Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Res ; 83(20): 3462-3477, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37584517

RESUMO

Long noncoding RNAs (lncRNA) play an important role in gene regulation and contribute to tumorigenesis. While pan-cancer studies of lncRNA expression have been performed for adult malignancies, the lncRNA landscape across pediatric cancers remains largely uncharted. Here, we curated RNA sequencing data for 1,044 pediatric leukemia and extracranial solid tumors and integrated paired tumor whole genome sequencing and epigenetic data in relevant cell line models to explore lncRNA expression, regulation, and association with cancer. A total of 2,657 lncRNAs were robustly expressed across six pediatric cancers, including 1,142 exhibiting histotype-elevated expression. DNA copy number alterations contributed to lncRNA dysregulation at a proportion comparable to protein coding genes. Application of a multidimensional framework to identify and prioritize lncRNAs impacting gene networks revealed that lncRNAs dysregulated in pediatric cancer are associated with proliferation, metabolism, and DNA damage hallmarks. Analysis of upstream regulation via cell type-specific transcription factors further implicated distinct histotype-elevated and developmental lncRNAs. Integration of these analyses prioritized lncRNAs for experimental validation, and silencing of TBX2-AS1, the top-prioritized neuroblastoma-specific lncRNA, resulted in significant growth inhibition of neuroblastoma cells, confirming the computational predictions. Taken together, these data provide a comprehensive characterization of lncRNA regulation and function in pediatric cancers and pave the way for future mechanistic studies. SIGNIFICANCE: Comprehensive characterization of lncRNAs in pediatric cancer leads to the identification of highly expressed lncRNAs across childhood cancers, annotation of lncRNAs showing histotype-specific elevated expression, and prediction of lncRNA gene regulatory networks.


Assuntos
Leucemia , Neuroblastoma , RNA Longo não Codificante , Adulto , Humanos , Criança , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Perfilação da Expressão Gênica , Neuroblastoma/genética , Leucemia/genética , Genômica , Redes Reguladoras de Genes , Regulação Neoplásica da Expressão Gênica
2.
J Tradit Chin Med ; 42(6): 877-884, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36378044

RESUMO

OBJECTIVE: To investigate the in-depth pharma-cological mechanisms of celastrol in children neuro-blastoma treatment. METHODS: In the current study, we examined the effects of celastrol on children neuroblastoma cells viability and proliferation by cell counting kit-8 assay and colony formation assay. Annexin V-FTIC and PI staining were applied to determine cell apoptosis after celastrol treatment. ROS generation levels were examined by 2', 7'-dichloroflfluorescin diacetate. RESULTS: We found that celastrol could suppress the proliferation of children neuroblastoma cells with few effects on normal cell lines . Further mechanisms studies have shown that celastrol inhibited cell cycle progression and induced cell apoptosis in QDDQ-NM and SH-SY5Y cells. In addition, ROS production might involve in celastrol-mediated apoptotic cell death in children neuroblastoma cells by activating caspase death pathway. CONCLUSIONS: Our findings demonstrated that celastrol could promote ROS generation-induced apoptosis in neuroblastoma cell by activating caspase death pathway. These findings suggested that celastrol might be a potential novel anti-neuroblastoma agent with minor cytotoxicity.


Assuntos
Neuroblastoma , Triterpenos , Criança , Humanos , Caspases/genética , Espécies Reativas de Oxigênio/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Triterpenos/farmacologia , Linhagem Celular Tumoral , Apoptose , Sobrevivência Celular , Proliferação de Células , Caspase 3/metabolismo
3.
Pharmacol Res ; 173: 105889, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536548

RESUMO

Iron is an indispensable requirement for essential biological processes in cancer cells. Due to the greater proliferation of neoplastic cells, their demand for iron is considerably higher relative to normal cells, making them highly susceptible to iron depletion. Understanding this sensitive relationship led to research exploring the effect of iron chelation therapy for cancer treatment. The classical iron-binding ligand, desferrioxamine (DFO), has demonstrated effective anti-proliferative activity against many cancer-types, particularly neuroblastoma tumors, and has the surprising activity of down-regulating the potent oncogene, N-myc, which is a major oncogenic driver in neuroblastoma. Even more significant is the ability of DFO to simultaneously up-regulate the potent metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), which plays a plethora of roles in suppressing a variety of oncogenic signaling pathways. However, DFO suffers the disadvantage of demonstrating poor membrane permeability and short plasma half-life, requiring administration by prolonged subcutaneous or intravenous infusions. Considering this, the specifically designed di-2-pyridylketone thiosemicarbazone (DpT) series of metal-binding ligands was developed in our laboratory. The lead agent from the first generation DpT series, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), showed exceptional anti-cancer properties compared to DFO. However, it exhibited cardiotoxicity in mouse models at higher dosages. Therefore, a second generation of agents was developed with the lead compound being di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) that progressed to Phase I clinical trials. Importantly, DpC showed better anti-proliferative activity than Dp44mT and no cardiotoxicity, demonstrating effective anti-cancer activity against neuroblastoma tumors in vivo.


Assuntos
Quelantes de Ferro/uso terapêutico , Neuroblastoma/tratamento farmacológico , Animais , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes myc , Humanos , Quelantes de Ferro/farmacologia , Neuroblastoma/genética , Neuroblastoma/patologia , Oncogenes , Terapias em Estudo , Proteínas Supressoras de Tumor/genética , Regulação para Cima/efeitos dos fármacos
4.
Mol Biol Rep ; 48(5): 4659-4665, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34061325

RESUMO

Neuroblastoma is a deadly and serious malignancy among children. Although many developments have been occurred for the treatment of this disease, the rate of mortality is still high. Therefore, it is necessary to search for novel complementary and alternative therapies. Melatonin, a hormone secreted from pineal gland, is a multifunctional agent having anticancer potentials. Recently, several investigations have been conducted indicating melatonin effects against neuroblastoma. In this paper, we summarize current evidence on anti-neuroblastoma effects of melatonin based on cellular pathways.


Assuntos
Antineoplásicos/uso terapêutico , Melatonina/uso terapêutico , Neuroblastoma/tratamento farmacológico , Pediatria , Pré-Escolar , Humanos , Melatonina/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Glândula Pineal/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Oncogene ; 40(13): 2367-2381, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33658627

RESUMO

Histone deacetylase (HDAC) inhibitors are effective in MYCN-driven cancers, because of a unique need for HDAC recruitment by the MYCN oncogenic signal. However, HDAC inhibitors are much more effective in combination with other anti-cancer agents. To identify novel compounds which act synergistically with HDAC inhibitor, such as suberanoyl hydroxamic acid (SAHA), we performed a cell-based, high-throughput drug screen of 10,560 small molecule compounds from a drug-like diversity library and identified a small molecule compound (SE486-11) which synergistically enhanced the cytotoxic effects of SAHA. Effects of drug combinations on cell viability, proliferation, apoptosis and colony forming were assessed in a panel of neuroblastoma cell lines. Treatment with SAHA and SE486-11 increased MYCN ubiquitination and degradation, and markedly inhibited tumorigenesis in neuroblastoma xenografts, and, MYCN transgenic zebrafish and mice. The combination reduced ubiquitin-specific protease 5 (USP5) levels and increased unanchored polyubiquitin chains. Overexpression of USP5 rescued neuroblastoma cells from the cytopathic effects of the combination and reduced unanchored polyubiquitin, suggesting USP5 is a therapeutic target of the combination. SAHA and SE486-11 directly bound to USP5 and the drug combination exhibited a 100-fold higher binding to USP5 than individual drugs alone in microscale thermophoresis assays. MYCN bound to the USP5 promoter and induced USP5 gene expression suggesting that USP5 and MYCN expression created a forward positive feedback loop in neuroblastoma cells. Thus, USP5 acts as an oncogenic cofactor with MYCN in neuroblastoma and the novel combination of HDAC inhibitor with SE486-11 represents a novel therapeutic approach for the treatment of MYCN-driven neuroblastoma.


Assuntos
Carcinogênese/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Proteases Específicas de Ubiquitina/genética , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Neuroblastoma/genética , Neuroblastoma/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Vorinostat/farmacologia , Peixe-Zebra/genética
6.
Cell Mol Biol Lett ; 26(1): 5, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588752

RESUMO

BACKGROUND: The synaptic vesicle glycoprotein 2 (SV2) family is essential to the synaptic machinery involved in neurotransmission and vesicle recycling. The isoforms SV2A, SV2B and SV2C are implicated in neurological diseases such as epilepsy, Alzheimer's and Parkinson's disease. Suitable cell systems for studying regulation of these proteins are essential. Here we present gene expression data of SV2A, SV2B and SV2C in two human neuroblastoma cell lines after differentiation. METHODS: Human neuroblastoma cell lines SiMa and IMR-32 were treated for seven days with growth supplements (B-27 and N-2), all-trans-retinoic acid (ATRA) or vasoactive intestinal peptide (VIP) and gene expression levels of SV2 and neuronal targets were analyzed. RESULTS: The two cell lines reacted differently to the treatments, and only one of the three SV2 isoforms was affected at a time. SV2B and choline O-acetyltransferase (CHAT) expression was changed in concert after growth supplement treatment, decreasing in SiMa cells while increasing in IMR-32. ATRA treatment resulted in no detected changes in SV2 expression in either cell line while VIP increased both SV2C and dopamine transporter (DAT) in IMR-32 cells. CONCLUSION: The synergistic expression patterns between SV2B and CHAT as well as between SV2C and DAT mirror the connectivity between these targets found in disease models and knock-out animals, although here no genetic alteration was made. These cell lines and differentiation treatments could possibly be used to study SV2 regulation and function.


Assuntos
Diferenciação Celular/genética , Regulação Neoplásica da Expressão Gênica , Glicoproteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Sítios de Ligação , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Tretinoína/farmacologia , Peptídeo Intestinal Vasoativo/farmacologia
7.
J Exp Clin Cancer Res ; 39(1): 195, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32962733

RESUMO

BACKGROUND: Despite reported advances, acquired resistance to tyrosine kinase inhibitors still represents a serious problem in successful cancer treatment. Among this class of drugs, ponatinib (PON) has been shown to have notable long-term efficacy, although its cytotoxicity might be hampered by autophagy. In this study, we examined the likelihood of PON resistance evolution in neuroblastoma and assessed the extent to which autophagy might provide survival advantages to tumor cells. METHODS: The effects of PON in inducing autophagy were determined both in vitro, using SK-N-BE(2), SH-SY5Y, and IMR-32 human neuroblastoma cell lines, and in vivo, using zebrafish and mouse models. Single and combined treatments with chloroquine (CQ)-a blocking agent of lysosomal metabolism and autophagic flux-and PON were conducted, and the effects on cell viability were determined using metabolic and immunohistochemical assays. The activation of the autophagic flux was analyzed through immunoblot and protein arrays, immunofluorescence, and transmission electron microscopy. Combination therapy with PON and CQ was tested in a clinically relevant neuroblastoma mouse model. RESULTS: Our results confirm that, in neuroblastoma cells and wild-type zebrafish embryos, PON induces the accumulation of autophagy vesicles-a sign of autophagy activation. Inhibition of autophagic flux by CQ restores the cytotoxic potential of PON, thus attributing to autophagy a cytoprotective nature. In mice, the use of CQ as adjuvant therapy significantly improves the anti-tumor effects obtained by PON, leading to ulterior reduction of tumor masses. CONCLUSIONS: Together, these findings support the importance of autophagy monitoring in the treatment protocols that foresee PON administration, as this may predict drug resistance acquisition. The findings also establish the potential for combined use of CQ and PON, paving the way for their consideration in upcoming treatment protocols against neuroblastoma.


Assuntos
Proliferação de Células/efeitos dos fármacos , Imidazóis/farmacologia , Neuroblastoma/tratamento farmacológico , Piridazinas/farmacologia , Receptores Proteína Tirosina Quinases/genética , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cloroquina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos , Camundongos , Neuroblastoma/genética , Neuroblastoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Free Radic Res ; 54(11-12): 918-930, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32623920

RESUMO

The translocation of transcription factor EB (TFEB) to the nucleus plays a pivotal role in the regulation of basic cellular processes, such as lysosome biogenesis and autophagy. Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome, which is important in maintaining cellular homeostasis during environmental stress. Furthermore, oxidative stress is a critical cause for the progression of neurodegenerative diseases. Curcumin has anti-oxidative and anti-inflammatory activities, and is expected to have potential therapeutic effects in various diseases. In this study, we demonstrated that curcumin regulated TFEB export signalling via inhibition of glycogen synthase kinase-3ß (GSK-3ß); GSK-3ß was inactivated by curcumin, leading to reduced phosphorylation of TFEB. We further showed that H2O2-induced oxidative stress was reduced by curcumin via the Nrf2/HO-1 pathway in human neuroblastoma cells. In addition, we showed that curcumin induced the degradation of amyloidogenic proteins, including amyloid-ß precursor protein and α-synuclein, through the TFEB-autophagy/lysosomal pathway. In conclusion, curcumin regulates autophagy by controlling TFEB through the inhibition of GSK-3ß, and increases antioxidant gene expression in human neuroblastoma cells. These results contribute to the development of novel cellular therapies for neurodegenerative diseases.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Antineoplásicos/uso terapêutico , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Curcumina/uso terapêutico , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Neuroblastoma/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Curcumina/farmacologia , Humanos , Espécies Reativas de Oxigênio , Transfecção
9.
Free Radic Biol Med ; 155: 1-9, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32416241

RESUMO

Zinc plays a key role in the modulation of neuronal redox homeostasis. A decreased zinc availability is associated with neuronal NADPH oxidase and nitric oxide synthase activation, deregulation of redox signaling, and impaired glutathione synthesis. The present work tested the hypothesis that zinc is necessary in the neuronal defense response against dopamine (DA)-induced oxidative stress, in particular through heme oxygenase-1 (HO-1) upregulation. DA showed higher cytotoxicity when zinc availability was low. Human IMR-32 neuroblastoma cells responded to high DA concentrations (100 µM) by upregulating HO-1. This upregulation involved Nrf2 translocation to the nucleus, degradation of the Bach-1 repressor, and Nrf2-DNA binding, but it was independent of ERK1/2 activation. DA-mediated induction of HO-1 expression was dependent on the concentration of zinc in the medium. IMR-32 cells incubated in zinc deficient medium showed an impaired response to DA, with lower HO-1 mRNA and protein levels than control DA-challenged cells. This altered HO-1 upregulation was reversed by zinc supplementation. In the presence of DA, Nrf2 nuclear translocation and Bach-1 degradation were lower in zinc deficient cells. The mechanisms involved include: i) impaired Nrf2-tubulin interactions and ii) alterations in the proteasome-mediated degradation of Bach-1 secondary to a decreased ubiquitylation. Results suggest that zinc is crucial in the neuronal response to DA-induced oxidative stress in part through its role in the modulation of the Nrf2-and Bach-1-driven upregulation of HO-1 expression.


Assuntos
Fator 2 Relacionado a NF-E2 , Neuroblastoma , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neuroblastoma/genética , Estresse Oxidativo , Zinco
10.
Nat Commun ; 11(1): 71, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900415

RESUMO

Despite advances in the molecular exploration of paediatric cancers, approximately 50% of children with high-risk neuroblastoma lack effective treatment. To identify therapeutic options for this group of high-risk patients, we combine predictive data mining with experimental evaluation in patient-derived xenograft cells. Our proposed algorithm, TargetTranslator, integrates data from tumour biobanks, pharmacological databases, and cellular networks to predict how targeted interventions affect mRNA signatures associated with high patient risk or disease processes. We find more than 80 targets to be associated with neuroblastoma risk and differentiation signatures. Selected targets are evaluated in cell lines derived from high-risk patients to demonstrate reversal of risk signatures and malignant phenotypes. Using neuroblastoma xenograft models, we establish CNR2 and MAPK8 as promising candidates for the treatment of high-risk neuroblastoma. We expect that our method, available as a public tool (targettranslator.org), will enhance and expedite the discovery of risk-associated targets for paediatric and adult cancers.


Assuntos
Antineoplásicos/administração & dosagem , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Neuroblastoma/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
11.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165644, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31862304

RESUMO

Neuroblastoma is the most common extracranial solid tumor in children and originates from poorly differentiated neural crest progenitors. High-risk neuroblastoma patients frequently present with metastatic disease at diagnosis. Despite intensive treatment, patients often develop refractory disease characterized by poorly differentiated, therapy resistant cells. Although adjuvant therapy using retinoic acid (RA)-induced differentiation may increase event-free survival, in the majority of cases response to RA-therapy is inadequate. Consequently, current research aims to identify novel therapeutic targets that enhance the sensitivity to RA and induce neuroblastoma cell differentiation. The similarities between neural crest development and neuroblastoma progression provide an appealing starting point. During neural crest development the EMT-transcription factor SNAI2 plays an important role in neural crest specification as well as neural crest cell migration and survival. Here, we report that CRISPR/Cas9 mediated deletion as well as shRNA mediated knockdown of the EMT-transcription factor SNAI2 promotes cellular differentiation in a variety of neuroblastoma models. By comparing mRNA expression data from independent patient cohorts, we show that a SNAI2 activity-based gene expression signature significantly correlates with event-free survival. Loss of SNAI2 function reduces self-renewal, 3D invasion as well as metastatic spread in vivo, while strongly sensitizing neuroblastoma cells to RA-induced growth inhibition. Together, our data demonstrate that SNAI2 maintains progenitor-like features in neuroblastoma cells while interfering with RA-induced growth inhibition. We propose that targeting gene regulatory circuits, such as those controlling SNAI2 function, may allow reversion of RA-therapy resistant neuroblastoma cells to a more differentiated and therapy responsive phenotype.


Assuntos
Diferenciação Celular/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Fatores de Transcrição da Família Snail/genética , Transcrição Gênica/genética , Tretinoína/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Feminino , Humanos , Camundongos , Crista Neural/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , RNA Interferente Pequeno/genética , Transcrição Gênica/efeitos dos fármacos
12.
Biochem Biophys Res Commun ; 516(3): 733-738, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31255282

RESUMO

Neuroblastoma (NB) is a neuroendocrine tumor derived from neural crest cells. Approximately 90% of cases occur in children less than 5 years old. The amplification of MYCN correlates with high-risk neuroblastoma and patients with MYCN amplified showed poorer prognosis than those without MYCN amplification. In this study, three compounds isolated from Juniperus oblonga showed anti-proliferative activity against NB cell lines with and without tetracycline inducible MYCN over-expression which were identified as (-)-deoxypodophyllotoxin (1), (-)-matairesinol (2) and (+)-isocupressic acid (3). The effects of compounds 2 and 3 in NB cells included a decrease in NB cell viability and induction of apoptosis. Compound 1 was more effective in NB cells over-expressing MycN. Compound 1 also showed almost 2-fold induction of intracellular free calcium levels in M2(+) cells, which may indicate a different mechanism of action for this compound. Cytotoxicity studies against the human embryonic kidney cell (HEK-293) showed compounds 1, 2 and 3 were ineffective in the non-cancer cells at concentrations approximating their IC50 against the NB cell lines. These results may lead to safer and more effective treatment options for NB patients especially for those with high-risk NB.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Juniperus/química , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Extratos Vegetais/farmacologia , Antineoplásicos/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Pré-Escolar , Diterpenos/química , Diterpenos/farmacologia , Medicamentos de Ervas Chinesas , Furanos/química , Furanos/farmacologia , Células HEK293 , Humanos , Concentração Inibidora 50 , Lignanas/química , Lignanas/farmacologia , Estrutura Molecular , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Fitoterapia/métodos , Extratos Vegetais/química , Podofilotoxina/análogos & derivados , Podofilotoxina/química , Podofilotoxina/farmacologia , Tetra-Hidronaftalenos/química , Tetra-Hidronaftalenos/farmacologia
13.
Brain Behav ; 9(7): e01304, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31216127

RESUMO

INTRODUCTION: DJ-1 mutation is a causative reason for familial Parkinson's disease (PD). Leucine166Proline (L166P) and C106S are two important DJ-1 mutations. In this study, we established hydrogen peroxide (H2 O2 ) induced L166P and C106S DJ-1-transfected neuroblastoma (SH-SY5Y) cellular models of PD and investigated the effects of Cistanche extracts and key bioactive compounds, including acteoside, echinacoside, caffeic acid, and Cistanche total glycosides on these two models. METHODS: After expressing FLAG-tagged L166P and C106S DJ-1 plasmids in Escherichia coli, the expressed plasmids were collected, treated with restriction enzyme, and identified using DNA electrophoresis. After purification, the L166P DJ-1 and C106S DJ-1 plasmids were separately transfected into SH-SY5Y cells using liposomes. Transfected SH-SY5Y cells were detected by western blotting and immunocytochemistry. Cell viability was determined using MTT assay. RESULTS: Both western blotting and immunocytochemistry showed that L166P and C106S DJ-1 were highly expressed in the transfected SH-SY5Y cells. MTT assays showed that transfection with L166P or C106S DJ-1 reduced the viability of SH-SY5Y cells exposed to H2 O2 , as compared to untransfected SH-SY5Y cells. In addition, Cistanche extracts and key bioactive compounds, including acteoside, echinacoside, caffeic acid, and Cistanche total glycosides, significantly inhibited the decreases of cell viability caused by H2 O2 in L166P and C106S DJ-1-transfected SH-SY5Y cells. CONCLUSIONS: These findings suggest that we successfully established sensitive and stable H2 O2 induced L166P DJ-1- and C106S DJ-1-transfected SH-SY5Y cell models of PD and Cistanche extracts may thus be useful for treating PD.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Cistanche , Peróxido de Hidrogênio/toxicidade , Neuroblastoma , Doença de Parkinson , Extratos Vegetais/farmacologia , Proteína Desglicase DJ-1/genética , Linhagem Celular Tumoral , Humanos , Modelos Biológicos , Mutação , Neuroblastoma/genética , Neuroblastoma/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Transfecção
14.
Am J Chin Med ; 47(4): 895-912, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31091975

RESUMO

In children, neuroblastomas are the most common and deadly solid tumor. Our previous studies showed that honokiol can cross the blood-brain barrier and kill neuroblastoma cells. In this study, we further evaluated if exposure to honokiol for short periods could induce autophagy and subsequent apoptosis of neuroblastoma cells and possible mechanisms. Exposure of neuroblastoma neuro-2a cells to honokiol for 24 h induced morphological shrinkage and cell death. As to the mechanisms, honokiol consecutively induced cytochrome c release from mitochondria, caspase-3 activation, DNA fragmentation and cell apoptosis. Separately, honokiol time-dependently augmented the proportion of autophagic cells and the ratio of light chain 3 (LC3)-II/LC3-I. Pretreatment of neuro-2a cells with 3-methyladenine, an inhibitor of autophagy, attenuated honokiol-induced cell autophagy, caspase-3 activation, DNA damage and cell apoptosis. In contrast, stimulation of autophagy by rapamycin, an inducer of autophagy, significantly enhanced honokiol-induced cell apoptosis. Furthermore, honokiol-induced autophagic apoptosis was confirmed in neuroblastoma NB41A3 cells. Knocking down translation of p53 using RNA interference attenuated honokiol-induced autophagy and apoptosis in neuro-2a and NB41A3 cells. Taken together, this study showed that at early periods, honokiol can induce autophagic apoptosis of neuroblastoma cells through activating a p53-dependent mechanism. Consequently, honokiol has the potential to be a therapeutic option for neuroblastomas.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Neuroblastoma/genética , Neuroblastoma/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , Fatores de Tempo , Células Tumorais Cultivadas
15.
J Pediatr Hematol Oncol ; 41(5): 388-391, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31094905

RESUMO

Congenital neuroblastoma with placental involvement is exceptionally rare, but mortality is high. Detailed examination of placenta including MYCN amplification and segmental chromosomal aberrations should be performed in all suspected cases, as it is noninvasive and readily available. Maternal dissemination has not been reported. In this manuscript, we describe an infant with placental diagnosis of MYCN nonamplified congenital neuroblastoma. This is the first report of a recurrence of congenital 4S neuroblastoma following resolution in which MYCN amplification is only detected in the recurrence. Germline sequencing using a large comprehensive cancer panel did not reveal variants in candidate cancer predisposition genes.


Assuntos
Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Adulto , Aberrações Cromossômicas , Feminino , Amplificação de Genes , Humanos , Lactente , Neuroblastoma/congênito , Neuroblastoma/patologia , Doenças Placentárias , Gravidez , Recidiva
16.
Mol Imaging Biol ; 21(6): 1117-1126, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30850970

RESUMO

PURPOSE: This study aims to explore whether 4-(2S,4R)-[18F]fluoroglutamine (4-[18F]FGln) positron emission tomography (PET) imaging is helpful in identifying and monitoring MYCN-amplified neuroblastoma by enhanced glutamine metabolism. PROCEDURES: Cell uptake studies and dynamic small-animal PET studies of 4-[18F]FGln and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) were conducted in human MYCN-amplified (IMR-32 and SK-N-BE (2) cells) and non-MYCN-amplified (SH-SY5Y cell) neuroblastoma cells and animal models. Subsequently, short hairpin RNA (shRNA) knockdown of alanine-serine-cysteine transporter 2 (ASCT2/SLC1A5) in IMR-32 cells and xenografts were investigated in vitro and in vivo. Western blot (WB), real-time polymerase chain reaction (RT-PCR), and immunofluorescence (IF) assays were used to measure the prevalence of ASCT2, Ki-67, and c-Caspase 3, respectively. RESULTS: IMR-32 and SK-N-BE (2) cells showed high glutamine uptake in vitro (31.6 ± 1.7 and 21.6 ± 6.6 %ID/100 µg). In the in vivo study, 4-[18F]FGln was localized in IMR-32, SK-N-BE (2), and SH-SY5Y tumors with a high uptake (6.6 ± 0.3, 5.6 ± 0.2, and 3.7 ± 0.1 %ID/g). The maximum uptake (tumor-to-muscle, T/M) of the IMR-32 and SK-N-BE (2) tumors (3.71 and 2.63) was significantly higher than that of SH-SY5Y (1.54) tumors (P < 0.001, P < 0.001). The maximum uptake of 4-[18F]FGln in IMR-32 and SK-N-BE (2) tumors was 2.3-fold and 2.1-fold higher than that of [18F]FDG, respectively. Furthermore, in the in vitro and in vivo studies, the maximum uptake of 4-[18F]FGln in shASCT2-IMR-32 cells and tumors was 2.1-fold and 2.5-fold lower than that of the shControl-IMR-32. No significant difference in [18F]FDG uptake was found between shASCT2-IMR-32 and shControl-IMR-32 cells and tumors. CONCLUSION: 4-[18F]FGln PET can provide a valuable clinical tool in the assessment of metabolic glutamine uptake in MYCN-amplified neuroblastoma. ASCT2-targeted therapy may provide a supplementary method in MYCN-amplified neuroblastoma treatment.


Assuntos
Fluordesoxiglucose F18/química , Amplificação de Genes , Glutamina/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/metabolismo , Tomografia por Emissão de Pósitrons , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Fluordesoxiglucose F18/farmacocinética , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Antígenos de Histocompatibilidade Menor/metabolismo , Neuroblastoma/genética , Distribuição Tecidual , Tomografia Computadorizada por Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Genome Biol ; 19(1): 96, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30041657

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) are typically expressed at low levels and are inherently highly variable. This is a fundamental challenge for differential expression (DE) analysis. In this study, the performance of 25 pipelines for testing DE in RNA-seq data is comprehensively evaluated, with a particular focus on lncRNAs and low-abundance mRNAs. Fifteen performance metrics are used to evaluate DE tools and normalization methods using simulations and analyses of six diverse RNA-seq datasets. RESULTS: Gene expression data are simulated using non-parametric procedures in such a way that realistic levels of expression and variability are preserved in the simulated data. Throughout the assessment, results for mRNA and lncRNA were tracked separately. All the pipelines exhibit inferior performance for lncRNAs compared to mRNAs across all simulated scenarios and benchmark RNA-seq datasets. The substandard performance of DE tools for lncRNAs applies also to low-abundance mRNAs. No single tool uniformly outperformed the others. Variability, number of samples, and fraction of DE genes markedly influenced DE tool performance. CONCLUSIONS: Overall, linear modeling with empirical Bayes moderation (limma) and a non-parametric approach (SAMSeq) showed good control of the false discovery rate and reasonable sensitivity. Of note, for achieving a sensitivity of at least 50%, more than 80 samples are required when studying expression levels in realistic settings such as in clinical cancer research. About half of the methods showed a substantial excess of false discoveries, making these methods unreliable for DE analysis and jeopardizing reproducible science. The detailed results of our study can be consulted through a user-friendly web application, giving guidance on selection of the optimal DE tool ( http://statapps.ugent.be/tools/AppDGE/ ).


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Colorretais/genética , Neuralgia/genética , Neuroblastoma/genética , RNA Longo não Codificante/genética , Análise de Sequência de RNA/métodos , Animais , Teorema de Bayes , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Neuralgia/metabolismo , Neuralgia/patologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , Ratos , Análise de Sequência de RNA/estatística & dados numéricos
18.
Tumour Biol ; 40(6): 1010428318779515, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29871587

RESUMO

Outcomes of children with high grade neuroblastoma remain poor despite multi-agent chemotherapy regimens. Rhodiola crenulata extracts display anti-neoplastic properties against several cancers including breast cancer, melanoma, and glioblastoma. In this study, we evaluated the anti-neoplastic potential of Rhodiola crenulata extracts on human neuroblastoma cells. Through this work, cell viability and proliferation were evaluated following treatments with ethanol (vehicle control) or Rhodiola crenulata extract in neuroblastoma, NB-1691 or SK-N-AS cells, in vitro. HIF-1 transcriptional activity was evaluated using a dual luciferase assay. Quantitative real-time polymerase chain reaction was utilized to assess the expression of HIF-1 targets. Selected metabolic intermediates were evaluated for their ability to rescue cells from Rhodiola crenulata extract-induced death. Lactate dehydrogenase, pyruvate kinase, and pyruvate dehydrogenase activities and NAD+/NADH levels were assayed in vehicle and Rhodiola crenulata extract-treated cells. The effects of Rhodiola crenulata extracts on metabolism were assessed by respirometry and metabolic phenotyping/fingerprinting. Our results revealed striking cytotoxic effects upon Rhodiola crenulata extract treatment, especially prominent in NB-1691 cells. As a greater response was observed in NB-1691 cells therefore it was used for remaining experiments. Upon Rhodiola crenulata extract treatment, HIF-1 transcriptional activity was increased. This increase in activity correlated with changes in HIF-1 targets involved in cellular metabolism. Serendipitously, we observed that addition of pyruvate protected against the cytotoxic effects of Rhodiola crenulata extracts. Therefore, we focused on the metabolic effects of Rhodiola crenulata extracts on NB-1691 cells. We observed that while the activities of pyruvate kinase and pyruvate dehydrogenase activities were increased, the activity of lactate dehydrogenase activity was decreased upon Rhodiola crenulata extract treatment. We also noted a decline in the total NAD pool following Rhodiola crenulata extract treatment. This correlated with decreased cellular respiration and suppressed utilization of carbon substrates. Through this work, we observed significant cytotoxic effects of Rhodiola crenulata extract treatment upon treatment on NB-1691 cells, a human neuroblastoma cell line with MYCN amplification. Our studies suggest that these cytotoxic effects could be secondary to metabolic effect induced by treatment with Rhodiola crenulata extract.


Assuntos
Antineoplásicos/farmacologia , Respiração Celular/efeitos dos fármacos , Neuroblastoma/metabolismo , Fitoterapia/métodos , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/farmacologia , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Rhodiola
19.
Neurotoxicology ; 67: 287-295, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29944913

RESUMO

Methamphetamine (METH) is an addictive stimulant drug that has many negative consequences, including toxic effects to the brain. Recently, the induction of inflammatory processes has been identified as a potential contributing factor to induce neuronal cell degeneration. It has been demonstrated that the expression of inflammatory agents, such as cyclooxygenase 2 (COX-2), depends on the activation of calcineurin (CaN) and nuclear factor of activated T-cells (NFAT). Moreover, the excessive elevation in cytosolic Ca2+ levels activates the cell death process, including calpain activation in neurons, which was diminished by the overexpression of the calpain inhibitor protein, calpastatin. However, it is unclear whether calpain mediates CaN-NFAT activation in the neurotoxic process. In the present study, we observed that the toxic high dose of METH-treated neuroblastoma SH-SY5Y cells significantly decreased cell viability but increased apoptotic cell death, the active cleaved form of calcineurin, the nuclear translocation of NFAT, and COX-2 levels. Nevertheless, these toxic effects were diminished in METH-treated calpastatin-overexpressing SH-SY5Y cells. These findings might emphasize the role of calpastatin against METH-induced toxicity by a mechanism related to calpain-dependent CaN-NFAT activation-induced COX-2 expression.


Assuntos
Calcineurina/biossíntese , Proteínas de Ligação ao Cálcio/biossíntese , Ciclo-Oxigenase 2/metabolismo , Metanfetamina/toxicidade , Fatores de Transcrição NFATC/metabolismo , Neuroblastoma/metabolismo , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Estimulantes do Sistema Nervoso Central/toxicidade , Relação Dose-Resposta a Droga , Expressão Gênica , Humanos , Neuroblastoma/genética
20.
BMJ ; 359: j4761, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089348

RESUMO

Objective To determine if circulating concentrations of vitamin D are causally associated with risk of cancer.Design Mendelian randomisation study.Setting Large genetic epidemiology networks (the Genetic Associations and Mechanisms in Oncology (GAME-ON), the Genetic and Epidemiology of Colorectal Cancer Consortium (GECCO), and the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortiums, and the MR-Base platform).Participants 70 563 cases of cancer (22 898 prostate cancer, 15 748 breast cancer, 12 537 lung cancer, 11 488 colorectal cancer, 4369 ovarian cancer, 1896 pancreatic cancer, and 1627 neuroblastoma) and 84 418 controls.Exposures Four single nucleotide polymorphisms (rs2282679, rs10741657, rs12785878 and rs6013897) associated with vitamin D were used to define a multi-polymorphism score for circulating 25-hydroxyvitamin D (25(OH)D) concentrations.Main outcomes measures The primary outcomes were the risk of incident colorectal, breast, prostate, ovarian, lung, and pancreatic cancer and neuroblastoma, which was evaluated with an inverse variance weighted average of the associations with specific polymorphisms and a likelihood based approach. Secondary outcomes based on cancer subtypes by sex, anatomic location, stage, and histology were also examined.Results There was little evidence that the multi-polymorphism score of 25(OH)D was associated with risk of any of the seven cancers or their subtypes. Specifically, the odds ratios per 25 nmol/L increase in genetically determined 25(OH)D concentrations were 0.92 (95% confidence interval 0.76 to 1.10) for colorectal cancer, 1.05 (0.89 to 1.24) for breast cancer, 0.89 (0.77 to 1.02) for prostate cancer, and 1.03 (0.87 to 1.23) for lung cancer. The results were consistent with the two different analytical approaches, and the study was powered to detect relative effect sizes of moderate magnitude (for example, 1.20-1.50 per 25 nmol/L decrease in 25(OH)D for most primary cancer outcomes. The Mendelian randomisation assumptions did not seem to be violated.Conclusions There is little evidence for a linear causal association between circulating vitamin D concentration and risk of various types of cancer, though the existence of causal clinically relevant effects of low magnitude cannot be ruled out. These results, in combination with previous literature, provide evidence that population-wide screening for vitamin D deficiency and subsequent widespread vitamin D supplementation should not currently be recommended as a strategy for primary cancer prevention.


Assuntos
Neoplasias/sangue , Vitamina D/análogos & derivados , Neoplasias da Mama/sangue , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Estudos de Casos e Controles , Neoplasias Colorretais/sangue , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Incidência , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Masculino , Análise da Randomização Mendeliana , Neoplasias/epidemiologia , Neoplasias/genética , Neuroblastoma/sangue , Neuroblastoma/epidemiologia , Neuroblastoma/genética , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/genética , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/genética , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/sangue , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/genética , Medição de Risco/métodos , Vitamina D/sangue , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/epidemiologia , Deficiência de Vitamina D/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA