Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Comp Neurol ; 532(2): e25587, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335048

RESUMO

We examined the presence/absence and parcellation of cholinergic neurons in the hypothalami of five birds: a Congo grey parrot (Psittacus erithacus), a Timneh grey parrot (P. timneh), a pied crow (Corvus albus), a common ostrich (Struthio camelus), and an emu (Dromaius novaehollandiae). Using immunohistochemistry to an antibody raised against the enzyme choline acetyltransferase, hypothalamic cholinergic neurons were observed in six distinct clusters in the medial, lateral, and ventral hypothalamus in the parrots and crow, similar to prior observations made in the pigeon. The expression of cholinergic nuclei was most prominent in the Congo grey parrot, both in the medial and lateral hypothalamus. In contrast, no evidence of cholinergic neurons in the hypothalami of either the ostrich or emu was found. It is known that the expression of sleep states in the ostrich is unusual and resembles that observed in the monotremes that also lack hypothalamic cholinergic neurons. It has been proposed that the cholinergic system acts globally to produce and maintain brain states, such as those of arousal and rapid-eye-movement sleep. The hiatus in the cholinergic system of the ostrich, due to the lack of hypothalamic cholinergic neurons, may explain, in part, the unusual expression of sleep states in this species. These comparative anatomical and sleep studies provide supportive evidence for global cholinergic actions and may provide an important framework for our understanding of one broad function of the cholinergic system and possible dysfunctions associated with global cholinergic neural activity.


Assuntos
Dromaiidae , Struthioniformes , Animais , Dromaiidae/metabolismo , Struthioniformes/metabolismo , Encéfalo/metabolismo , Hipotálamo/metabolismo , Neurônios Colinérgicos/metabolismo , Sono/fisiologia , Colinérgicos , Colina O-Acetiltransferase/metabolismo
2.
Cell ; 186(26): 5739-5750.e17, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38070510

RESUMO

Conscious perception is greatly diminished during sleep, but the underlying circuit mechanism is poorly understood. We show that cortical ignition-a brain process shown to be associated with conscious awareness in humans and non-human primates-is strongly suppressed during non-rapid-eye-movement (NREM) sleep in mice due to reduced cholinergic modulation and rapid inhibition of cortical responses. Brain-wide functional ultrasound imaging and cell-type-specific calcium imaging combined with optogenetics showed that activity propagation from visual to frontal cortex is markedly reduced during NREM sleep due to strong inhibition of frontal pyramidal neurons. Chemogenetic activation and inactivation of basal forebrain cholinergic neurons powerfully increased and decreased visual-to-frontal activity propagation, respectively. Furthermore, although multiple subtypes of dendrite-targeting GABAergic interneurons in the frontal cortex are more active during wakefulness, soma-targeting parvalbumin-expressing interneurons are more active during sleep. Chemogenetic manipulation of parvalbumin interneurons showed that sleep/wake-dependent cortical ignition is strongly modulated by perisomatic inhibition of pyramidal neurons.


Assuntos
Eletroencefalografia , Parvalbuminas , Sono , Animais , Camundongos , Neurônios Colinérgicos/fisiologia , Lobo Frontal/metabolismo , Parvalbuminas/metabolismo , Sono/fisiologia , Vigília/fisiologia
3.
FASEB J ; 37(6): e22944, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37191946

RESUMO

Basal forebrain cholinergic neuron (BFCN) degeneration is a hallmark of Down syndrome (DS) and Alzheimer's disease (AD). Current therapeutics in these disorders have been unsuccessful in slowing disease progression, likely due to poorly understood complex pathological interactions and dysregulated pathways. The Ts65Dn trisomic mouse model recapitulates both cognitive and morphological deficits of DS and AD, including BFCN degeneration and has shown lifelong behavioral changes due to maternal choline supplementation (MCS). To test the impact of MCS on trisomic BFCNs, we performed laser capture microdissection to individually isolate choline acetyltransferase-immunopositive neurons in Ts65Dn and disomic littermates, in conjunction with MCS at the onset of BFCN degeneration. We utilized single population RNA sequencing (RNA-seq) to interrogate transcriptomic changes within medial septal nucleus (MSN) BFCNs. Leveraging multiple bioinformatic analysis programs on differentially expressed genes (DEGs) by genotype and diet, we identified key canonical pathways and altered physiological functions within Ts65Dn MSN BFCNs, which were attenuated by MCS in trisomic offspring, including the cholinergic, glutamatergic and GABAergic pathways. We linked differential gene expression bioinformatically to multiple neurological functions, including motor dysfunction/movement disorder, early onset neurological disease, ataxia and cognitive impairment via Ingenuity Pathway Analysis. DEGs within these identified pathways may underlie aberrant behavior in the DS mice, with MCS attenuating the underlying gene expression changes. We propose MCS ameliorates aberrant BFCN gene expression within the septohippocampal circuit of trisomic mice through normalization of principally the cholinergic, glutamatergic, and GABAergic signaling pathways, resulting in attenuation of underlying neurological disease functions.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Síndrome de Down , Camundongos , Animais , Síndrome de Down/genética , Síndrome de Down/metabolismo , Camundongos Transgênicos , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/patologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Colina/metabolismo , Suplementos Nutricionais
4.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901896

RESUMO

Mild thiamine deficiency aggravates Zn accumulation in cholinergic neurons. It leads to the augmentation of Zn toxicity by its interaction with the enzymes of energy metabolism. Within this study, we tested the effect of Zn on microglial cells cultivated in a thiamine-deficient medium, containing 0.003 mmol/L of thiamine vs. 0.009 mmol/L in a control medium. In such conditions, a subtoxic 0.10 mmol/L Zn concentration caused non-significant alterations in the survival and energy metabolism of N9 microglial cells. Both activities of the tricarboxylic acid cycle and the acetyl-CoA level were not decreased in these culture conditions. Amprolium augmented thiamine pyrophosphate deficits in N9 cells. This led to an increase in the intracellular accumulation of free Zn and partially aggravated its toxicity. There was differential sensitivity of neuronal and glial cells to thiamine-deficiency-Zn-evoked toxicity. The co-culture of neuronal SN56 with microglial N9 cells reduced the thiamine-deficiency-Zn-evoked inhibition of acetyl-CoA metabolism and restored the viability of the former. The differential sensitivity of SN56 and N9 cells to borderline thiamine deficiency combined with marginal Zn excess may result from the strong inhibition of pyruvate dehydrogenase in neuronal cells and no inhibition of this enzyme in the glial ones. Therefore, ThDP supplementation can make any brain cell more resistant to Zn excess.


Assuntos
Microglia , Deficiência de Tiamina , Humanos , Microglia/metabolismo , Acetilcoenzima A/metabolismo , Deficiência de Tiamina/metabolismo , Neurônios Colinérgicos/metabolismo , Tiamina Pirofosfato/metabolismo , Colinérgicos/metabolismo , Zinco/metabolismo
5.
Bratisl Lek Listy ; 124(4): 267-272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36598319

RESUMO

BACKGROUND: Cholinergic neurons, a type of neurons found in central nervous system, play a vital role in muscle movement and activities. Cholinergic neurons degeneration is the main pathological symptom of neurodegenerative diseases. Among a variety of stem cells, iPSCs have emerged as a promising candidate for transplantation to improve the repair of neuronal lesion sites. However, the establishment of an appropriate induction method to yield large numbers of cholinergic neurons has yet to be determined. Here, we studied the differentiation potential of iPSCs to generate cholinergic neurons by developing a new optimized differentiation protocol. METHODS: The iPSCs were harvested on 6-well matrigel-coated plate and incubated with serum­free DMEM/F12 with 2 % B27 supplement, 20 ng/ml the basic fibroblast growth factor and 20 ng/ml epidermal growth factor for 48 hours. Then, the pre-induced cells were treated in neuronal induction medium supplemented with all-trans retinoic acid, sonic hedgehog, 100 ng/ml glial-derived neurotrophic factor and 200 ng/ml brain-derived neurotrophic factor for 7 days. Cell viability during induction stages was tested by MTT assay. Differentiated cells were evaluated with crystal violet staining, immunocytochemistry and real­time PCR. RESULTS: Our results showed that the survival rate of iPSCs leveled out and was similar to that in the control group following the differentiation process. Immunochemistry results revealed that the expression of ChAT was observed in cells in both pre­induction and induction stages with a significantly higher expression level at the induction stage as compared to the pre-induction stage. However, none of these markers was expressed in the iPSCs. Cresyl violet staining confirmed the neuronal phenotype of differentiated cells. The induction group significantly expressed the higher levels of Islet1, Olig2 and HB9, whereas pluripotency markers including those of Oct4 and Nestin plunged. CONCLUSION: Our investigation represents a highly efficient protocol for iPSCs differentiation toward cholinergic neurons which could be used for further preclinical transplantation studies (Tab. 1, Fig. 5, Ref. 35). Text in PDF www.elis.sk Keywords: induced pluripotent stem cells, cholinergic neurons, neurotrophic factors, induction protocol, preclinical transplantation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Hedgehog/metabolismo , Diferenciação Celular , Neurônios Colinérgicos
6.
J Comp Neurol ; 530(7): 1081-1098, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34448209

RESUMO

Cholinergic projections from the brainstem serve as important modulators of activity in visual thalamic nuclei such as the dorsal lateral geniculate nucleus (dLGN). While these projections have been studied in several mammals, a comprehensive examination of their organization in the mouse is lacking. We used the retrograde transport of viruses or cholera toxin subunit B (CTB) injected in the dLGN, immunocytochemical labeling with antibodies against choline acetyltransferase (ChAT), brain nitric oxide synthase (BNOS), and vesicular acetylcholine transporter (VAChT), ChAT-Cre mice crossed with a reporter line (Ai9), as well as brainstem virus injections in ChAT-Cre mice to examine the pattern of thalamic innervation from cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg), laterodorsal tegmental nucleus (LDTg), and the parabigeminal nucleus (PBG). Retrograde tracing demonstrated that the dLGN receives input from the PPTg, LDTg, and PBG. Viral tracing in ChAT-Cre mice and retrograde tracing combined with immunocytochemistry revealed that many of these inputs originate from cholinergic neurons in the PBG and PPTg. Most notable was an extensive cholinergic projection from the PBG which innervated most of the contralateral dLGN, with an especially dense concentration in the dorsolateral shell, as well as a small region in the dorsomedial pole of the ipsilateral dLGN. The PPTg was found to provide a sparse somewhat diffuse innervation of the ipsilateral dLGN. Neurons in the PPTg co-expressed ChAT, BNOS, and VAChT, whereas PBG neurons expressed ChAT, but not BNOS or VAChT. These results highlight the presence of distinct cholinergic populations that innervate the mouse dLGN.


Assuntos
Corpos Geniculados , Tálamo , Animais , Colina O-Acetiltransferase/metabolismo , Colinérgicos , Fibras Colinérgicas/metabolismo , Neurônios Colinérgicos/metabolismo , Mamíferos , Camundongos , Tálamo/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina
7.
Nutrients ; 13(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445062

RESUMO

Allium hookeri (AH) is a medicinal food that has been used in Southeast Asia for various physiological activities. The objective of this study was to investigate the activation of the cholinergic system and the anti-neuroinflammation effects of AH on scopolamine-induced memory impairment in mice. Scopolamine (1 mg/kg body weight, i.p.) impaired the performance of the mice on the Y-maze test, passive avoidance test, and water maze test. However, the number of error actions was reduced in the AH groups supplemented with leaf and root extracts from AH. AH treatment improved working memory and avoidance times against electronic shock, increased step-through latency, and reduced the time to reach the escape zone in the water maze test. AH significantly improved the cholinergic system by decreasing acetylcholinesterase activity, and increasing acetylcholine concentration. The serum inflammatory cytokines (IL-1ß, IL-6, and IFN-γ) increased by scopolamine treatment were regulated by the administration of AH extracts. Overexpression of NF-κB signaling and cytokines in liver tissue due to scopolamine were controlled by administration of AH extracts. AH also significantly decreased Aß and caspase-3 expression but increased NeuN and ChAT. The results suggest that AH extracts improve cognitive effects, and the root extracts are more effective in relieving the scopolamine-induced memory impairment. They have neuroprotective effects and reduce the development of neuroinflammation.


Assuntos
Allium , Anti-Inflamatórios/farmacologia , Encéfalo/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Citocinas/sangue , Mediadores da Inflamação/sangue , Transtornos da Memória/tratamento farmacológico , Memória/efeitos dos fármacos , Nootrópicos/farmacologia , Extratos Vegetais/farmacologia , Acetilcolina/sangue , Acetilcolinesterase/sangue , Allium/química , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/psicologia , Modelos Animais de Doenças , Proteínas Ligadas por GPI/sangue , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Transtornos da Memória/psicologia , Camundongos Endogâmicos C57BL , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Raízes de Plantas , Escopolamina
8.
Front Immunol ; 12: 646259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194426

RESUMO

Porphyromonas gingivalis, a bacterium associated with periodontal disease, is a suspected cause of Alzheimer's disease. This bacterium is reliant on gingipain proteases, which cleave host proteins after arginine and lysine residues. To characterize gingipain susceptibility, we performed enrichment analyses of arginine and lysine proportion proteome-wide. Genes differentially expressed in brain samples with detected P. gingivalis reads were also examined. Genes from these analyses were tested for functional enrichment and specific neuroanatomical expression patterns. Proteins in the SRP-dependent cotranslational protein targeting to membrane pathway were enriched for these residues and previously associated with periodontal and Alzheimer's disease. These ribosomal genes are up-regulated in prefrontal cortex samples with detected P. gingivalis sequences. Other differentially expressed genes have been previously associated with dementia (ITM2B, MAPT, ZNF267, and DHX37). For an anatomical perspective, we characterized the expression of the P. gingivalis associated genes in the mouse and human brain. This analysis highlighted the hypothalamus, cholinergic neurons, and the basal forebrain. Our results suggest markers of neural P. gingivalis infection and link the cholinergic and gingipain hypotheses of Alzheimer's disease.


Assuntos
Neurônios Colinérgicos/metabolismo , Hipotálamo/metabolismo , Porphyromonas gingivalis/patogenicidade , Ribossomos/metabolismo , Doença de Alzheimer/etiologia , Retículo Endoplasmático/metabolismo , Feminino , Regulação da Expressão Gênica , Cisteína Endopeptidases Gingipaínas/fisiologia , Humanos , Masculino , Doenças Periodontais/etiologia
9.
Clin Transl Med ; 11(4): e397, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33931975

RESUMO

Alzheimer's disease (AD) poses a significant global health concern over the next several decades. Multiple hypotheses have been put forth that attempt to explain the underlying pathophysiology of AD. Many of these are briefly reviewed here, but to-date no disease-altering therapy has been achieved. Despite this, recent work expanding on the role of noradrenergic system dysfunction in both the pathogenesis and symptomatic exacerbation of AD has shown promise. The role norepinephrine (NE) plays in AD remains complicated but pre-tangle tau has consistently been shown to arise in the locus coeruleus (LC) of patients with AD decades before symptom onset. The current research reviewed here indicates NE can facilitate neuroprotective and memory-enhancing effects through ß adrenergic receptors, while α2A adrenergic receptors may exacerbate amyloid toxicity through a contribution to tau hyperphosphorylation. AD appears to involve a disruption in the balance between these two receptors and their various subtypes. There is also a poorly characterized interplay between the noradrenergic and cholinergic systems. LC deterioration leads to maladaptation in the remaining LC-NE system and subsequently inhibits cholinergic neuron function, eventually leading to the classic cholinergic disruption seen in AD. Understanding AD as a dysfunctional noradrenergic system, provides new avenues for the use of advanced neural stimulation techniques to both study and therapeutically target the earliest stages of neuropathology. Direct LC stimulation and non-invasive vagus nerve stimulation (VNS) have both demonstrated potential use as AD therapeutics. Significant work remains, though, to better understand the role of the noradrenergic system in AD and how electroceuticals can provide disease-altering treatments.


Assuntos
Neurônios Adrenérgicos/patologia , Doença de Alzheimer/patologia , Terapia por Estimulação Elétrica , Doença de Alzheimer/terapia , Animais , Neurônios Colinérgicos/patologia , Terapia por Estimulação Elétrica/métodos , Humanos , Norepinefrina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta/metabolismo
10.
Mol Neurobiol ; 58(8): 3665-3676, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33797061

RESUMO

We examined the neuropharmacological effects of ethanol extract of Ficus erecta Thunb leaves (EEFE) on cognitive dysfunction in a scopolamine (SCO)-induced memory impairment animal model. Memory impairment was measured using the Y-maze test and passive avoidance task (PAT). For 19 days, EEFE (100 or 200 mg/kg) was treated through oral administration. Treatment with EEFE ameliorated memory impairment in behavioral tests, along with significant protection from neuronal oxidative stress and neuronal cell loss in the brain tissues of SCO-injected mice. Antioxidant and neuroprotective effects of EEFE were further confirmed using in vitro assays. Our findings indicate that the mechanisms of neuroprotection and antioxidation of EEFE are regulated by the cholinergic system, promotion of cAMP response element-binding protein (CREB) phosphorylation, and the nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase (HO)-1 signaling activation. The current study proposes that EEFE could be an encouraging plant resource and serve as a potent neuropharmacological drug candidate against neurodegenerative diseases.


Assuntos
Neurônios Colinérgicos/efeitos dos fármacos , Ficus , Transtornos da Memória/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Escopolamina/toxicidade , Animais , Linhagem Celular , Antagonistas Colinérgicos/toxicidade , Neurônios Colinérgicos/metabolismo , Relação Dose-Resposta a Droga , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/fisiologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Folhas de Planta
11.
Zhongguo Zhen Jiu ; 41(1): 45-51, 2021 Jan 12.
Artigo em Chinês | MEDLINE | ID: mdl-33559442

RESUMO

OBJECTIVE: To observe the effect of electroacupuncture (EA) at sensitized acupoints on choline acetyltransferase positive (ChAT+) neurons in dorsal motor nucleus (DMV) of brainstem vagus in the colitis model rats and explore the mechanism of the improvement in colonic inflammatory injury in the rats. METHODS: A total of 79 male SD rats were randomized into five groups, i.e. a normal group (20 rats), a normal plus sensitized acupoint group (5 rats), a model group (34 rats), an EA-1 group (15 rats) and an EA-2 group (5 rats). In the model group and the EA groups, 5% dextran sulfate sodium (DSS) was adopted for 6-day free drinking to establish colitis model rats. By injecting Evans blue (EB) into the caudal vein in the model rats, the sensitized acupoints were determined. Afterwards, in the normal plus sensitized acupoint group, the EA-1 group and the EA-2 group, EA was exerted at the sensitized acupoints, with disperse-dense wave, 2 Hz/ 15 Hz in frequency and 2 mA in intensity, for 30 min of intervention each day. The intervention lasted for 6 days in the EA-1 group and for 1 day in both the normal plus sensitized acupoint group and the EA-2 group. On day 0, 7 and 13 of experiment, successively, the score of disease activity index (DAI), the score of colonic histological damage, as well as the changes in the mechanical paw withdrawal threshold and thermal paw withdrawal latency were evaluated in the normal group, the model group and the EA-1 group. On day 7 of experiment, using immunofluorescence staining, the activation of different lamina neurons of spinal dorsal horn and ChAT+ neurons in DMV was observed in the normal group, the normal plus sensitized acupoint group, the model group and the EA-2 group separately. RESULTS: The EB extravasating areas were distributed in the segments from T12 to S1 on the body surface of colitis model rats, mainly focusing at L2 and L5. Therefore, "Shangjuxu" (ST 37) was taken as the sensitized acupoint. Compared with the normal group on day 7 and 13 of experiment, the mechanical paw withdrawal threshold were reduced (P<0.001), DAI scores and the scores of colonic histological damage were increased (P<0.001) in the model group. Compared with the normal group on day 7 of experiment, thermal paw withdrawal latency in the model group was reduced (P<0.001). Compared with the model group on day 13 of experiment, the mechanical paw withdrawal threshold was increased (P<0.001), DAI score and the score of colonic histological damage were reduced (P<0.01, P<0.05) in the EA-1 group. Compared with the normal group, the activated numbers of the neurons in superficial laminae (Ⅰand Ⅱ) at spinal dorsal horn of L4 to L6 and ChAT+ neurons in DMV were increased in the normal plus sensitized acupoint group and the model group (P<0.05, P<0.01). Compared with the normal plus sensitized acupoint group and the model group, the activated numbers of the neurons in superficial laminae at spinal dorsal horn of L4 to L6 and ChAT+ neurons in DMV were increased in the EA-2 group (P<0.001). CONCLUSION: The segmental dominance (acupoints) from T12 to S1 on the body surface of colitis rats is sensitized. EA at sensitized acupoints effectively relieves colonic inflammatory injury, which is probably by activating superficial lamina neurons of spinal dorsal horn and ChAT+ neurons of DMV.


Assuntos
Pontos de Acupuntura , Eletroacupuntura , Animais , Neurônios Colinérgicos , Colo , Masculino , Ratos , Ratos Sprague-Dawley
12.
J Neurophysiol ; 125(3): 699-719, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427575

RESUMO

Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.


Assuntos
Células Quimiorreceptoras/fisiologia , Bulbo/fisiologia , Receptores de Neurotransmissores/fisiologia , Mecânica Respiratória/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Neurônios Colinérgicos/fisiologia , Humanos , Bulbo/citologia , Receptores Purinérgicos/fisiologia , Respiração , Neurônios Serotoninérgicos/fisiologia
13.
Brain Res ; 1751: 147189, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33152340

RESUMO

A growth hormone (GH) injection is able to induce the phosphorylated form of the signal transducer and activator of transcription 5 (pSTAT5) in a large number of cells throughout the mouse brain. The present study had the objective to map the distribution of GH-responsive cells in the brain of rats that received an intracerebroventricular injection of GH and compare it to the pattern found in mice. We observed that rats and mice exhibited a similar distribution of GH-induced pSTAT5 in the majority of areas of the telencephalon, hypothalamus and brainstem. However, rats exhibited a higher density of GH-responsive cells than mice in the horizontal limb of the diagonal band of Broca (HDB), supraoptic and suprachiasmatic nuclei, whereas mice displayed more GH-responsive cells than rats in the hippocampus, lateral hypothalamic area and dorsal motor nucleus of the vagus (DMX). Since both HDB and DMX contain acetylcholine-producing neurons, pSTAT5 was co-localized with choline acetyltransferase in GH-injected animals. We found that 50.0 ± 4.5% of cholinergic neurons in the rat HDB coexpressed GH-induced pSTAT5, whereas very few co-localizations were observed in the mouse HDB. In contrast, rats displayed fewer cholinergic neurons responsive to GH in the DMX at the level of the area postrema. In summary, pSTAT5 can be used as a marker of GH-responsive cells in the rat brain. Although rats and mice exhibit a relatively similar distribution of GH-responsive neurons, some species-specific differences exist, as exemplified for the responsiveness to GH in distinct populations of cholinergic neurons.


Assuntos
Mapeamento Encefálico/métodos , Receptores da Somatotropina/análise , Fator de Transcrição STAT5/análise , Acetilcolina , Animais , Encéfalo/metabolismo , Tronco Encefálico/metabolismo , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/metabolismo , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/farmacologia , Hipocampo/metabolismo , Hipotálamo/metabolismo , Infusões Intraventriculares , Masculino , Bulbo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Ratos , Ratos Long-Evans , Receptores da Somatotropina/metabolismo , Fator de Transcrição STAT5/metabolismo
14.
Life Sci ; 264: 118688, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130074

RESUMO

AIMS: Many gastrointestinal (GI) disorders are developmental in origin and are caused by abnormal enteric nervous system (ENS) formation. Maternal vitamin A deficiency (VAD) during pregnancy affects multiple central nervous system developmental processes during embryogenesis and fetal life. Here, we evaluated whether maternal diet-induced VAD during pregnancy alone can cause changes in the ENS that lead to GI dysfunction in rat offspring. MAIN METHODS: Rats were selected to construct animal models of normal VA, VA deficiency and VA supplementation. The fecal water content, total gastrointestinal transmission time and colonic motility were measured to evaluate gastrointestinal function of eight-week-old offspring rats. The expression levels of RARß, SOX10, cholinergic (ChAT) and nitrergic (nNOS) enteric neurons in colon tissues were detected through western blot and immunofluorescence. Primary enteric neurospheres were treated with retinoic acid (RA), infection with Ad-RARß and siRARß adenovirus, respectively. KEY FINDINGS: Our data revealed marked reductions in the mean densities of cholinergic and nitrergic enteric neurons in the colon and GI dysfunction evidenced by mild intestinal flatulence, increased fecal water content, prolonged total GI transit time and reduced colon motility in adult offspring of the VAD group. Interestingly, maternal VA supplementation (VAS) during pregnancy rescued these changes. In addition, in vitro experiments demonstrated that exposure to appropriate doses of RA promoted enteric neurosphere differentiation into cholinergic and nitrergic neurons, possibly by upregulating RARß expression, leading to enhanced SOX10 expression. SIGNIFICANCE: Maternal VAD during pregnancy is an environmental risk factor for GI dysfunction in rat offspring.


Assuntos
Neurônios Colinérgicos/metabolismo , Gastroenteropatias/metabolismo , Trato Gastrointestinal/metabolismo , Neurônios Nitrérgicos/metabolismo , Receptores do Ácido Retinoico/biossíntese , Deficiência de Vitamina A/sangue , Animais , Células Cultivadas , Neurônios Colinérgicos/patologia , Feminino , Gastroenteropatias/patologia , Trato Gastrointestinal/patologia , Neurônios Nitrérgicos/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley , Receptores do Ácido Retinoico/antagonistas & inibidores , Deficiência de Vitamina A/complicações
15.
Birth Defects Res ; 113(3): 299-313, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33174398

RESUMO

BACKGROUND: Up to 1 in 5 infants in the United States are exposed to alcohol prenatally, resulting in neurodevelopmental deficits categorized as fetal alcohol spectrum disorders (FASD). Choline supplementation ameliorates some deficits, suggesting that alcohol exposure (AE) perturbs cholinergic neurotransmission and development. Behavioral interventions, which upregulate cholinergic neurotransmission, rescue cognitive deficits in rodent models of FASD. METHODS: We investigated the impacts of two interventions (either wheel-running (WR) or "super intervention," WR plus exposure to a complex environment) on cholinergic neuronal morphology in the nucleus basalis of Meynert (NBM), the source of cortical cholinergic input, and prefrontal cortex (PFC) in a rodent model of FASD. One third of the total 47 male pups received intragastric intubation of ethanol in milk substitute during postnatal days (PD) 4-9. Another third served as sham-intubated procedural controls while the final third served as suckle controls. Rats from each group were exposed to either intervention during PD 30-72. Choline acetyltransferase (ChAT+ ) and acetylcholinesterase staining were used to quantify cholinergic neuron number, soma volume, and axon number. RESULTS: Our data indicate a main effect of postnatal treatment on ChAT+ neuron number in NBM in adulthood. Post hoc analysis demonstrates that ChAT+ neuron number is reduced in AE compared to suckle control rodents (p < .01). CONCLUSIONS: We examined the cytoarchitectonics of cholinergic neurons in NBM and PFC in adulthood following early postnatal AE and two interventions. We show that AE reduces ChAT+ neuron number in NBM, and this is not mitigated by either intervention.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Animais , Animais Recém-Nascidos , Neurônios Colinérgicos , Etanol/efeitos adversos , Feminino , Masculino , Gravidez , Ratos , Roedores
16.
Phytother Res ; 35(1): 337-345, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32754961

RESUMO

Rh2 is a rare ginsenoside and there are few reports of its effect on cognition compared with other similar molecules. This study aimed to establish the impact of Rh2 treatment on improving scopolamine (Scop)-induced memory deficits in mice and illuminate the underlying mechanisms. First, memory-related behavior was evaluated using two approaches: object location recognition (OLR), based on spontaneous activity, and a Morris water maze (MWM) task, based on an aversive stimulus. Our results suggested that Rh2 treatment effectively increased the discrimination index of the mice in the OLR test. In addition, Rh2 elevated the crossing numbers and decreased the escape latency during the MWM task. Moreover, Rh2 markedly upregulated the phosphorylation of the extracellular signal-regulated kinase (ERK)-cAMP response element binding (CREB)-brain derived neurotrophic factor (BDNF) pathway in the hippocampus. Meanwhile, the administration of Rh2 significantly promoted the cholinergic system and dramatically suppressed oxidative stress in the hippocampus. Taken together, Rh2 exhibited neuroprotective effects against Scop-induced memory dysfunction in mice. Rh2 activity might be ascribed to several underlying mechanisms, including its effects on modulating the cholinergic transmission, inhibiting oxidative stress and activating the ERK-CREB-BDNF signaling pathway. Consequently, the ginsenoside Rh2 might serve as a promising candidate compound for Alzheimer's disease.


Assuntos
Neurônios Colinérgicos/efeitos dos fármacos , Ginsenosídeos/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Camundongos , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/uso terapêutico , Fosforilação , Escopolamina/efeitos adversos
17.
Artigo em Chinês | WPRIM | ID: wpr-877548

RESUMO

OBJECTIVE@#To observe the effect of electroacupuncture (EA) at sensitized acupoints on choline acetyltransferase positive (ChAT@*METHODS@#A total of 79 male SD rats were randomized into five groups, i.e. a normal group (20 rats), a normal plus sensitized acupoint group (5 rats), a model group (34 rats), an EA@*RESULTS@#The EB extravasating areas were distributed in the segments from T@*CONCLUSION@#The segmental dominance (acupoints) from T


Assuntos
Animais , Masculino , Ratos , Pontos de Acupuntura , Neurônios Colinérgicos , Colo , Eletroacupuntura , Ratos Sprague-Dawley
18.
Brain Res Bull ; 165: 129-138, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32966849

RESUMO

Reproduction is the biological process that sustains life. It is regulated by a neuro-hormonal mechanism that is synchronized by the interaction among the hypothalamus, hypophysis, and ovaries. Ovulation is regulated by the secretion of the gonadotropin-releasing hormone (GnRH), which stimulates the release of the luteinizing hormone (LH) and follicle-stimulating hormone (FSH). In addition to these neuroendocrine signals, other signals originating from the central nervous system, hypophysis, thyroid, adrenal glands, and the ovary itself are also involved. One of the neurotransmission systems involved in the regulation of ovulation is the cholinergic system, which not only participates in the regulation of reproductive functions but also modulates motor coordination, thermoregulation, and cognitive function. In mammals, the vagus nerve is one of the pathways through which acetylcholine reaches the ovary, and this pathway also participates in the regulation of ovulation. However, this regulation depends on the age of the animal (prepubertal or adult) and its endocrine status. The present review analyzes evidence of the roles of the central and peripheral cholinergic system and vagal innervation in the regulation of GnRH secretion and ovulation as well as their roles in the development and persistence of polycystic ovary syndrome (PCOS).


Assuntos
Acetilcolina/metabolismo , Neurônios Colinérgicos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Ovulação/fisiologia , Nervo Vago/metabolismo , Animais , Vias Neurais/metabolismo , Transmissão Sináptica/fisiologia
19.
EBioMedicine ; 59: 102892, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32818803

RESUMO

BACKGROUND: Cholinergic neuronal loss is one of the hallmarks of AD related neurodegeneration; however, preclinical promise of α7 nAChR drugs failed to translate into humans. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of α7 nAChR and was unaccounted for in preclinical models. METHODS: Molecular methods: Function of CHRFAM7A alleles was studied in vitro in two disease relevant phenotypic readouts: electrophysiology and Aß uptake. Genome edited human induced pluripotent stem cells (iPSC) were used as a model system with the human context. Double blind pharmacogenetic study: We performed double-blind pharmacogenetic analysis on the effect of AChEI therapy based on CHRFAM7A carrier status in two paradigms: response to drug initiation and DMT effect. Mini Mental Status Examination (MMSE) was used as outcome measure. Change in MMSE score from baseline was compared by 2-tailed T-test. Longitudinal analysis of clinical outcome (MMSE) was performed using a fitted general linear model, based on an assumed autoregressive covariance structure. Model independent variables included age, sex, and medication regimen at the time of the first utilized outcome measure (AChEI alone or AChEI plus memantine), APOE4 carrier status (0, 1 or 2 alleles as categorical variables) and CHRFAM7A genotype. FINDINGS: The direct and inverted alleles have distinct phenotypes. Functional CHRFAM7A allele classifies the population as 25% non-carriers and 75% carriers. Induced pluripotent stem cell (iPSC) models α7 nAChR mediated Aß neurotoxicity. Pharmacological readout translates into both first exposure (p = 0.037) and disease modifying effect (p = 0.0048) in two double blind pharmacogenetic studies. INTERPRETATION: CHRFAM7A accounts for the translational gap in cholinergic strategies in AD. Clinical trials not accounting for this uniquely human genetic factor may have rejected drug candidates that would benefit 25% of AD. Reanalyses of the completed trials using this pharmacogenetic paradigm may identify effective therapy.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Neurônios Colinérgicos/metabolismo , Proteínas Recombinantes de Fusão , Receptor Nicotínico de Acetilcolina alfa7/genética , Alelos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Biomarcadores , Linhagem Celular , Antagonistas Colinérgicos/farmacologia , Antagonistas Colinérgicos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Imunofluorescência , Dosagem de Genes , Frequência do Gene , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fenótipo , Transmissão Sináptica , Pesquisa Translacional Biomédica , Resultado do Tratamento , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
20.
Life Sci ; 259: 118229, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32781065

RESUMO

AIMS: Cholinergic neurons are distributed in brain areas containing growth hormone (GH)-responsive cells. We determined if cholinergic neurons are directly responsive to GH and the metabolic consequences of deleting the GH receptor (GHR) specifically in choline acetyltransferase (ChAT)-expressing cells. MAIN METHODS: Mice received an acute injection of GH to detect neurons co-expressing ChAT and phosphorylated STAT5 (pSTAT5), a well-established marker of GH-responsive cells. For the physiological studies, mice carrying ablation of GHR exclusively in ChAT-expressing cells were produced and possible changes in energy and glucose homeostasis were determined when consuming regular chow or high-fat diet (HFD). KEY FINDINGS: The majority of cholinergic neurons in the arcuate nucleus (60%) and dorsomedial nucleus (84%) of the hypothalamus are directly responsive to GH. Approximately 34% of pre-ganglionic parasympathetic neurons in the dorsal motor nucleus of the vagus also exhibited GH-induced pSTAT5. GH-induced pSTAT5 in these ChAT neurons was absent in GHR ChAT knockout mice. Mice carrying ChAT-specific GHR deletion, either in chow or HFD, did not exhibit significant changes in body weight, body adiposity, lean body mass, food intake, energy expenditure, respiratory quotient, ambulatory activity, serum leptin levels, glucose tolerance, insulin sensitivity and metabolic responses to 2-deoxy-d-glucose. However, GHR deletion in ChAT neurons caused decreased hypothalamic Pomc mRNA levels in HFD mice. SIGNIFICANCE: Cholinergic neurons that regulate the metabolism are directly responsive to GH, although GHR signaling in these cells is not required for energy and glucose homeostasis. Thus, the physiological importance of GH action on cholinergic neurons still needs to be identified.


Assuntos
Neurônios Colinérgicos/metabolismo , Hormônio do Crescimento/metabolismo , Receptores da Somatotropina/metabolismo , Acetilcolina/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Dieta Hiperlipídica , Metabolismo Energético , Glucose/metabolismo , Hormônio do Crescimento/fisiologia , Hipotálamo/metabolismo , Resistência à Insulina/genética , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores da Somatotropina/genética , Fator de Transcrição STAT5/metabolismo , Nervo Vago/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA