Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 702
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630337

RESUMO

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Assuntos
Morte Celular , Etanol , Neurônios , Fármacos Neuroprotetores , Extratos Vegetais , Folhas de Planta , Sterculia , Animais , Ratos , Caspase 3/metabolismo , Etanol/administração & dosagem , Etanol/química , Etanol/toxicidade , Peróxido de Hidrogênio/toxicidade , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Ratos Wistar , Sterculia/química , Folhas de Planta/química , Plantas Medicinais/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Lactato Desidrogenases/metabolismo , Proteína GAP-43/análise , Apoptose/genética , Estresse Oxidativo/genética , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Cerebelo/fisiologia , Masculino , Feminino , Células Cultivadas , Morte Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Espectrometria de Massa com Cromatografia Líquida , Metabolismo Secundário
2.
J Endocrinol ; 252(3): 167-177, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34854381

RESUMO

Recent evidence identifies a potent role for aerobic exercise to modulate the activity of hypothalamic neurons related to appetite; however, these studies have been primarily performed in male rodents. Since females have markedly different neuronal mechanisms regulating food intake, the current study aimed to determine the effects of acute treadmill exercise on hypothalamic neuron populations involved in regulating appetite in female mice. Mature, untrained female mice were exposed to acute sedentary, low- (10 m/min), moderate- (14 m/min), and high (18 m/min)-intensity treadmill exercise in a randomized crossover design. Mice were fasted 10 h before exercise, and food intake was monitored for 48 h after bouts. Immunohistochemical detection of cFOS was performed 3 h post-exercise to determine the changes in hypothalamic neuropeptide Y (NPY)/agouti-related peptide (AgRP), pro-opiomelanocortin (POMC), tyrosine hydroxylase (TH), and SIM1-expressing neuron activity concurrent with the changes in food intake. Additionally, stains for pSTAT3tyr705 and pERKthr202/tyr204 were performed to detect exercise-mediated changes in intracellular signaling. Briefly, moderate- and high-intensity exercises increased 24-h food intake by 5.9 and 19%, respectively, while low-intensity exercise had no effects. Furthermore, increases in NPY/AgRPARC, SIM1PVN, and TH neuron activity were observed 3 h after high-intensity exercise, with no effects on POMCARC neurons. While no effects of exercise on pERKthr202/tyr204 were observed, pSTAT3tyr705 was elevated specifically in NPY/AgRP neurons 3 h post-exercise. Overall, aerobic exercise increased the activity of several appetite-stimulating neuron populations in the hypothalamus of female mice, which may provide insight into previously reported sexual dimorphisms in post-exercise feeding.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Neuropeptídeo Y/metabolismo , Condicionamento Físico Animal/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Feminino , Camundongos , Neurônios/enzimologia
3.
J Clin Invest ; 131(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34730112

RESUMO

The positive regulatory (PR) domain containing 13 (PRDM13) putative chromatin modifier and transcriptional regulator functions downstream of the transcription factor PTF1A, which controls GABAergic fate in the spinal cord and neurogenesis in the hypothalamus. Here, we report a recessive syndrome associated with PRDM13 mutation. Patients exhibited intellectual disability, ataxia with cerebellar hypoplasia, scoliosis, and delayed puberty with congenital hypogonadotropic hypogonadism (CHH). Expression studies revealed Prdm13/PRDM13 transcripts in the developing hypothalamus and cerebellum in mouse and human. An analysis of hypothalamus and cerebellum development in mice homozygous for a Prdm13 mutant allele revealed a significant reduction in the number of Kisspeptin (Kiss1) neurons in the hypothalamus and PAX2+ progenitors emerging from the cerebellar ventricular zone. The latter was accompanied by ectopic expression of the glutamatergic lineage marker TLX3. Prdm13-deficient mice displayed cerebellar hypoplasia and normal gonadal structure, but delayed pubertal onset. Together, these findings identify PRDM13 as a critical regulator of GABAergic cell fate in the cerebellum and of hypothalamic kisspeptin neuron development, providing a mechanistic explanation for the cooccurrence of CHH and cerebellar hypoplasia in this syndrome. To our knowledge, this is the first evidence linking disrupted PRDM13-mediated regulation of Kiss1 neurons to CHH in humans.


Assuntos
Cerebelo/anormalidades , Histona-Lisina N-Metiltransferase , Hipogonadismo , Hipotálamo/enzimologia , Mutação , Malformações do Sistema Nervoso , Fatores de Transcrição , Animais , Cerebelo/enzimologia , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Hipogonadismo/enzimologia , Hipogonadismo/genética , Camundongos , Camundongos Mutantes , Malformações do Sistema Nervoso/enzimologia , Malformações do Sistema Nervoso/genética , Neurônios/enzimologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Molecules ; 26(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361702

RESUMO

Neurodegenerative diseases have a complex nature which highlights the need for multitarget ligands to address the complementary pathways involved in these diseases. Over the last decade, many innovative curcumin-based compounds have been designed and synthesized, searching for new derivatives having anti-amyloidogenic, inhibitory of tau formation, as well as anti-neuroinflammation, antioxidative, and AChE inhibitory activities. Regarding our experience studying 3-substituted coumarins with interesting properties for neurodegenerative diseases, our aim was to synthesize a new series of curcumin-coumarin hybrid analogues and evaluate their activity. Most of the 3-(7-phenyl-3,5-dioxohepta-1,6-dien-1-yl)coumarin derivatives 11-18 resulted in moderated inhibitors of hMAO isoforms and AChE and BuChE activity. Some of them are also capable of scavenger the free radical DPPH. Furthermore, compounds 14 and 16 showed neuroprotective activity against H2O2 in SH-SY5Y cell line. Nanoparticles formulation of these derivatives improved this property increasing the neuroprotective activity to the nanomolar range. Results suggest that by modulating the substitution pattern on both coumarin moiety and phenyl ring, ChE and MAO-targeted derivatives or derivatives with activity in cell-based phenotypic assays can be obtained.


Assuntos
Antioxidantes/síntese química , Inibidores da Colinesterase/síntese química , Cumarínicos/síntese química , Curcumina/análogos & derivados , Inibidores da Monoaminoxidase/síntese química , Fármacos Neuroprotetores/síntese química , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/farmacologia , Compostos de Bifenilo/antagonistas & inibidores , Butirilcolinesterase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Cumarínicos/farmacologia , Curcumina/farmacologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Córtex Motor/citologia , Córtex Motor/enzimologia , Nanopartículas/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Fármacos Neuroprotetores/farmacologia , Picratos/antagonistas & inibidores , Cultura Primária de Células , Ratos , Relação Estrutura-Atividade
5.
Cell Death Dis ; 12(7): 651, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172715

RESUMO

Alzheimer's disease is the most common age-related neurodegenerative disorder. Familial forms of Alzheimer's disease associated with the accumulation of a toxic form of amyloid-ß (Aß) peptides are linked to mitochondrial impairment. The coenzyme nicotinamide adenine dinucleotide (NAD+) is essential for both mitochondrial bioenergetics and nuclear DNA repair through NAD+-consuming poly (ADP-ribose) polymerases (PARPs). Here we analysed the metabolomic changes in flies overexpressing Aß and showed a decrease of metabolites associated with nicotinate and nicotinamide metabolism, which is critical for mitochondrial function in neurons. We show that increasing the bioavailability of NAD+ protects against Aß toxicity. Pharmacological supplementation using NAM, a form of vitamin B that acts as a precursor for NAD+ or a genetic mutation of PARP rescues mitochondrial defects, protects neurons against degeneration and reduces behavioural impairments in a fly model of Alzheimer's disease. Next, we looked at links between PARP polymorphisms and vitamin B intake in patients with Alzheimer's disease. We show that polymorphisms in the human PARP1 gene or the intake of vitamin B are associated with a decrease in the risk and severity of Alzheimer's disease. We suggest that enhancing the availability of NAD+ by either vitamin B supplements or the inhibition of NAD+-dependent enzymes such as PARPs are potential therapies for Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Proteínas de Drosophila/genética , Mitocôndrias/genética , Mutação , NAD/metabolismo , Neurônios/enzimologia , Poli(ADP-Ribose) Polimerase-1/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Animais Geneticamente Modificados , Comportamento Animal , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Humanos , Metaboloma , Metabolômica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Atividade Motora , Degeneração Neural , Neurônios/efeitos dos fármacos , Neurônios/patologia , Niacinamida/farmacologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Polimorfismo de Nucleotídeo Único
6.
Biomed Pharmacother ; 133: 111021, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33227709

RESUMO

OBJECTIVE: To observe the brain protective effect of Leonuri Herba Total Alkali (LHA) on cerebral ischemia reperfusion injury in rats, so as to provide basis for clinical research. METHODS: Adult male SD rats were randomly assigned into sham group, middle cerebral artery occlusion/reperfusion (MCAO/R) group, and LHA + MCAO/R group (25 mg/kg, 50 mg/kg, and 100 mg/kg). Fourteen days before MCAO/R surgery, the rats in treatment groups were orally administered with LHA in ultrapure water once daily for 14 days, while rats in the sham and MCAO groups were given the same amount of saline in advance. After 1 h of administration on the 14th day, MCAO surgery was subjected. The neurological deficits, brain infarct volume, histopathology, immunofluorescence, inflammation indicators and the gene/protein expressions of BDNF-TrKB-PI3K/Akt signaling pathway in the rat brain tissue were evaluated 24 h after the MCAO/R-injury. RESULTS: It was found that rats in LHA pre-administration group showed significantly reduced neurological deficit scores, infarction volume, the serum levels of NSE and S100ß. Meanwhile, the content of Evans Blue (EB) in brain tissue from LHA group was decreased, as well as the levels of inflammatory cytokines and their gene levels. Moreover, LHA pre-administration inhibited the expression of CD44, GFAP, FOXO1 and promoted the expression of BDNF and NeuN. In addition, LHA pre-administration could up-regulate the protein expression of TrkB, p-PI3K, p-Akt, Bcl-2, and down-regulate the protein expression of Bax, and increase the level of Bcl-2/Bax. CONCLUSIONS: The study demonstrated that LHA pre-administration could regulate the PI3K/Akt pathway by increasing BDNF levels, and play a neuroprotective role in cerebral ischemia-reperfusion injury.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Leonurus/química , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor trkB/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Encéfalo/enzimologia , Encéfalo/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/enzimologia , Infarto da Artéria Cerebral Média/patologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fosforilação , Ratos Sprague-Dawley , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Transdução de Sinais
7.
Life Sci ; 258: 118204, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763296

RESUMO

AIMS: Liver kinase B1 (LKB1) is a serine/threonine kinase. Although many biological functions of LKB1 have been identified, the role of hypothalamic LKB1 in the regulation of central energy metabolism and susceptibility to obesity is unknown. Therefore, we constructed POMC neuron-specific LKB1 knockout mice (PomcLkb1 KO) and studied it at the physiological, morphological, and molecular biology levels. MAIN METHODS: Eight-week-old male PomcLkb1 KO mice and their littermates were fed a standard chow fat diet (CFD) or a high-fat diet (HFD) for 3 months. Body weight and food intake were monitored. Dual-energy X-ray absorptiometry was used to measure the fat mass and lean mass. Glucose and insulin tolerance tests and serum biochemical markers were evaluated in the experimental mice. In addition, the levels of peripheral lipogenesis genes and central energy metabolism were measured. KEY FINDINGS: PomcLkb1 KO mice did not exhibit impairments under normal physiological conditions. After HFD intervention, the metabolic phenotype of the PomcLkb1 KO mice changed, manifesting as increased food intake and an enhanced obesity phenotype. More seriously, PomcLkb1 KO mice showed increased leptin resistance, worsened hypothalamic inflammation and reduced POMC neuronal expression. SIGNIFICANCE: We provide evidence that LKB1 in POMC neurons plays a significant role in regulating energy homeostasis. LKB1 in POMC neurons emerges as a target for therapeutic intervention against HFD-induced obesity and metabolic diseases.


Assuntos
Deleção de Genes , Neurônios/enzimologia , Obesidade/enzimologia , Pró-Opiomelanocortina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Tecido Adiposo/patologia , Animais , Dieta Hiperlipídica , Epididimo/patologia , Comportamento Alimentar , Regulação da Expressão Gênica , Glucose/metabolismo , Hipotálamo/patologia , Inflamação/patologia , Leptina/metabolismo , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Obesidade/sangue , Obesidade/patologia , Pró-Opiomelanocortina/genética , Aumento de Peso
8.
Int J Immunopathol Pharmacol ; 34: 2058738420910005, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32635836

RESUMO

This current research was performed to investigate the role of typhae pollen polysaccharides (TPP) in hypoxia-treated PC12 cell which was an in vitro cell model of cerebral ischemia. Hypoxia-treated cells were treated with TPP for 12 h. Cell viability and apoptosis were detected by 3-(4,5-dimethylthiazol-2-yl)-2 5-diphenyl-2H-tetrazolium bromide (MTT) assay and flow cytometry, respectively. Cell apoptotic proteins and PI3K/AKT and Ras/Raf/MEK/ERK signal pathway-associated proteins were also examined by western blot. Furthermore, abnormal expression of miR-34a and silent information regulator 1 (SIRT1) was achieved by transfection. Besides, the expression of miR-34a and SIRT1 was examined by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of SIRT1 was detected by qRT-PCR and western blot. The relationship between miR-34a and SIRT1 was verified by luciferase assay. We found that TPP enhanced cell viability and inhibited apoptosis in hypoxia-treated PC12 cells. Moreover, TPP increased the accumulated levels of Bcl-2 while decreased expression of Bax, cleaved Caspase-3, and cleaved PARP. TPP downregulated miR-34a expression while induced by hypoxia. Further results showed that miR-34a overexpression reversed the results led by TPP in cell viability, apoptosis, and its related proteins. In addition, SIRT1 was upregulated by TPP and was verified to be a target of miR-34a. Silence of SIRT1 led to the opposite results led by TPP. In the end, TPP activated PI3K/AKT and Ras/Raf/MEK/ERK signal pathways. In conclusion, TPP plays important roles in regulating cell viability and apoptosis in hypoxia-treated PC12 cells via modulating miR-34a/SIRT1, as well as activating PI3K/AKT and Ras/Raf/MEK/ERK signal pathways.


Assuntos
Apoptose/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , MicroRNAs/metabolismo , Neurônios/efeitos dos fármacos , Pólen , Polissacarídeos/farmacologia , Sirtuína 1/metabolismo , Typhaceae , Animais , Isquemia Encefálica/enzimologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Hipóxia Celular , MicroRNAs/genética , Neurônios/enzimologia , Neurônios/patologia , Células PC12 , Pólen/química , Polissacarídeos/isolamento & purificação , Ratos , Transdução de Sinais , Sirtuína 1/genética , Typhaceae/química
9.
Mar Drugs ; 18(7)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707633

RESUMO

In this study, we found that E. prolifera extract (EAEP) exhibits neuroprotective effects in oxidative stress-induced neuronal cells. EAEP improved cell viability as well as attenuated the formation of intracellular reactive oxygen species (ROS) and apoptotic bodies in glutamate-treated hippocampal neuronal cells (HT-22). Furthermore, EAEP improved the expression of brain-derived neurotrophic factor (BDNF) and antioxidant enzymes such as heme oxygenase-1 (HO-1), NAD(P)H quinine oxidoreductase-1 (NQO-1), and glutamate-cysteine ligase catalytic subunit (GCLC) via the tropomyosin-related kinase receptor B/ protein kinase B (TrkB/Akt) signaling pathway. In contrast, the pre-incubation of K252a, a TrkB inhibitor, or MK-2206, an Akt-selective inhibitor, ameliorated the neuroprotective effects of EAEP in oxidative stress-induced neuronal cells. These results suggest that EAEP protects neuronal cells against oxidative stress-induced apoptosis by upregulating the expression of BDNF and antioxidant enzymes via the activation of the TrkB/Akt pathway. In conclusion, such an effect of EAEP, which is rich in carotenoid-derived compounds, may justify its application as a food supplement in the prevention and treatment of neurodegenerative disorders.


Assuntos
Antioxidantes/farmacologia , Carotenoides/farmacologia , Hipocampo/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Alga Marinha/química , Animais , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Carotenoides/isolamento & purificação , Linhagem Celular , Ácido Glutâmico/toxicidade , Hipocampo/enzimologia , Hipocampo/patologia , Camundongos , Neurônios/enzimologia , Neurônios/patologia , Fármacos Neuroprotetores/isolamento & purificação , Transdução de Sinais
10.
Sci Rep ; 10(1): 8813, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483199

RESUMO

Sleep abnormality often accompanies the impairment of cognitive function. Both rapid eye movement (REM) and non-REM (NREM) sleep have associated with improved memory performance. However, the role of composition in NREM sleep, consisting of light and deep NREM, for memory formation is not fully understood. We investigated how the dynamics of NREM sleep states influence memory consolidation. Thalamocortical (TC) neuron-specific phospholipase C ß4 (PLCß4) knockout (KO) increased the total duration of NREM sleep, consisting of destabilized light NREM and stabilized deep NREM. Surprisingly, the longer NREM sleep did not improve memory consolidation but rather impaired it in TC-specific PLCß4 KO mice. Memory function was positively correlated with the stability of light NREM and spindle activity occurring in maintained light NREM period. Our study suggests that a single molecule, PLCß4, in TC neurons is critical for tuning the NREM sleep states and thus affects sleep-dependent memory formation.


Assuntos
Consolidação da Memória/fisiologia , Transtornos da Memória/enzimologia , Proteínas do Tecido Nervoso/fisiologia , Fosfolipase C beta/fisiologia , Fases do Sono/fisiologia , Tálamo/enzimologia , Animais , Córtex Cerebral/enzimologia , Condicionamento Clássico/fisiologia , Ritmo Delta/fisiologia , Eletroencefalografia , Eletromiografia , Éxons/genética , Comportamento Exploratório , Medo/fisiologia , Masculino , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Neurônios/enzimologia , Fosfolipase C beta/deficiência , Reconhecimento Psicológico , Deleção de Sequência , Sono de Ondas Lentas/fisiologia , Fatores de Tempo
11.
J Ethnopharmacol ; 261: 113061, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32525065

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: TG-decoction (Tiao Geng decoction) is the extract of a Chinese herb mixture that has been used for treating menopausal symptoms for over 30 years. We have previously reported anti-aging and anti-oxidative effects of the TG-decoction on hypothalamic neurons in ovariectomized (OVX) rats. AIM OF THE STUDY: The present study further investigates the effects of TG-decoction on the prevention of aging-related ultrastructural changes in menopausal hypothalamic neurons and the likely molecular mechanism. MATERIALS AND METHODS: A total of 120 four-month-old female SPF Sprague Dawley rats were divided into six groups. Five groups were ovariectomized (OVX) and one group served as a sham control. Three OVX groups received TG-decoction at three different doses. The remaining two OVX groups served as positive and negative controls by receiving estradiol valerate and saline solution. The sham group received saline. After one month, aging-related ultrastructural alterations in hypothalamic neurons were evaluated using transmission electron microscopy. Nissl staining was used to assess the pathomorphological changes of the hypothalamic neurons. Cell apoptosis was evaluated by TUNEL. Expression of Bcl-2 family genes was studied using qRT-PCR. Expression of the apoptosis-related proteins ASK1, MKK7, JNK, c-Jun, Bax, Casp3 and Bcl-2 was studied using western blotting. RESULTS: Ovariectomy of female rats led to visible damage and aging-like alterations in the mitochondria and endoplasmic reticulum as well as large deposits of lipofuscin in hypothalamic tissue. TG-decoction treatment prevented this visible damage and lipofuscin deposition, increased the number of nerve cells and normally-shaped Nissl bodies, and reduced the number of TUNEL-positive cells. Expression of Bcl-2 gene was increased, while Bax gene reduced. Expression of the proteins ASK1, MKK7, JNK, c-Jun, Bax and Casp3 was reduced, while that of Bcl-2 was increased. CONCLUSION: TG-decoction reduces aging-related ultrastructural changes in hypothalamic neurons, likely by suppressing ASK1/MKK7/JNK-mediated apoptosis in neuronal mitochondria or nuclei.


Assuntos
Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Hipotálamo/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Menopausa/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Fatores Etários , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/ultraestrutura , Feminino , Hipotálamo/enzimologia , Hipotálamo/patologia , Menopausa/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Neurônios/enzimologia , Neurônios/ultraestrutura , Ovariectomia , Ratos Sprague-Dawley , Transdução de Sinais , Síndrome
12.
Naunyn Schmiedebergs Arch Pharmacol ; 393(9): 1635-1648, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32377769

RESUMO

Pregabalin abuse has become an emerging concern; thus, the current study has been designed to study the neurotoxic hazards of prolonged high-dose of pregabalin (akin to that abused by addicts) and to evaluate the effect of alpha tocopherol as a possible ameliorating agent. The current study evaluated the brain neurotransmitters; dopamine, glutamate, and norepinephrine. The study also assessed the expression of the apoptosis-related markers Bax, Bcl2, and caspase 3. Western-blotted analysis of the three major mitogen-activated protein kinases (MAPKs), the c-JUN N-terminal kinase (JNK), the p38 MAPK, and the extracellular signal-regulated kinase (ERK), has also been performed. The study also evaluated oxidative stress via assessment of the cortical tissue levels of reduced glutathione and malondialdehyde and the activity of superoxide dismutase. Histopathological examination and histomorphometric evaluation of the darkly degenerated cortical neurons have also been performed. Pregabalin in high doses (150 mg/kg/day and 300 mg/kg/day) disrupted the ERK/JNK/p38-MAPK signaling, reversed the bax/bcl2 ratio, and induced oxidative stress. It also diminished the release of dopamine, glutamate, and norepinephrine and increased the count of degenerated neurons. Alpha tocopherol treatment significantly attenuated the deleterious effects induced by pregabalin. The role of alpha tocopherol in ameliorating the oxidative stress injury, and apoptosis induced by pregabalin, along with its role in normalizing neurotransmitters, modulating the ERK/JNK/p38-MAPK signaling pathways and improving the histopathological cortical changes, offers alpha tocopherol as a promising adjunctive therapy in patients undergoing prolonged pregabalin therapy as those suffering from prolonged seizures and neuropathies.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Pregabalina/toxicidade , alfa-Tocoferol/farmacologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Masculino , Neurônios/enzimologia , Neurônios/patologia , Síndromes Neurotóxicas/enzimologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Fosforilação , Ratos Wistar , Transdução de Sinais
13.
Nat Commun ; 11(1): 1962, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327659

RESUMO

Topoisomerase 1 (TOP1) relieves torsional stress in DNA during transcription and facilitates the expression of long (>100 kb) genes, many of which are important for neuronal functions. To evaluate how loss of Top1 affected neurons in vivo, we conditionally deleted (cKO) Top1 in postmitotic excitatory neurons in the mouse cerebral cortex and hippocampus. Top1 cKO neurons develop properly, but then show biased transcriptional downregulation of long genes, signs of DNA damage, neuroinflammation, increased poly(ADP-ribose) polymerase-1 (PARP1) activity, single-cell somatic mutations, and ultimately degeneration. Supplementation of nicotinamide adenine dinucleotide (NAD+) with nicotinamide riboside partially blocked neurodegeneration, and increased the lifespan of Top1 cKO mice by 30%. A reduction of p53 also partially rescued cortical neuron loss. While neurodegeneration was partially rescued, behavioral decline was not prevented. These data indicate that reducing neuronal loss is not sufficient to limit behavioral decline when TOP1 function is disrupted.


Assuntos
DNA Topoisomerases Tipo I/deficiência , Instabilidade Genômica , Doenças Neurodegenerativas/enzimologia , Neurônios/enzimologia , Animais , Apoptose/efeitos dos fármacos , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Dano ao DNA , DNA Topoisomerases Tipo I/genética , Hipocampo/enzimologia , Hipocampo/patologia , Inflamação , Camundongos , Camundongos Knockout , Mortalidade Prematura , Atividade Motora , Mutação , NAD/administração & dosagem , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Niacinamida/administração & dosagem , Niacinamida/análogos & derivados , Poli(ADP-Ribose) Polimerase-1/metabolismo , Compostos de Piridínio
14.
J Comput Aided Mol Des ; 34(6): 671-682, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32040807

RESUMO

The c-Jun N-terminal kinase 3 (JNK3) signaling cascade is activated during cerebral ischemia leading to neuronal damage. The present study was carried out to identify and evaluate novel JNK3 inhibitors using in-silico and in-vitro approach. A total of 380 JNK3 inhibitors belonging to different organic groups was collected from the previously reported literature. These molecules were used to generate a pharmacophore model. This model was used to screen a chemical database (SPECS) to identify newer molecules with similar chemical features. The top 1000 hits molecules were then docked against the JNK3 enzyme coordinate following GLIDE rigid receptor docking (RRD) protocol. Best posed molecules of RRD were used during induced-fit docking (IFD), allowing receptor flexibility. Other computational predictions such as binding free energy, electronic configuration and ADME/tox were also calculated. Inferences from the best pharmacophore model suggested that, in order to have specific JNK3 inhibitory activity, the molecules must possess one H-bond donor, two hydrophobic and two ring features. Docking studies suggested that the main interaction between lead molecules and JNK3 enzyme consisted of hydrogen bond interaction with methionine 149 of the hinge region. It was also observed that the molecule with better MM-GBSA dG binding free energy, had greater correlation with JNK3 inhibition. Lead molecule (AJ-292-42151532) with the highest binding free energy (dG = 106.8 Kcal/mol) showed better efficacy than the SP600125 (reference JNK3 inhibitor) during cell-free JNK3 kinase assay (IC50 = 58.17 nM) and cell-based neuroprotective assay (EC50 = 7.5 µM).


Assuntos
Proteína Quinase 10 Ativada por Mitógeno/química , Fármacos Neuroprotetores/química , Compostos Orgânicos/química , Inibidores de Proteínas Quinases/química , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/enzimologia , Isquemia Encefálica/patologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Proteína Quinase 10 Ativada por Mitógeno/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade , Interface Usuário-Computador
15.
Psychopharmacology (Berl) ; 236(4): 1293-1301, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30539267

RESUMO

RATIONALE: Lycium barbarum polysaccharide (LBP) is known to promote reproductive functions. However, its role in noncontact erection (NCE) of penis initiated by brain regions including medial preoptic area (MPOA) and paraventricular nucleus (PVN) regions responsible for sexual behavior has not been investigated. OBJECTIVES: Therefore, this study initially investigated the effects of LBP on male sexual function, and subsequently, the mechanistic insight was investigated through assessing the expression of neuronal nitric oxide synthase (nNOS) in the MPOA and PVN. METHODS: The adult male rats were treated with 100 mg/kg of LBP or vehicle by oral gavage. Before and after 14 days of treatment, copulatory behavior and noncontact erection (NCE) were recorded. After the last behavioral test, the brain was isolated to measure nNOS expression in the MPOA and PVN. RESULTS: Data showed that LBP treatment significantly increased both the frequencies of intromission as well as ejaculation, compared to the control group. Whereas, a reduced post-ejaculatory interval was observed compared to same group on day 0. Furthermore, the treatment led to an increased intromission ratio, inter-intromission interval, and the number of MPOA nNOS-immunoreactive cells (nNOS-ir). Additionally, a significantly positive correlation between ejaculation frequency and MPOA nNOS-ir cells was recorded. Of note, LBP treatment had no effects on NCE and PVN nNOS-ir expression. CONCLUSION: These findings suggest that LBP enhances sexual behavior through increased nNOS expression in the MPOA in male rats.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Ereção Peniana/efeitos dos fármacos , Área Pré-Óptica/efeitos dos fármacos , Comportamento Sexual Animal/efeitos dos fármacos , Animais , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Feminino , Masculino , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Óxido Nítrico , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/enzimologia , Ereção Peniana/fisiologia , Área Pré-Óptica/enzimologia , Ratos , Ratos Long-Evans , Comportamento Sexual Animal/fisiologia , Testículo/efeitos dos fármacos , Testículo/enzimologia
16.
Peptides ; 113: 1-10, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30590076

RESUMO

The Neuropeptide EI (NEI, glutamic acid- isoleucine amide) participates in neuroendocrine function. Previously we demonstrated that NEI concentration is regulated by thyroid hormones in discrete hypothalamic areas in rats. We observed that the thyroid status affects the dopaminergic regulation of the pituitary hormones. In this study we explored possible interactions between NEI and tyrosine hydroxylase (TH) containing elements in selected hypothalamic areas of male rats. Neuronal somas, terminals and boutons were assessed by confocal microscopy, in hypo- and hyperthyroid animals. We observed a remodeling of the contacts between the TH and NEI immunoreactive elements in the incerto-hypothalamic area (IHy, also known as rostromedial zona incerta) according to thyroid function. However, in the dorsolateral zone of the peduncular part of the lateral hypothalamus (DL-PLH) the thyroid hormones affect the dendritic trees of the neurons without perturbing the overall NEI/TH contacts. Also, we demonstrated that TRH Receptor 1 (TRH-R1) is colocalized in NEI immunoreactive neurons in the peduncular part of the lateral hypothalamus (PLH) and NEI precursor mRNA expression increased by hypothyroidism indicating that NEI neurons are responsive to the feedback mechanisms of the Hypothalamic Pituitary-Thyroid Axis (HPT). In conclusion, the hypothyroid status seems to increase the interactions between the NEI neurons and the dopaminergic pathways while hyperthyroidism either decreases or displays no effects. Altogether these observations support the participation of the IHy and PLH NEI as a modulating component of the HPT suggesting that altered neuroendocrine, behavioral and cognitive dysfunctions induced by dysthyroidism could be in part mediated by NEI.


Assuntos
Hipertireoidismo/metabolismo , Hipotálamo/metabolismo , Hipotireoidismo/metabolismo , Plasticidade Neuronal , Oligopeptídeos , Tirosina 3-Mono-Oxigenase , Animais , Hipertireoidismo/enzimologia , Hipertireoidismo/fisiopatologia , Hipotálamo/enzimologia , Hipotálamo/fisiopatologia , Hipotireoidismo/enzimologia , Hipotireoidismo/fisiopatologia , Masculino , Neurônios/enzimologia , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Ratos Wistar
17.
Biomed Pharmacother ; 107: 329-337, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30098550

RESUMO

BACKGROUND: Early brain injury (EBI) plays a critical role in determining the outcome of subarachnoid hemorrhage (SAH). The present study was designed to investigate the role of EGb 761, a standardized extract of Ginkgo biloba, in SAH-induced EBI and to explore its potential mechanism of action. METHOD: A rat SAH model was established by the endovascular perforation process. Doses of 10, 50 and 100 mg/kg EGb 761 were injected intraperitoneally 2 h after SAH was induced. Mortality, SAH grade, neurological score and brain water content were measured 24 h after SAH was induced. A Western blot assay was performed to assess the expression of the apoptosis-related proteins Bax, Bcl-2, cleaved caspase-3, Akt and phosphorylated Akt (p-Akt). Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and neuronal nuclei (NeuN) double immunofluorescence staining were used to detect apoptotic neurons. RESULTS: Animals suffered from serious neurological deficits and increased brain water content after induction of SAH. Rats treated with EGb 761 experienced dose-dependent attenuation of neurological dysfunction and decreased brain water content. In addition, EGb 761 significantly activated Akt signaling accompanied by increased Bcl-2 levels and decreased expression of Bax and cleaved caspase-3. Moreover, EGb 761 decreased the number of TUNEL/NeuN-positive cells in a dose-dependent manner. However, all the beneficial effects of EGb 761 for SAH were abolished by the Akt inhibitor MK2206. CONCLUSION: Our results indicated that EGb 761 could ameliorate SAH-induced EBI and that the neuroprotective effects of EGb 761 against SAH were exerted via suppression of neuronal apoptosis through activation of the Akt pathway.


Assuntos
Apoptose , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Neurônios/patologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hemorragia Subaracnóidea/complicações , Animais , Apoptose/efeitos dos fármacos , Edema Encefálico/complicações , Edema Encefálico/tratamento farmacológico , Edema Encefálico/patologia , Edema Encefálico/fisiopatologia , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Caspase 3/metabolismo , Ginkgo biloba , Masculino , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
18.
Biomed Res ; 39(3): 149-158, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29899190

RESUMO

Gonadotropin-releasing hormone (GnRH) is secreted from hypothalamic neurons (GnRH neurons) and stimulates anterior pituitary gonadotrophs to synthesize and secrete gonadotropins. In addition to gonadotrophs, GnRH neurons also express GnRH receptors, and the autocrine action of GnRH is reportedly involved in the regulation of functions of GnRH neurons. There is accumulating evidence that extracellular signal-regulated kinase (ERK), one of mitogen-activated protein kinases (MAPKs), is activated by GnRH and involved in various effects of GnRH in GnRH neurons. In the present study, we performed microarray analysis to examine the types of genes whose expression was regulated by GnRH in immortalized mouse GnRH neurons (GT1-7 cells). We found that 257 genes among 55,681 genes examined were up-regulated after 30-min treatment of GT1-7 cells with GnRH. These up-regulated genes included four dual-specificity MAPK phosphatases (DUSPs), DUSP1, DUSP2, DUSP5, and DUSP6. Reverse transcription-polymerase chain reaction analysis confirmed that the mRNA levels of DUSP5 and DUSP6 were robustly increased within 30 min. U0126, an inhibitor of ERK activation, completely inhibited the increases in the mRNA levels of DUSP5 and DUSP6. Immunoblotting analysis revealed that ERK activation peaked at 5 min and declined steeply at 60 min, whereas DUSP5 and DUSP6 proteins were increased from 60 min. It was notable that down-regulation of DUSP6 augmented GnRH-induced ERK activation approximately 1.7-fold at 60 min. These results suggested that the up-regulation of DUSP6 regulates the duration of ERK activation at least in part.


Assuntos
Fosfatase 6 de Especificidade Dupla/biossíntese , Fosfatases de Especificidade Dupla/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/farmacologia , Hipotálamo/enzimologia , Neurônios/enzimologia , Regulação para Cima/efeitos dos fármacos , Animais , Linhagem Celular Transformada , Hipotálamo/citologia , Camundongos , Neurônios/citologia
19.
JCI Insight ; 3(9)2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29720569

RESUMO

Elevated levels of brain natriuretic peptide (BNP) are regarded as an early compensatory response to cardiac myocyte hypertrophy, although exogenously administered BNP shows poor clinical efficacy in heart failure and hypertension. We tested whether phosphodiesterase 2A (PDE2A), which regulates the action of BNP-activated cyclic guanosine monophosphate (cGMP), was directly involved in modulating Ca2+ handling from stellate ganglia (SG) neurons and cardiac norepinephrine (NE) release in rats and humans with an enhanced sympathetic phenotype. SG were also isolated from patients with sympathetic hyperactivity and healthy donor patients. PDE2A activity of the SG was greater in both spontaneously hypertensive rats (SHRs) and patients compared with their respective controls, whereas PDE2A mRNA was only high in SHR SG. BNP significantly reduced the magnitude of the calcium transients and ICaN in normal Wistar Kyoto (WKY) SG neurons, but not in the SHRs. cGMP levels stimulated by BNP were also attenuated in SHR SG neurons. Overexpression of PDE2A in WKY neurons recapitulated the calcium phenotype seen in SHR neurons. Functionally, BNP significantly reduced [3H]-NE release in the WKY rats, but not in the SHRs. Blockade of overexpressed PDE2A with Bay 60-7550 or overexpression of catalytically inactive PDE2A reestablished the modulatory action of BNP in SHR SG neurons. This suggests that PDE2A may be a key target in modulating the action of BNP to reduce sympathetic hyperactivity.


Assuntos
Doenças do Sistema Nervoso Autônomo/metabolismo , Cálcio/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Peptídeo Natriurético Encefálico/farmacologia , Neurônios/metabolismo , Norepinefrina/metabolismo , Gânglio Estrelado/enzimologia , Adulto , Idoso , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/fisiopatologia , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Estudos de Casos e Controles , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Campos Eletromagnéticos , Feminino , Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/enzimologia , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Gânglio Estrelado/patologia , Transmissão Sináptica , Função Ventricular , Adulto Jovem
20.
Rejuvenation Res ; 21(5): 431-441, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29847217

RESUMO

Due to requirement of novel memory enhancer for menopausal women, this study aimed to determine safety and effect of the functional drink containing the extracts of purple corn cob and pandan leaves (PCP) on memory and brain changes in experimental menopause induced by bilateral ovariectomy (OVX). Acute toxicity of PCP was carried out in female Wistar rats. The results showed that LD50 was more than 2000 mg/kg BW. To determine the cognitive enhancing effect of PCP, OVX rats were orally treated with PCP at the doses of 20, 40, and 80 mg/kg BW for 28 days. The spatial memory was assessed every 7 days throughout the study period. At the end of the study, oxidative stress status, acetylcholinesterase (AChE) activity, monoamine oxidase (MAO) activity, neuronal density, and extracellular signal regulated protein kinase 1 and 2 (ERK1/2) signaling in hippocampus were measured. The improved spatial memory, ERK1/2 expression, and neuron density in dentate gyrus of hippocampus were observed in PCP-treated rats. In addition, a reduction of AChE activity was also observed. Unfortunately, no improved oxidative stress status was observed. Taken altogether, PCP exerts the memory-enhancing effect partly through the suppression of AChE and the increase in ERK signaling in the hippocampus.


Assuntos
Colinérgicos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neurônios/efeitos dos fármacos , Nootrópicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Memória Espacial/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Neurônios/enzimologia , Ovariectomia , Ratos , Ratos Wistar , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA