruited in the ANDES cohort. The amplitude of waves I (auditory nerve) and V (midbrain) from auditory brainstem responses were measured at 80 dB nHL. We also calculated the ratio between wave V and I as a proxy of suprathreshold brainstem function. RESULTS: we included a total of 101 subjects (age: 73.5 ± 5.2 years (mean ± SD), mean education: 9.5 ± 4.2 years, and mean audiogram thresholds (0.5-4 kHz): 25.5 ± 12.0 dB HL). We obtained reliable suprathreshold waves V in all subjects (n = 101), while replicable waves I were obtained in 92 subjects (91.1%). Partial Spearman correlations (corrected by age, gender, education and hearing thresholds) showed that reduced suprathreshold wave I responses were associated with thinner temporal and parietal cortices, and with slower processing speed as evidenced by the Trail-Making Test-A and digit symbol performance. Non-significant correlations were obtained between wave I amplitudes and other cognitive domains. CONCLUSIONS: These results evidence that reduced suprathreshold auditory nerve responses in presbycusis are associated with slower processing speed and brain structural changes in temporal and parietal regions.


Assuntos
Percepção Auditiva/fisiologia , Disfunção Cognitiva/metabolismo , Presbiacusia/fisiopatologia , Estimulação Acústica , Idoso , Idoso de 80 Anos ou mais , Audiometria de Tons Puros , Limiar Auditivo/fisiologia , Encéfalo/fisiopatologia , Nervo Coclear/fisiologia , Disfunção Cognitiva/etiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Audição/fisiologia , Humanos , Masculino , Ruído , Lobo Parietal/fisiopatologia , Presbiacusia/metabolismo , Lobo Temporal/fisiopatologia
14.
Hear Res ; 392: 107979, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32447097

RESUMO

The envelope following response (EFR) has been proposed as a non-invasive marker of synaptopathy in animal models. However, its amplitude is affected by the spread of basilar-membrane excitation and other coexisting sensorineural hearing deficits. This study aims to (i) improve frequency specificity of the EFR by introducing a derived-band EFR (DBEFR) technique and (ii) investigate the effect of lifetime noise exposure, age and outer-hair-cell (OHC) damage on DBEFR magnitudes. Additionally, we adopt a modelling approach to validate the frequency-specificity of the DBEFR and test how different aspects of sensorineural hearing loss affect peripheral generators. The combined analysis of simulations and experimental data proposes that the DBEFRs extracted from the [2-6]-kHz frequency band is a sensitive and frequency-specific measure of synaptopathy in humans. Individual variability in DBEFR magnitudes among listeners with normal audiograms was explained by their self-reported amount of experienced lifetime noise-exposure and corresponded to amplitude variability predicted by synaptopathy. Older listeners consistently had reduced DBEFR magnitudes in comparison to young normal-hearing listeners, in correspondence to how age-induced synaptopathy affects EFRs and compromises temporal envelope encoding. To a lesser degree, OHC damage was also seen to affect the DBEFR magnitude, hence the DBEFR metric should ideally be combined with a sensitive marker of OHC damage to offer a differential diagnosis of synaptopathy in listeners with impaired audiograms.


Assuntos
Percepção Auditiva , Nervo Coclear/fisiopatologia , Perda Auditiva Neurossensorial/fisiopatologia , Audição , Estimulação Acústica , Adolescente , Adulto , Fatores Etários , Limiar Auditivo , Bélgica , Estudos de Casos e Controles , Nervo Coclear/patologia , Simulação por Computador , Feminino , Alemanha , Células Ciliadas Auditivas Externas/patologia , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/psicologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Ruído/efeitos adversos , Adulto Jovem
15.
Int J Pediatr Otorhinolaryngol ; 132: 109915, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32028191

RESUMO

BACKGROUND: Contralateral suppression of otoacoustic emissions (OAEs) may serve as an index of the medial olivocochlear (MOC) reflex. To date, this index has been studied in various populations but never in pre-school children. The purpose of this study was to fill this gap and describe how the MOC reflex affects the properties of transiently evoked OAEs (TEOAEs) in this age group. In addition, the influence of the presence of spontaneous OAEs (SOAEs) in the studied ear on the suppression of TEOAEs was also investigated. METHODS: TEOAEs with and without contralateral acoustic stimulation (CAS) by white noise were measured in 126 normally hearing pre-school children aged 3-6 years. The values of response levels, suppression by CAS, and signal-to-noise ratios (SNRs) of TEOAEs were investigated for the whole signal (global) and for half-octave frequency bands from 1 to 4 kHz. Only ears with SNR >6 dB were used in the analyses. SOAEs were acquired using the so-called synchronized SOAEs (SSOAEs) technique. RESULTS: Ears with SSOAEs had higher response levels and SNRs than ears without SSOAEs, and suppression was lower (0.58 dB compared to 0.85 dB). Only 22% of all studied ears had an SNR >20 dB, a level recommended in some studies for measuring suppression. There were no significant effects of age or gender on TEOAE suppression. CONCLUSIONS: Suppression levels for pre-school children did not differ appreciably from those of adults measured under similar conditions in other studies. Taken together with no effect of age in the data studied here, it seems that there is no effect of age on TEOAE suppression. However, we did find that the presence of SSOAEs had an effect on TEOAE suppression, a finding which has not been reported in earlier studies on different populations. We suggest that the presence of SSOAEs might be a crucial factor related to MOC function.


Assuntos
Nervo Coclear/fisiologia , Núcleo Olivar/fisiologia , Emissões Otoacústicas Espontâneas/fisiologia , Estimulação Acústica/métodos , Criança , Pré-Escolar , Cóclea/fisiologia , Feminino , Audição/fisiologia , Humanos , Masculino , Neurônios Eferentes/fisiologia , Reflexo/fisiologia , Razão Sinal-Ruído
16.
Sci Rep ; 10(1): 1621, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005889

RESUMO

Cochlear implants (CIs) have enabled hundreds of thousands of profoundly hearing-impaired people to perceive sounds by electrically stimulating the auditory nerve. However, CI users are often very poor at locating sounds, which leads to impaired sound segregation and threat detection. We provided missing spatial hearing cues through haptic stimulation to augment the electrical CI signal. We found that this "electro-haptic" stimulation dramatically improved sound localisation. Furthermore, participants were able to effectively integrate spatial information transmitted through these two senses, performing better with combined audio and haptic stimulation than with either alone. Our haptic signal was presented to the wrists and could readily be delivered by a low-cost wearable device. This approach could provide a non-invasive means of improving outcomes for the vast majority of CI users who have only one implant, without the expense and risk of a second implantation.


Assuntos
Implantes Cocleares , Audição/fisiologia , Estimulação Acústica/métodos , Adulto , Implante Coclear/métodos , Nervo Coclear , Feminino , Testes Auditivos/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Localização de Som/fisiologia , Percepção da Fala/fisiologia
17.
Hear Res ; 385: 107835, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710933

RESUMO

Spontaneous otoacoustic emissions (SOAEs) have been observed in a variety of different vertebrates, including humans and barn owls (Tyto alba). The underlying mechanisms producing the SOAEs and the meaning of their characteristics regarding the frequency selectivity of an individual and species are, however, still under debate. In the present study, we measured SOAE spectra in lightly anesthetized barn owls and suppressed their amplitudes by presenting pure tones at different frequencies and sound levels. Suppression effects were quantified by deriving suppression tuning curves (STCs) with a criterion of 2 dB suppression. SOAEs were found in 100% of ears (n = 14), with an average of 12.7 SOAEs per ear. Across the whole SOAE frequency range of 3.4-10.2 kHz, the distances between neighboring SOAEs were relatively uniform, with a median distance of 430 Hz. The majority (87.6%) of SOAEs were recorded at frequencies that fall within the barn owl's auditory fovea (5-10 kHz). The STCs were V-shaped and sharply tuned, similar to STCs from humans and other species. Between 5 and 10 kHz, the median Q10dB value of STC was 4.87 and was thus lower than that of owl single-unit neural data. There was no evidence for secondary STC side lobes, as seen in humans. The best thresholds of the STCs varied from 7.0 to 57.5 dB SPL and correlated with SOAE level, such that smaller SOAEs tended to require a higher sound level to be suppressed. While similar, the frequency-threshold curves of auditory-nerve fibers and STCs of SOAEs differ in some respects in their tuning characteristics indicating that SOAE suppression tuning in the barn owl may not directly reflect neural tuning in primary auditory nerve fibers.


Assuntos
Nervo Coclear/fisiologia , Orelha/fisiologia , Emissões Otoacústicas Espontâneas , Estrigiformes/fisiologia , Estimulação Acústica , Animais , Audiometria de Tons Puros , Vias Auditivas/fisiologia , Limiar Auditivo
18.
PLoS Comput Biol ; 15(12): e1007563, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31881018

RESUMO

Computations of acoustic information along the central auditory pathways start in the cochlear nucleus. Bushy cells in the anteroventral cochlear nucleus, which innervate monaural and binaural stations in the superior olivary complex, process and transfer temporal cues relevant for sound localization. These cells are categorized into two groups: spherical and globular bushy cells (SBCs/GBCs). Spontaneous rates of GBCs innervated by multiple auditory nerve (AN) fibers are generally lower than those of SBCs that receive a small number of large AN synapses. In response to low-frequency tonal stimulation, both types of bushy cells show improved phase-locking and entrainment compared to AN fibers. When driven by high-frequency tones, GBCs show primary-like-with-notch or onset-L peristimulus time histograms and relatively irregular spiking. However, previous in vivo physiological studies of bushy cells also found considerable unit-to-unit variability in these response patterns. Here we present a population of models that can simulate the observed variation in GBCs. We used a simple coincidence detection model with an adaptive threshold and systematically varied its six parameters. Out of 567000 parameter combinations tested, 7520 primary-like-with-notch models and 4094 onset-L models were selected that satisfied a set of physiological criteria for a GBC unit. Analyses of the model parameters and output measures revealed that the parameters of the accepted model population are weakly correlated with each other to retain major GBC properties, and that the output spiking patterns of the model are affected by a combination of multiple parameters. Simulations of frequency-dependent temporal properties of the model GBCs showed a reasonable fit to empirical data, supporting the validity of our population modeling. The computational simplicity and efficiency of the model structure makes our approach suitable for future large-scale simulations of binaural information processing that may involve thousands of GBC units.


Assuntos
Núcleo Coclear/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Animais , Vias Auditivas/fisiologia , Nervo Coclear/fisiologia , Núcleo Coclear/citologia , Biologia Computacional , Neurônios/citologia , Transmissão Sináptica/fisiologia
19.
Ups J Med Sci ; 124(3): 168-179, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31460814

RESUMO

Background: For the first time the expression of the ion transport protein sodium/potassium-ATPase and its isoforms was analyzed in the human cochlea using light- and confocal microscopy as well as super-resolution structured illumination microscopy. It may increase our understanding of its role in the propagation and processing of action potentials in the human auditory nerve and how electric nerve responses are elicited from auditory prostheses. Material and methods: Archival human cochlear sections were obtained from trans-cochlear surgeries. Antibodies against the Na/K-ATPase ß1 isoform together with α1 and α3 were used for immunohistochemistry. An algorithm was applied to assess the expression in various domains. Results: Na/K ATPase ß1 subunit was expressed, mostly combined with the α1 isoform. Neurons expressed the ß1 subunit combined with α3, while satellite glial cells expressed the α1 isoform without recognized association with ß1. Types I and II spiral ganglion neurons and efferent fibers expressed the Na/K-ATPase α3 subunit. Inner hair cells, nerve fibers underneath, and efferent and afferent fibers in the organ of Corti also expressed α1. The highest activity of Na/K-ATPase ß1 was at the inner hair cell/nerve junction and spiral prominence. Conclusion: The human auditory nerve displays distinct morphologic features represented in its molecular expression. It was found that electric signals generated via hair cells may not go uninterrupted across the spiral ganglion, but are locally processed. This may be related to particular filtering properties in the human acoustic pathway.


Assuntos
Cóclea/metabolismo , Implante Coclear/métodos , Nervo Coclear/fisiologia , Microscopia Confocal/métodos , Microscopia Eletrônica de Transmissão/métodos , ATPase Trocadora de Sódio-Potássio/metabolismo , Estimulação Acústica , Animais , Cóclea/patologia , Cóclea/ultraestrutura , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Camundongos
20.
Handb Clin Neurol ; 160: 437-449, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31277867

RESUMO

The transduction process in the cochlea requires patent hair cells. Population responses that reflect this patency are the cochlear microphonic (CM) and summating potential (SP). They can be measured using electrocochleography (ECochG). The CM reflects the sound waveform in the form of outer hair cell (OHC) depolarization and hyperpolarization, and the SP reflects the average voltage difference of the OHC membrane potential for depolarization and hyperpolarization. The CM can be measured using ECochG or via the so-called otoacoustic emissions, using a sensitive microphone in the ear canal. Neural population responses are called the compound action potentials (CAPs), which by frequency selective masking can be decomposed into narrow-band action potentials (NAPs) reflecting CAPs evoked by activity from small cochlear regions. Presence of CM and absence of CAPs are the diagnostic hallmarks of auditory neuropathy. Increased and prolonged SPs are often found in Ménière's disease but are too often in the normal range to be diagnostic. When including NAP waveforms, Ménière's disease can be differentiated from vestibular schwannomas, which often feature overlapping symptoms such as dizziness, hearing loss, and tinnitus. The patency of the efferent system, particularly the olivocochlear bundle, can be tested using the suppressive effect of contralateral stimulation on the otoacoustic emission amplitude.


Assuntos
Potenciais de Ação/fisiologia , Cóclea/fisiologia , Nervo Coclear/fisiologia , Perda Auditiva/fisiopatologia , Testes Auditivos/métodos , Estimulação Acústica/métodos , Vias Eferentes/fisiologia , Perda Auditiva/diagnóstico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA