Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol Biochem ; 80(1): 99-112, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37837567

RESUMO

Several humoral factors, such as adiponectin and urate, have been suggested to affect metabolic syndromes. Previously, we reported a reduction in blood adiponectin concentrations after a high-fructose diet partially via the vagus nerve in rats. Although a lithogenic diet (LD), i.e., supplementation of a normal control diet (CT) with 0.6% cholesterol and 0.2% sodium cholate, reduced blood adiponectin concentrations, the involvement of the vagus nerve in this mechanism remains unclear. To estimate the involvement of the vagus nerve in the regulation of blood adiponectin concentrations using an LD, male imprinting control region mice that had been vagotomized (HVx) or only laparotomized (Sham) were administered a CT or an LD for 10 weeks. Serum adiponectin concentrations in the Sham-LD, HVx-CT, and HVx-LD groups were reduced by half compared with the Sham-CT group. The hepatic mRNA levels of fibroblast growth factor 21 (Fgf21), which reportedly stimulates adiponectin secretion from white adipose tissue, were lower in the LD groups compared with the CT groups. HepG2 hepatoma cells showed that various bile acids reduced the mRNA expression of FGF21. Moreover, the LD increased serum urate concentrations and reduced hepatic expressions of the acyl-CoA oxidase 1 (Acox1) mRNA and glucokinase, suggesting insufficient regeneration of ATP from AMP. In conclusion, serum adiponectin concentration may be regulated via the vagus nerve in normal mice, whereas a reduction of hepatic Fgf21 mRNA by bile acids may also lower serum adiponectin levels. Moreover, the LD may promote hepatic AMP accumulation and subsequently increase the serum urate concentration in mice.


Assuntos
Adiponectina , Fígado , Nervo Vago , Animais , Masculino , Camundongos , Ratos , Ácidos e Sais Biliares/metabolismo , Expressão Gênica , Fígado/metabolismo , RNA Mensageiro/metabolismo , Ácido Úrico , Nervo Vago/metabolismo
2.
Biomed Pharmacother ; 162: 114600, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36996679

RESUMO

PURPOSE: Previous studies proved the benefits of electroacupuncture (EA) on heart in ischemia reperfusion injury and chronic heart failure. However, the role of EA on sepsis-induced cardiac dysfunction has rarely been elucidated before. In this study, we aimed to investigate the effects of EA on cardiac dysfunction in a rat model of sepsis and to speculate the underlying mechanisms. METHODS: Sepsis was induced by cecum ligation and puncture in anesthetized rats. EA at the acupoint "Neiguan (PC6)" was applied 0.5 h after the induction of sepsis for 20 min. Heart rate variability was obtained immediately after EA to evaluate autonomic balance. Echocardiography was performed at 6 h and 24 h after sepsis induction in vivo. Measurements of hemodynamics, blood gases, cytokines and biochemistry were collected at 24 h. Cardiac tissue underwent immunofluorescence staining to determine the expression of α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages. RESULTS: EA increased vagus nerve activity, prevented the development of hyperlactatemia, attenuated the decline of left ventricle ejection fraction, suppressed systemic and cardiac inflammation and alleviated the histopathological manifestations of heart in sepsis rats. Furthermore, the cardiac tissue from EA treated rats showed increased expressions of α7nAChR on macrophages. The cardio-protective and anti-inflammatory effects of EA were partly or completely prevented in rats with vagotomy. CONCLUSION: EA at PC6 attenuates left ventricle dysfunction and decreases inflammation in sepsis-induced cardiac dysfunction. The cardio-protective effects of EA are mediated through vagus nerve mediated cholinergic pathway.


Assuntos
Eletroacupuntura , Cardiopatias , Sepse , Ratos , Animais , Ratos Sprague-Dawley , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Nervo Vago/metabolismo , Nervo Vago/patologia , Inflamação/patologia , Punções , Ceco/patologia
3.
Phytother Res ; 36(7): 2964-2981, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35583808

RESUMO

Amelioration of neuroinflammation via modulating microglia is a promising approach for cerebral ischemia therapy. The aim of the present study was to explore gut-brain axis signals in berberine-modulating microglia polarization following cerebral ischemia. The potential pathway was determined through analyzing the activation of the vagus nerve, hydrogen sulfide (H2 S) metabolism, and cysteine persulfides of transient receptor potential vanilloid 1 (TRPV1) receptor. The cerebral microenvironment feature was explored with a metabolomics assay. The data indicated that berberine ameliorated behavioral deficiency in transient middle cerebral artery occlusion rats through modulating microglia polarization and neuroinflammation depending on microbiota. Enhanced vagus nerve activity following berberine treatment was blocked by antibiotic cocktails, capsazepine, or sodium molybdate, respectively. Berberine-induced H2 S production was responsible for vagus nerve stimulation achieved through assimilatory and dissimilatory sulfate reduction with increased synthetic enzymes. Sulfation of the TRPV1 receptor resulted in vagus nerve activation and promoted the c-fos and ChAT in the nucleus tractus solitaries with berberine. Sphingolipid metabolism is the primary metabolic characteristic with berberine in the cerebral cortex, hippocampus, and cerebral spinal fluid disrupted by antibiotics. Berberine, in conclusion, modulates microglia polarization in a microbiota-dependent manner. H2 S stimulates the vagus nerve through TRPV1 is responsible for the berberine-induced gut-brain axis signal transmission. Sphingolipid metabolism might mediate the neuroinflammation amelioration following vagus afferent fiber activation.


Assuntos
Berberina , Isquemia Encefálica , Sulfeto de Hidrogênio , Microbiota , Animais , Berberina/farmacologia , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Microglia/metabolismo , Ratos , Esfingolipídeos/metabolismo , Nervo Vago/metabolismo
4.
Physiol Rep ; 10(3): e15191, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35146951

RESUMO

The gut microbiota affects the host's metabolic phenotype, impacting health and disease. The gut-brain axis unites the intestine with the centers of hunger and satiety, affecting the eating behavior. Deregulation of this axis can lead to obesity onset. Litter size reduction is a well-studied model for infant obesity because it causes overnutrition and programs for obesity. We hypothesize that animals raised in small litters (SL) have altered circuitry between the intestine and brain, causing hyperphagia. We investigated vagus nerve activity, the expression of c-Fos, brain-derived neurotrophic factor (BDNF), gastrointestinal (GI) hormone receptors, and content of bacterial phyla and short-chain fatty acids (SCFAs) in the feces of adult male and female Wistar rats overfed during lactation. On the 3rd day after birth, litter size was reduced to 3 pups/litter (SL males or SL females) until weaning. Controls had normal litter size (10 pups/litter: 5 males and 5 females). The rats were killed at 5 months of age. The male and female offspring were analyzed separately. The SL group of both sexes showed higher food consumption and body adiposity than the respective controls. SL animals presented dysbiosis (increased Firmicutes, decreased Bacteroidetes) and had increased vagus nerve activity. Only the SL males had decreased hypothalamic GLP-1 receptor expression, while only the SL females had lower acetate and propionate in the feces and higher CCK receptor expression in the hypothalamus. Thus, overfeeding during lactation differentially changes the gut-brain axis, contributing to hyperphagia of the offspring of both sexes.


Assuntos
Eixo Encéfalo-Intestino , Hiperfagia/microbiologia , Tamanho da Ninhada de Vivíparos , Adiposidade , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hiperfagia/metabolismo , Hiperfagia/fisiopatologia , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Receptores da Colecistocinina/metabolismo , Nervo Vago/metabolismo , Nervo Vago/fisiologia
5.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203134

RESUMO

Heartburn and non-cardiac chest pain are the predominant symptoms in many esophageal disorders, such as gastroesophageal reflux disease (GERD), non-erosive reflux disease (NERD), functional heartburn and chest pain, and eosinophilic esophagitis (EoE). At present, neuronal mechanisms underlying the process of interoceptive signals in the esophagus are still less clear. Noxious stimuli can activate a subpopulation of primary afferent neurons at their nerve terminals in the esophagus. The evoked action potentials are transmitted through both the spinal and vagal pathways to their central terminals, which synapse with the neurons in the central nervous system to induce esophageal nociception. Over the last few decades, progress has been made in our understanding on the peripheral and central neuronal mechanisms of esophageal nociception. In this review, we focus on the roles of capsaicin-sensitive vagal primary afferent nodose and jugular C-fiber neurons in processing nociceptive signals in the esophagus. We briefly compare their distinctive phenotypic features and functional responses to mechanical and chemical stimulations in the esophagus. Then, we summarize activation and/or sensitization effects of acid, inflammatory cells (eosinophils and mast cells), and mediators (ATP, 5-HT, bradykinin, adenosine, S1P) on these two nociceptive C-fiber subtypes. Lastly, we discuss the potential roles of capsaicin-sensitive esophageal afferent nerves in processing esophageal sensation and nociception. A better knowledge of the mechanism of nociceptive signal processes in primary afferent nerves in the esophagus will help to develop novel treatment approaches to relieve esophageal nociceptive symptoms, especially those that are refractory to proton pump inhibitors.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Capsaicina/uso terapêutico , Esôfago/metabolismo , Azia/dietoterapia , Nociceptividade/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Nervo Vago/metabolismo , Animais , Esôfago/inervação , Esôfago/patologia , Azia/metabolismo , Azia/patologia , Humanos , Nervo Vago/patologia
6.
Commun Biol ; 4(1): 634, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112935

RESUMO

Fatigue is a pervasive public health and safety issue. Common fatigue countermeasures include caffeine or other chemical stimulants. These can be effective in limited circumstances but other non-pharmacological fatigue countermeasures such as non-invasive electrical neuromodulation have shown promise. It is reasonable to suspect that other types of non-invasive neuromodulation may be similarly effective or perhaps even superior. The objective of this research was to evaluate the efficacy of cervical transcutaneous vagal nerve stimulation (ctVNS) to mitigate the negative effects of fatigue on cognition and mood. Two groups (active or sham stimulation) of twenty participants in each group completed 34 h of sustained wakefulness. The ctVNS group performed significantly better on arousal, multi-tasking, and reported significantly lower fatigue ratings compared to sham for the duration of the study. CtVNS could be a powerful fatigue countermeasure tool that is easy to administer, long-lasting, and has fewer side-effects compared to common pharmacological interventions.


Assuntos
Privação do Sono/psicologia , Privação do Sono/terapia , Estimulação do Nervo Vago/métodos , Adulto , Afeto/fisiologia , Cognição/fisiologia , Fadiga/patologia , Fadiga/psicologia , Fadiga/terapia , Feminino , Humanos , Masculino , Privação do Sono/patologia , Estresse Fisiológico/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Nervo Vago/metabolismo , Nervo Vago/fisiologia , Vigília/efeitos dos fármacos
7.
Theranostics ; 11(9): 4078-4089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754049

RESUMO

Inflammatory cytokines produced by muscularis macrophages largely contribute to the pathological signs of postoperative ileus (POI). Electroacupuncture (EA) can suppress inflammation, mainly or partly via activation of vagal efferent. The goal of this study was to investigate the mechanisms by which EA stimulation at an hindlimb region ameliorates inflammation in POI. Methods: Intestinal motility and inflammation were examined after 24 h after intestinal manipulation (IM)-induced POI in mice. Local immune response in the intestinal muscularis, expression of macrophages, α7 nicotinic acetylcholine receptor (α7nAChR), Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) were determined by flow cytometry, Western Blot, qPCR and immunofluorescence. The effects of α7nAChR antagonists (methyllycaconitine and α-bungarotoxin) and JAK2/STAT3 inhibitors (AG490 and WP1066) were also administered in a subset of mice prior to EA. In the parasympathetic pathways, intestinal motility and inflammation were determined after cervical vagotomy and sub-diaphragmatic vagotomy. The expression of gamma absorptiometry aminobutyric acid (GABAA) receptor in dorsal motor nucleus of vagal (DMV) cholinergic neurons was assessed by immunofluorescence and the response to DMV microinjection of bicuculine (antagonist of GABAA receptor) or muscimol (agonist of GABAA receptor) were assessed. Results: EA suppressed intestinal inflammation and promoted gastrointestinal motility. Mechanistically, EA activated the α7nAChR-mediated JAK2/STAT3 signaling pathway in macrophages which reduced the production of inflammatory cytokines. Furthermore, we also demonstrated that hindlimb region stimulation drove vagal efferent output by inhibiting the expression of GABAA receptor in DMV to ameliorate inflammation. Conclusions: The present study revealed that EA of hindlimb regions inhibited the expression of GABAA receptor in DMV neurons, whose excited vagal nerve, in turn suppressed IM-induced inflammation via activation of α7nAChR-mediated JAK2/STAT3 signaling pathway.


Assuntos
Íleus/metabolismo , Inflamação/metabolismo , Intestinos/fisiopatologia , Janus Quinase 2/metabolismo , Complicações Pós-Operatórias/metabolismo , Fator de Transcrição STAT3/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Citocinas/metabolismo , Eletroacupuntura/métodos , Íleus/fisiopatologia , Inflamação/fisiopatologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sistema Nervoso Parassimpático/metabolismo , Complicações Pós-Operatórias/fisiopatologia , Transdução de Sinais/fisiologia , Nervo Vago/metabolismo , Nervo Vago/fisiopatologia
8.
Life Sci ; 272: 119259, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33636172

RESUMO

AIMS: The aim of this study was to explore the potential effect of electroacupuncture (EA) at ST36 on mice bearing breast tumors by regulating inflammatory cytokines to enhance antitumor immunity via vagus nerve. MATERIALS AND METHODS: Female BALB/c mice were implanted with 4T1-luc2 breast tumor cells to establish a murine mammary cancer model. Tumor growth was evaluated by tumor volume, weight and bioluminescence imaging. Inflammatory conditions in serum and tumor tissue were assessed by cytokines (IL-1ß, TNF-α and IL-10) and HE staining. Proportions and functions of CD8+ T cells, NK cells and MDSCs were identified by flow cytometry and western blot. Involvement of vagal efferent components was confirmed by ChAT and c-Fos double labeling immunohistochemistry in dorsal motor nucleus of vagus (DMV). Subdiaphragmatic vagotomy was employed to determine if the effect of EA was mediated by vagus nerve. KEY FINDINGS: EA at ST36 reduced the volume and weight of tumors within 22 days after implantation. Proinflammatory cytokines IL-1ß and TNF-α in serum, tumor and local inflammatory infiltration were obviously attenuated after EA. Meanwhile, EA intervention significantly augmented the proportion and cytolytic function of CD8+ T cells and NK cells, along with a decline in the accumulation and immunosuppressive activities of MDSCs. Finally, c-Fos expression in ChAT+ neurons in DMV increased following EA, and the ameliorating effect of EA was obviously blocked by subdiaphragmatic vagotomy. SIGNIFICANCE: EA intervention relieved tumor progression in breast tumor-bearing mice by alleviating inflammation and enhancing antitumor immunity, which was mediated by eliciting efferent vagus nerve activity.


Assuntos
Neoplasias da Mama/terapia , Eletroacupuntura/métodos , Animais , Linfócitos T CD8-Positivos/metabolismo , China , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Inflamação/imunologia , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fator de Necrose Tumoral alfa , Nervo Vago/metabolismo
9.
Diabetes ; 70(1): 62-75, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33115827

RESUMO

Circulating branched-chain amino acids (BCAAs) are elevated in obesity and diabetes, and recent studies support a causal role for BCAAs in insulin resistance and defective glycemic control. The physiological mechanisms underlying BCAA regulation are poorly understood. Here we show that insulin signaling in the mediobasal hypothalamus (MBH) of rats is mandatory for lowering plasma BCAAs, most probably by inducing hepatic BCAA catabolism. Insulin receptor deletion only in agouti-related protein (AgRP)-expressing neurons (AgRP neurons) in the MBH impaired hepatic BCAA breakdown and suppression of plasma BCAAs during hyperinsulinemic clamps in mice. In support of this, chemogenetic stimulation of AgRP neurons in the absence of food significantly raised plasma BCAAs and impaired hepatic BCAA degradation. A prolonged fasting or ghrelin treatment recapitulated designer receptors exclusively activated by designer drugs-induced activation of AgRP neurons and increased plasma BCAAs. Acute stimulation of vagal motor neurons in the dorsal motor nucleus was sufficient to decrease plasma BCAAs. Notably, elevated plasma BCAAs were associated with impaired glucose homeostasis. These findings suggest a critical role of insulin signaling in AgRP neurons for BCAA regulation and raise the possibility that this control may be mediated primarily via vagal outflow. Furthermore, our results provide an opportunity to closely examine the potential mechanistic link between central nervous system-driven BCAA control and glucose homeostasis.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Aminoácidos de Cadeia Ramificada/sangue , Animais , Glicemia/metabolismo , Grelina/farmacologia , Técnica Clamp de Glucose , Hipotálamo/efeitos dos fármacos , Resistência à Insulina/fisiologia , Masculino , Camundongos , Neurônios Motores/metabolismo , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Nervo Vago/metabolismo
10.
Brain Res Bull ; 165: 129-138, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32966849

RESUMO

Reproduction is the biological process that sustains life. It is regulated by a neuro-hormonal mechanism that is synchronized by the interaction among the hypothalamus, hypophysis, and ovaries. Ovulation is regulated by the secretion of the gonadotropin-releasing hormone (GnRH), which stimulates the release of the luteinizing hormone (LH) and follicle-stimulating hormone (FSH). In addition to these neuroendocrine signals, other signals originating from the central nervous system, hypophysis, thyroid, adrenal glands, and the ovary itself are also involved. One of the neurotransmission systems involved in the regulation of ovulation is the cholinergic system, which not only participates in the regulation of reproductive functions but also modulates motor coordination, thermoregulation, and cognitive function. In mammals, the vagus nerve is one of the pathways through which acetylcholine reaches the ovary, and this pathway also participates in the regulation of ovulation. However, this regulation depends on the age of the animal (prepubertal or adult) and its endocrine status. The present review analyzes evidence of the roles of the central and peripheral cholinergic system and vagal innervation in the regulation of GnRH secretion and ovulation as well as their roles in the development and persistence of polycystic ovary syndrome (PCOS).


Assuntos
Acetilcolina/metabolismo , Neurônios Colinérgicos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Ovulação/fisiologia , Nervo Vago/metabolismo , Animais , Vias Neurais/metabolismo , Transmissão Sináptica/fisiologia
11.
Am J Physiol Endocrinol Metab ; 319(3): E647-E657, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32776827

RESUMO

Our objective was to explore the physiological role of the intestinal endocannabinoids in the regulation of appetite upon short-term exposure to high-fat-diet (HFD) and understand the mechanisms responsible for aberrant gut-brain signaling leading to hyperphagia in mice lacking Napepld in the intestinal epithelial cells (IECs). We generated a murine model harboring an inducible NAPE-PLD deletion in IECs (NapepldΔIEC). After an overnight fast, we exposed wild-type (WT) and NapepldΔIEC mice to different forms of lipid challenge (HFD or gavage), and we compared the modification occurring in the hypothalamus, in the vagus nerve, and at endocrine level 30 and 60 min after the stimulation. NapepldΔIEC mice displayed lower hypothalamic levels of N-oleoylethanolamine (OEA) in response to HFD. Lower mRNA expression of anorexigenic Pomc occurred in the hypothalamus of NapepldΔIEC mice after lipid challenge. This early hypothalamic alteration was not the consequence of impaired vagal signaling in NapepldΔIEC mice. Following lipid administration, WT and NapepldΔIEC mice had similar portal levels of glucagon-like peptide-1 (GLP-1) and similar rates of GLP-1 inactivation. Administration of exendin-4, a full agonist of GLP-1 receptor (GLP-1R), prevented the hyperphagia of NapepldΔIEC mice upon HFD. We conclude that in response to lipid, NapepldΔIEC mice displayed reduced OEA in brain and intestine, suggesting an impairment of the gut-brain axis in this model. We speculated that decreased levels of OEA likely contributes to reduce GLP-1R activation, explaining the observed hyperphagia in this model. Altogether, we elucidated novel physiological mechanisms regarding the gut-brain axis by which intestinal NAPE-PLD regulates appetite rapidly after lipid exposure.


Assuntos
Encéfalo/fisiologia , Fenômenos Fisiológicos do Sistema Digestório , Ingestão de Alimentos/fisiologia , Fosfolipase D/fisiologia , Animais , Dieta Hiperlipídica , Dipeptidil Peptidase 4/metabolismo , Endocanabinoides/metabolismo , Glândulas Endócrinas/metabolismo , Etanolaminas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Hiperfagia/genética , Hiperfagia/fisiopatologia , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/fisiologia , Ácidos Oleicos/metabolismo , Fosfolipase D/genética , Nervo Vago/metabolismo
12.
Life Sci ; 259: 118229, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32781065

RESUMO

AIMS: Cholinergic neurons are distributed in brain areas containing growth hormone (GH)-responsive cells. We determined if cholinergic neurons are directly responsive to GH and the metabolic consequences of deleting the GH receptor (GHR) specifically in choline acetyltransferase (ChAT)-expressing cells. MAIN METHODS: Mice received an acute injection of GH to detect neurons co-expressing ChAT and phosphorylated STAT5 (pSTAT5), a well-established marker of GH-responsive cells. For the physiological studies, mice carrying ablation of GHR exclusively in ChAT-expressing cells were produced and possible changes in energy and glucose homeostasis were determined when consuming regular chow or high-fat diet (HFD). KEY FINDINGS: The majority of cholinergic neurons in the arcuate nucleus (60%) and dorsomedial nucleus (84%) of the hypothalamus are directly responsive to GH. Approximately 34% of pre-ganglionic parasympathetic neurons in the dorsal motor nucleus of the vagus also exhibited GH-induced pSTAT5. GH-induced pSTAT5 in these ChAT neurons was absent in GHR ChAT knockout mice. Mice carrying ChAT-specific GHR deletion, either in chow or HFD, did not exhibit significant changes in body weight, body adiposity, lean body mass, food intake, energy expenditure, respiratory quotient, ambulatory activity, serum leptin levels, glucose tolerance, insulin sensitivity and metabolic responses to 2-deoxy-d-glucose. However, GHR deletion in ChAT neurons caused decreased hypothalamic Pomc mRNA levels in HFD mice. SIGNIFICANCE: Cholinergic neurons that regulate the metabolism are directly responsive to GH, although GHR signaling in these cells is not required for energy and glucose homeostasis. Thus, the physiological importance of GH action on cholinergic neurons still needs to be identified.


Assuntos
Neurônios Colinérgicos/metabolismo , Hormônio do Crescimento/metabolismo , Receptores da Somatotropina/metabolismo , Acetilcolina/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Dieta Hiperlipídica , Metabolismo Energético , Glucose/metabolismo , Hormônio do Crescimento/fisiologia , Hipotálamo/metabolismo , Resistência à Insulina/genética , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores da Somatotropina/genética , Fator de Transcrição STAT5/metabolismo , Nervo Vago/metabolismo
13.
Acupunct Med ; 38(6): 417-425, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32233774

RESUMO

BACKGROUND: A growing body of evidence shows that neuronal activity is involved in modulating the efficacy of acupuncture therapy. However, it has been seldom investigated whether neuronal activity following acupuncture stimulation is effective at regulating hepatic inflammation. OBJECTIVE: Using the concanavalin A (ConA) model of hepatitis, we investigated the regulation of inflammatory cytokine tumor necrosis factor (TNF)-α in the liver tissue and the blood after acupuncture stimulation at ST36. METHODS: Mice were subjected to ConA injection, acupuncture stimulation at ST36 by manual acupuncture (MA) or electroacupuncture (EA) procedures, and vagotomy (VNX). Liver tissue and blood were collected for TNF-α analysis. TNF-α mRNA was analyzed by real-time polymerase chain reaction (PCR), and TNF-α, CD11b, CD68, and Erk1/2 proteins were analyzed by Western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assay. RESULTS: TNF-α mRNA and protein were induced in CD11b-positive hepatic cells and the plasma at 6-24 h after ConA injection. The application of MA or EA was very effective at attenuating the production of TNF-α. Anti-inflammatory effects of acupuncture were greatly suppressed by VNX in ConA-injected animals, suggesting the requirement of vagus nerve activity in acupuncture-mediated anti-inflammatory responses. Electrical stimulation of the sciatic nerve (SNS) resulted in an anti-inflammatory effect similar to acupuncture stimulation. In parallel with TNF-α, production of phospho-Erk1/2, which was induced in the liver tissue, was downregulated by MA and EA in liver cells. CONCLUSION: The regulatory effects of acupuncture stimulation on inflammatory responses in the liver may be modulated through the activation of the vagus nerve pathway.


Assuntos
Terapia por Acupuntura , Concanavalina A/metabolismo , Hepatite/metabolismo , Hepatite/terapia , Fator de Necrose Tumoral alfa/metabolismo , Nervo Vago/metabolismo , Pontos de Acupuntura , Animais , Hepatite/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/genética
14.
Sci Rep ; 10(1): 1529, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001763

RESUMO

Inhibiting fear-related thoughts and defensive behaviors when they are no longer appropriate to the situation is a prerequisite for flexible and adaptive responding to changing environments. Such inhibition of defensive systems is mediated by ventromedial prefrontal cortex (vmPFC), limbic basolateral amygdala (BLA), and brain stem locus-coeruleus noradrenergic system (LC-NAs). Non-invasive, transcutaneous vagus nerve stimulation (tVNS) has shown to activate this circuit. Using a multiple-day single-cue fear conditioning and extinction paradigm, we investigated long-term effects of tVNS on inhibition of low-level amygdala modulated fear potentiated startle and cognitive risk assessments. We found that administration of tVNS during extinction training facilitated inhibition of fear potentiated startle responses and cognitive risk assessments, resulting in facilitated formation, consolidation and long-term recall of extinction memory, and prevention of the return of fear. These findings might indicate new ways to increase the efficacy of exposure-based treatments of anxiety disorders.


Assuntos
Extinção Psicológica/fisiologia , Medo/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Adolescente , Adulto , Tonsila do Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Medo/psicologia , Feminino , Humanos , Inibição Psicológica , Masculino , Memória/fisiologia , Córtex Pré-Frontal/fisiologia , Reflexo de Sobressalto/fisiologia , Nervo Vago/metabolismo , Nervo Vago/fisiologia , Estimulação do Nervo Vago/métodos , Adulto Jovem
15.
Turk J Gastroenterol ; 31(1): 65-72, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32009616

RESUMO

BACKGROUND/AIMS: The novel brain peptide neuropeptide-S (NPS) is produced exclusively by a small group of cells adjacent to the noradrenergic locus coeruleus. The NPSR mRNA has been detected in several brain areas involved in stress response and autonomic outflow, such as amygdala and hypothalamus, suggesting that central NPS may play a regulatory role in stress-induced changes in gastrointestinal (GI) motor functions. In rodents, exogenous central NPS was shown to inhibit stress-stimulated fecal output. Moreover, exogenous NPS was demonstrated to activate hypothalamic neurons that produce orexin-A (OXA), which has been shown to stimulate postprandial gastric motor functions via central vagal pathways. Therefore, we tested whether OXA mediates the NPS-induced alterations in gastric motor functions under stressed conditions. MATERIALS AND METHODS: We investigated the effect of central exogenous NPS on solid gastric emptying (GE) and gastric postprandial motility in acute restraint stress (ARS)-loaded conscious rats. The OXA receptor antagonist SB-334867 was administered centrally prior to the central NPS injection. The expression of NPSR in the hypothalamus and dorsal vagal complex was analyzed by immunofluorescence. RESULTS: Central administration of NPS restored the ARS-induced delayed GE and uncoordinated postprandial antro-pyloric contractions. The alleviative effect of NPS on GE was abolished by pretreatment of the OX1R antagonist SB-334867. In addition to hypothalamus, NPSR was detected in the dorsal motor nucleus of vagus, which suggest a direct stimulatory action of exogenous NPS on gastric motility. CONCLUSION: NPS may be a novel candidate for the treatment of stress-related gastric disorders.


Assuntos
Esvaziamento Gástrico/efeitos dos fármacos , Neuropeptídeos/farmacologia , Orexinas/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Animais , Benzoxazóis/farmacologia , Hipotálamo/efeitos dos fármacos , Naftiridinas/farmacologia , Período Pós-Prandial , Antro Pilórico , Ratos , Restrição Física/efeitos adversos , Ureia/análogos & derivados , Ureia/farmacologia , Nervo Vago/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-30833463

RESUMO

Treating diseases nonpharmacologically, using targeted neurostimulation instead of systemic drugs, is a hallmark of the burgeoning field of bioelectronic medicine. In this review, we provide a brief overview of the discovery and function of the prototypical neuroimmune reflex, the "inflammatory reflex." We discuss various biomarkers developed and used to translate early physiological discoveries into dosing parameters used in experimental settings, from the treatment of animal models of disease through a proof-of-concept clinical study in rheumatoid arthritis (RA). Finally, we relate how unique aspects of this form of therapy enabled the design of a next-generation implanted pulse generator using integrated electrodes, currently under evaluation in a U.S.-based clinical study for patients with drug refractory RA.


Assuntos
Acetilcolina/metabolismo , Artrite Experimental/terapia , Artrite Reumatoide/terapia , Terapia por Estimulação Elétrica , Animais , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Biomarcadores/metabolismo , Osso e Ossos/metabolismo , Eletrodos , Humanos , Nervo Vago/metabolismo
17.
Metabolism ; 103: 154029, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31770545

RESUMO

OBJECTIVE: Secreted frizzled-related protein 5 (Sfrp5) has been shown to be associated with energy homeostasis and insulin resistance in mouse models of obesity and diabetes. However, its central role in glucose and lipid metabolism is unknown. METHODS: HFD-fed rats received ICV infusions of vehicle or Sfrp5 during a pancreatic euglycemic clamp procedure. To delineate the pathway(s) by which ICV Sfrp5 modulates HGP and VLDL-TG secretion, we inhibited the hypothalamic KATP channel using glibenclamide, the DVC NMDA receptor with MK801, and selectively transected the hepatic branch of the vagal nerve while centrally infusing Sfrp5. RESULTS: ICV Sfrp5 in HFD-fed rats significantly increased the glucose infusion required to maintain euglycemia due to HGP inhibition during the clamp procedure; moreover, hepatic PEPCK and G6Pase expression was decreased, and InsR and Akt phosphorylation was increased in the liver. ICV Sfrp5 also decreased circulating triglyceride levels via inhibiting hepatic VLDL-TG secretion. These changes were accompanied by the inhibition of enzymes related to lipogenesis in the liver. ICV Sfrp5 significantly increased insulin-stimulated phosphorylation of InsR and Akt in the hypothalamus of HFD-fed rats, and insulin-stimulated immunodetectable PIP3 levels were higher in Sfrp5 group than in control group both in vitro and vivo. The glucose- and lipid-lowering effects of ICV Sfrp5 were eliminated by NMDA receptor or DVC KATP channel inhibition or HVAG. CONCLUSIONS: The present study demonstrates that central Sfrp5 signaling activates a previously unappreciated InsR-Akt-PI3k-KATP channel pathway in the hypothalamus and brain-hepatic vagus neurocircuitry to decrease HGP and VLDL-TG secretion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Adipocinas/fisiologia , Glucose/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Animais , Metabolismo dos Carboidratos/genética , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Hipotálamo/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Via Secretória/genética , Nervo Vago/metabolismo
18.
Nutrients ; 11(11)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717368

RESUMO

(1) High-fat (HF) diet leads to gut microbiota dysbiosis which is associated with systemic inflammation. Bacterial-driven inflammation is sufficient to alter vagally mediated satiety and induce hyperphagia. Promoting bacterial fermentation improves gastrointestinal (GI) epithelial barrier function and reduces inflammation. Resistant starch escape digestion and can be fermented by bacteria in the distal gut. Therefore, we hypothesized that potato RS supplementation in HF-fed rats would lead to compositional changes in microbiota composition associated with improved inflammatory status and vagal signaling. (2) Male Wistar rats (n = 8/group) were fed a low-fat chow (LF, 13% fat), HF (45% fat), or an isocaloric HF supplemented with 12% potato RS (HFRS) diet. (3) The HFRS-fed rats consumed significantly less energy than HF animals throughout the experiment. Systemic inflammation and glucose homeostasis were improved in the HFRS compared to HF rats. Cholecystokinin-induced satiety was abolished in HF-fed rats and restored in HFRS rats. HF feeding led to a significant decrease in positive c fiber staining in the brainstem which was averted by RS supplementation. (4) The RS supplementation prevented dysbiosis and systemic inflammation. Additionally, microbiota manipulation via dietary potato RS prevented HF-diet-induced reorganization of vagal afferent fibers, loss in CCK-induced satiety, and hyperphagia.


Assuntos
Bactérias/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Suplementos Nutricionais , Disbiose , Microbioma Gastrointestinal , Inflamação/prevenção & controle , Intestinos/inervação , Intestinos/microbiologia , Obesidade/prevenção & controle , Solanum tuberosum , Amido/administração & dosagem , Nervo Vago/fisiopatologia , Ração Animal , Animais , Bactérias/metabolismo , Encéfalo/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Comportamento Alimentar , Fermentação , Hiperfagia/metabolismo , Hiperfagia/microbiologia , Hiperfagia/fisiopatologia , Hiperfagia/prevenção & controle , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/fisiopatologia , Masculino , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/fisiopatologia , Raízes de Plantas , Ratos Wistar , Resposta de Saciedade , Amido/metabolismo , Nervo Vago/metabolismo , Aumento de Peso
19.
Brain Res Bull ; 144: 171-179, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30481553

RESUMO

Pharmacologic activation of the hindbrain dorsal vagal complex energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK) causes site-specific adjustments in hypothalamic AMPK activity. DVC A2 noradrenergic neurons are a likely source of metabolo-sensory cues to downstream network components as they express substrate fuel-sensitive AMPK. This study investigated the hypothesis that DVC AMPK controls hypothalamic sensor, metabolic effector transmitter, and counter-regulatory hormone responses to insulin-induced hypoglycemia. Male rats were injected into the caudal fourth ventricle with the AMPK inhibitor compound C (Ccor vehicle before hypoglycemia. Arcuate (ARH), ventromedial (VMN), and dorsomedial (DMN) nuclei and lateral hypothalamic area (LHA) were micropunch-dissected for norepinephrine ELISA and Western blot analyses. Hypoglycemic stimulation of norepinephrine activity in each site was impeded by compound C. Hypoglycemia caused drug-revocable (ARH) or -refractory (VMN, DMN) reductions in AMPK, alongside hindbrain AMPK-dependent augmentation of phospho-AMPK expression in each location. Compound C prevented hypoglycemic augmentation of gluco-stimulatory ARH neuropeptide Y, VMN neuronal nitric oxide synthase, and LHA orexin-A expression, while hypoglycemic suppression of the catabolic neuron protein markers ARH pro-opiomelanocortin and VMN glutamate decarboxylase65/67 was respectively averted or unaffected by drug treatment. DMN RFamide-related peptide-1 and -3 profiles were correspondingly amplified or suppressed hindbrain AMPK-reliant mechanisms during hypoglycemia. Results show that DVC AMPK is required for hypoglycemic intensification of norepinephrine activity in characterized hypothalamic gluco-regulatory structures, and that this sensor regulates AMPK activation and metabolic effector transmission in those sites.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Hipoglicemia/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Neurônios Adrenérgicos , Animais , Hipoglicemia/fisiopatologia , Região Hipotalâmica Lateral/metabolismo , Hipotálamo/metabolismo , Masculino , Neuropeptídeo Y/metabolismo , Neuropeptídeos/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Norepinefrina/metabolismo , Orexinas/metabolismo , Ratos , Ratos Sprague-Dawley , Rombencéfalo/metabolismo , Núcleo Solitário/metabolismo , Nervo Vago/metabolismo
20.
Can J Physiol Pharmacol ; 97(2): 90-98, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30462556

RESUMO

Although depression and cardiovascular diseases are related, the role of antidepressants such as fluoxetine (increasing serotonin levels) within cardiac regulation remains unclear. We aimed to determine whether fluoxetine modifies the pharmacological profile of serotonergic influence on vagal cardiac outflow. Rats were treated with fluoxetine (10 mg/kg per day; p.o.) for 14 days or equivalent volumes of drinking water (control group); then, they were pithed and prepared for vagal stimulation. Bradycardic responses were obtained by electrical stimulation of the vagal fibers (3, 6, and 9 Hz) or i.v. acetylcholine (ACh; 1, 5, and 10 µg/kg). The i.v. administration of 5-hydroxytryptamine (5-HT; 10 and 50 µg/kg) inhibited the vagally induced bradycardia. 5-CT (5-HT1/7 agonist) and L-694,247 (5-HT1D agonist) mimicked the serotonin inhibitory effect while α-methyl-5-HT (5-HT2 agonist) was devoid of any action. SB269970 (5-HT7 antagonist) did not abolish 5-CT inhibitory action on the electrically induced bradycardia. Pretreatment with LY310762 (5-HT1D antagonist) blocked the effects induced by L-694,247 and 5-CT. 5-HT and 5-CT failed to modify the bradycardia induced by exogenous ACh. Our outcomes suggest that fluoxetine treatment modifies 5-HT modulation on heart parasympathetic neurotransmission in rats, evoking inhibition of the bradycardia via prejunctional 5-HT1D in pithed rats.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Bradicardia/tratamento farmacológico , Fluoxetina/farmacologia , Receptor 5-HT1D de Serotonina/metabolismo , Nervo Vago/efeitos dos fármacos , Administração Oral , Animais , Antidepressivos de Segunda Geração/uso terapêutico , Bradicardia/etiologia , Depressão/complicações , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Fluoxetina/uso terapêutico , Coração/inervação , Frequência Cardíaca/efeitos dos fármacos , Humanos , Oxidiazóis/farmacologia , Fenóis/farmacologia , Ratos , Ratos Wistar , Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Agonistas do Receptor de Serotonina/metabolismo , Sulfonamidas/farmacologia , Triptaminas/farmacologia , Nervo Vago/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA