Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.288
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155394, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569294

RESUMO

BACKGROUND: Current therapeutic agents for AD have limited efficacy and often induce undesirable side effects. Gegen Qinlian tablets (GGQLT) are a well-known clearingheat formula used in clinical treatment of inflammatory diseases. Based on traditional Chinese medicine (TCM) theory, the strategy of clearing-heat is then compatible with the treatment of AD. However, it remains unknown whether GGQLT can exert neuroprotective effects and alleviate neuroinflammation in AD. PURPOSE: This study aimed to evaluate the anti-AD effects of GGQLT and to decipher its intricate mechanism using integrative analyses of network pharmacology, transcriptomic RNA sequencing, and gut microbiota. METHODS: The ingredients of GGQLT were analyzed using HPLC-ESI-Q/TOF-MS. The AD model was established by bilateral injection of Aß1-42 into the intracerebroventricular space of rats. The Morris water maze was used to evaluate the cognitive function of the AD rats. The long-term toxicity of GGQLT in rats was assessed by monitoring their body weights and pathological alterations in the liver and kidney. Reactive astrocytes and microglia were assessed by immunohistochemistry by labeling GFAP and Iba-1. The levels of inflammatory cytokines in the hippocampus were evaluated using ELISA kits, RT-PCR, and Western blot, respectively. The potential anti-AD mechanism was predicted by analyses of RNA-sequencing and network pharmacology. Western blot and immunohistochemistry were utilized to detect the phosphorylation levels of IκBα, NF-κB p65, p38, ERK and JNK. The richness and composition of gut bacterial and fungal microflora were investigated via 16S rRNA and ITS sequencing. RESULTS: Typical ingredients of GGQLT were identified using HPLC-ESI-Q/TOF-MS. GGQLT significantly improved the cognitive function of AD rats by suppressing the activation of microglia and astrocytes, improving glial morphology, and reducing the neuroinflammatory reactions in the hippocampus. RNA-sequencing, network and experimental pharmacological studies demonstrated that GGQLT inhibited the activation of NF-κB/MAPK signaling pathways in the hippocampus. GGQLT could also restore abnormal gut bacterial and fungal homeostasis and no longer-term toxicity of GGQLT was observed. CONCLUSIONS: Our findings, for the first time, demonstrate GGQLT exhibit anti-AD effects and is worthy of further exploration and development.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Masculino , Ratos , Doenças Neuroinflamatórias/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Homeostase/efeitos dos fármacos , Comprimidos , Peptídeos beta-Amiloides/metabolismo , Neuroglia/efeitos dos fármacos , Farmacologia em Rede , Progressão da Doença , Citocinas/metabolismo
2.
Curr Biol ; 34(5): R209-R211, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471452

RESUMO

In many species, metabolic and reproductive functions are coupled to the seasons. Tanycytes, specialized glial cells in the hypothalamus, play an important function in these physiological changes. A new study now shows that light exposure drastically alters the formation of sensory cilia on tanycytes.


Assuntos
Células Ependimogliais , Hipotálamo , Células Ependimogliais/metabolismo , Estações do Ano , Hipotálamo/metabolismo , Neuroglia/metabolismo , Biologia
3.
Glia ; 72(2): 433-451, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37870193

RESUMO

Mitochondria support the energetic demands of the cells. Autophagic turnover of mitochondria serves as a critical pathway for mitochondrial homeostasis. It is unclear how bioenergetics and autophagy are functionally connected. Here, we identify an endolysosomal membrane protein that facilitates autophagy to regulate ATP production in glia. We determined that Drosophila tweety (tty) is highly expressed in glia and localized to endolysosomes. Diminished fusion between autophagosomes and endolysosomes in tty-deficient glia was rescued by expressing the human Tweety Homolog 1 (TTYH1). Loss of tty in glia attenuated mitochondrial turnover, elevated mitochondrial oxidative stress, and impaired locomotor functions. The cellular and organismal defects were partially reversed by antioxidant treatment. We performed live-cell imaging of genetically encoded metabolite sensors to determine the impact of tty and autophagy deficiencies on glial bioenergetics. We found that tty-deficient glia exhibited reduced mitochondrial pyruvate consumption accompanied by a shift toward glycolysis for ATP production. Likewise, genetic inhibition of autophagy in glia resulted in a similar glycolytic shift in bioenergetics. Furthermore, the survival of mutant flies became more sensitive to starvation, underlining the significance of tty in the crosstalk between autophagy and bioenergetics. Together, our findings uncover the role for tty in mitochondrial homeostasis via facilitating autophagy, which determines bioenergetic balance in glia.


Assuntos
Autofagia , Proteínas de Drosophila , Drosophila , Metabolismo Energético , Proteínas de Membrana , Mitocôndrias , Animais , Humanos , Trifosfato de Adenosina/metabolismo , Autofagia/genética , Drosophila/genética , Drosophila/metabolismo , Metabolismo Energético/genética , Homeostase , Mitocôndrias/metabolismo , Neuroglia/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
4.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003444

RESUMO

Cannabidiol (CBD), the major non-psychoactive phytocannabinoid found in cannabis, has anti-neuroinflammatory properties. Despite the increasing use of CBD, little is known about its effect in combination with other substances. Combination therapy has been gaining attention recently, aiming to produce more efficient effects. Angiotensin II activates the angiotensin 1 receptor and regulates neuroinflammation and cognition. Angiotensin receptor 1 blockers (ARBs) were shown to be neuroprotective and prevent cognitive decline. The present study aimed to elucidate the combined role of CBD and ARBs in the modulation of lipopolysaccharide (LPS)-induced glial inflammation. While LPS significantly enhanced nitric oxide synthesis vs. the control, telmisartan and CBD, when administered alone, attenuated this effect by 60% and 36%, respectively. Exposure of LPS-stimulated cells to both compounds resulted in the 95% inhibition of glial nitric oxide release (additive effect). A synergistic inhibitory effect on nitric oxide release was observed when cells were co-treated with losartan (5 µM) and CBD (5 µM) (by 80%) compared to exposure to each compound alone (by 22% and 26%, respectively). Telmisartan and CBD given alone increased TNFα levels by 60% and 40%, respectively. CBD and telmisartan, when given together, attenuated the LPS-induced increase in TNFα levels without statistical significance. LPS-induced IL-17 release was attenuated by CBD with or without telmisartan (by 75%) or telmisartan alone (by 60%). LPS-induced Interferon-γ release was attenuated by 80% when telmisartan was administered in the absence or presence of CBD. Anti-inflammatory effects were recorded when CBD was combined with the known anti-inflammatory agent dimethyl fumarate (DMF)/monomethyl fumarate (MMF). A synergistic inhibitory effect of CBD and MMF on glial release of nitric oxide (by 77%) was observed compared to cells exposed to MMF (by 35%) or CBD (by 12%) alone. Overall, this study highlights the potential of new combinations of CBD (5 µM) with losartan (5 µM) or MMF (1 µM) to synergistically attenuate glial NO synthesis. Additive effects on NO production were observed when telmisartan (5 µM) and CBD (5 µM) were administered together to glial cells.


Assuntos
Canabidiol , Humanos , Canabidiol/farmacologia , Telmisartan/farmacologia , Fator de Necrose Tumoral alfa , Losartan/farmacologia , Óxido Nítrico , Doenças Neuroinflamatórias , Lipopolissacarídeos/toxicidade , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Neuroglia
5.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834289

RESUMO

The management of abdominal pain in patients affected by inflammatory bowel diseases (IBDs) still represents a problem because of the lack of effective treatments. Acetyl L-carnitine (ALCAR) has proved useful in the treatment of different types of chronic pain with excellent tolerability. The present work aimed at evaluating the anti-hyperalgesic efficacy of ALCAR in a model of persistent visceral pain associated with colitis induced by 2,4-dinitrobenzene sulfonic acid (DNBS) injection. Two different protocols were applied. In the preventive protocol, ALCAR was administered daily starting 14 days to 24 h before the delivery of DNBS. In the interventive protocol, ALCAR was daily administered starting the same day of DNBS injection, and the treatment was continued for 14 days. In both cases, ALCAR significantly reduced the establishment of visceral hyperalgesia in DNBS-treated animals, though the interventive protocol showed a greater efficacy than the preventive one. The interventive protocol partially reduced colon damage in rats, counteracting enteric glia and spinal astrocyte activation resulting from colitis, as analyzed by immunofluorescence. On the other hand, the preventive protocol effectively protected enteric neurons from the inflammatory insult. These findings suggest the putative usefulness of ALCAR as a food supplement for patients suffering from IBDs.


Assuntos
Colite , Dor Visceral , Humanos , Ratos , Animais , Acetilcarnitina/farmacologia , Acetilcarnitina/uso terapêutico , Dor Visceral/tratamento farmacológico , Dor Visceral/etiologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Colite/induzido quimicamente , Colite/complicações , Colite/tratamento farmacológico , Neuroglia , Sistema Nervoso Central
6.
Toxicon ; 235: 107325, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838004

RESUMO

The consumption of Ipomoea carnea produces a neurological syndrome in animals. The toxic principles of I. carnea are the alkaloids swainsonine (SW) and calystegines B1, B2, B3 and C1. In this study, we investigated the cytotoxicity of an alkaloid extract of Ipomoea carnea (AEE) and natural swainsonine (SW) isolated from Astragalus lentiginosus (25-1000 µM of SW) for 48 h in a glioma cell line. Although the natural SW did not induce any changes in cell viability, the AEE exhibited a dose dependent cytotoxic effect and release of lactate dehydrogenase (LDH) indicative of cytolysis. In order to evaluate the morphological changes involved, cells were examined using phase contrast and fluorescence microscopy with acridine orange-ethidium bromide staining. The AEE caused a cell death compatible with necrosis, whereas exposure to 1000 µM of SW resulted in cytoplasmic vacuolation. Immunocytochemical studies revealed that astrocytes treated with 150 µM of AEE from I. carnea or 1000 µM of SW exhibited morphological characteristics of cell activation. These findings suggest that swainsonine would not be the only component present in the AEE of I. carnea responsible for in vitro cytotoxicity. Calystegines might also play a role in acting synergistically and triggering cell death through necrosis.


Assuntos
Alcaloides , Antineoplásicos , Ipomoea , Animais , Swainsonina/toxicidade , Alcaloides/farmacologia , Neuroglia , Extratos Vegetais/toxicidade , Necrose
7.
Drug Des Devel Ther ; 17: 2969-2983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37789966

RESUMO

Purpose: Diarrhea-predominant irritable bowel syndrome (D-IBS) is a frequent functional gastrointestinal disease that affects health and quality of life owing to its high incidence and recurrence rate. Tongxie-Yaofang (TXYF) is a traditional Chinese medicine prescribed for D-IBS. However, the therapeutic mechanism of TXYF has not been fully elucidated. This study aimed to investigate the effects of TXYF on visceral hypersensitivity in stress-induced D-IBS rats and the underlying mechanisms. Methods: Electromyographic (EMG) activity of the external oblique muscles and the abdominal withdrawal reflex (AWR) score captured by Barostat were used to quantify the effect of TXYF on visceral sensitivity. Transmission electron microscopy (TEM) was used to observe the ultrastructure of the enteric nervous system (ENS). For molecular detection, the colonic expression of enteric glial cell's (EGC's) activation markers, glial fibrillary acidic protein (GFAP) and calcium-binding protein S100ß, NGF, TrkA, synaptic plasticity-related factors, synaptophysin (SYN) and postsynaptic density-95 (PSD-95), glutamate, glutamate receptors α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR), and N-methyl-D-aspartate receptor (NMDAR) were detected by immunohistochemistry, enzyme-linked immunosorbent assay, and real-time PCR. An ex vivo experiment was conducted to measure the EGC-induced NGF release. Results: TXYF decreased the EMG activity and AWR scores in rats with D-IBS. Under TEM, TXYF improved the dense and irregular nerve arrangement, narrowed the synaptic cleft, and decreased the number of synaptic vesicles in D-IBS rats. In addition, TXYF decreased the expression of GFAP, S100ß, SYN, and PSD-95; down-regulated the levels of NGF, TrkA, and glutamate; and reduced the mRNA expression of AMPAR1, NMDAR1, and NMDAR2B. In an ex vivo experiment, TXYF decreased NGF release in D-IBS rats, and this trend disappeared under EGC inhibition. Conclusion: TXYF alleviated visceral hypersensitivity in D-IBS rats possibly by improving synaptic plasticity through inhibiting the activity of EGCs and the NGF/TrkA signaling pathway in the colon.


Assuntos
Síndrome do Intestino Irritável , Ratos , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Qualidade de Vida , Ácido Glutâmico , Diarreia/tratamento farmacológico , Neuroglia/metabolismo , Plasticidade Neuronal
8.
J Pharm Pharmacol ; 75(11): 1430-1441, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37738214

RESUMO

BACKGROUND: Diabetic gastrointestinal dysfunction (DGD) is a common complication in diabetic patients, and enteric glial cells (EGCs) found in the gastrointestinal tract have been shown to play an essential role in gastrointestinal dysfunction. Thus, targeting EGCs may be helpful for the control of DGD. This study aimed to evaluate the protective effect of Ginkgo biloba extract (GBE) from G. biloba dropping pills against hyperglycaemic stress-induced EGCs injury and its underlying mechanism. METHODS: In vitro, the protective effect of GBE on CRL-2690 cells was evaluated by MTT assay and TUNEL assay. The expression of related markers was evaluated by RNA sequencing and validated by using western blotting. In vivo, STZ-induced C57BL/6J WT mice were used as models to evaluate the effects of GBE on blood glucose, body weight, and EGCs' activity and relevant signalling pathways were validated by immunofluorescence. RESULTS: The results showed that GBE (25 µg/ml) treatment significantly attenuated hyperglycaemic stress-induced cytotoxicity and cell apoptosis in CRL-2690 cells, which was verified in an STZ-induced (100 mg/kg, 3 days) diabetic mouse model with continuous GBE administration (25/100 mg/kg/day, 6/12 weeks). Further mechanistic study based on transcriptomic data revealed that GBE exerted its beneficial effect by regulating immune-related pathways, and TLR2/BTK/NF-κB/IL-1α/IL-10 comprised the main targets of this drug. CONCLUSIONS: This study demonstrates the protective effect of GBE against hyperglycaemic stress-induced EGCs injury using both in vitro and in vivo models and further reveals that the effect was achieved by targeting TLR2 and its downstream molecules BTK/NF-κB/IL-1α/IL-10. This study may be helpful for expanding the clinical application of GBE in treating DGD.


Assuntos
Diabetes Mellitus , Hiperglicemia , Animais , Humanos , Camundongos , Diabetes Mellitus/tratamento farmacológico , Ginkgo biloba , Hiperglicemia/tratamento farmacológico , Interleucina-10 , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Receptor 2 Toll-Like/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo
9.
J Vis Exp ; (198)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37639634

RESUMO

The hypothalamus regulates fundamental metabolic processes by controlling functions as varied as food intake, body temperature, and hormone release. As the functions of the hypothalamus are controlled by specific subsets of neuronal populations, the ability to isolate them provides a major tool for studying metabolic mechanisms. In this regard, the neuronal complexity of the hypothalamus poses exceptional challenges. For these reasons, new techniques, such as Magnetic-Activated Cell Sorting (MACS), have been explored. This paper describes a new application of magnetic-activated cell sorting (MACS) using microbead technology to isolate a targeted neuronal population from prenatal mice brains. The technique is simple and guarantees a highly pure and viable primary hypothalamic neuron culture with high reproducibility. The hypothalamus is gently dissociated, neurons are selectively isolated and separated from glial cells, and finally, using a specific antibody for a cell surface marker, the population of interest is selected. Once isolated, targeted neurons can be used to investigate their morphological, electrical, and endocrine characteristics and their responses in normal or pathological conditions. Furthermore, given the variegated roles of the hypothalamus in regulating feeding, metabolism, stress, sleep, and motivation, a closer look at targeted and region-specific neurons may provide insight into their tasks in this complex environment.


Assuntos
Hipotálamo , Neurônios , Animais , Camundongos , Feminino , Gravidez , Reprodutibilidade dos Testes , Neuroglia , Anticorpos
10.
J Comp Neurol ; 531(15): 1550-1561, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37496437

RESUMO

The transient receptor potential cation channel 2 (TRPC2) conveys pheromonal information from the vomeronasal organ (VNO) to the brain. Both male and female mice lacking this gene show altered sex-typical behavior as adults. We asked whether TRPC2, highly expressed in the VNO, normally participates in the development of VNO-recipient brain regions controlling mounting and aggression, two behaviors affected by TRPC2 loss. We now report significant effects of TRPC2 loss in both the posterodorsal aspect of the medial amygdala (MePD) and ventromedial nucleus of the hypothalamus (VMH) of male and female mice. In the MePD, a sex difference in neuron number was eliminated by the TRPC2 knockout (KO), but the effect was complex, with fewer neurons in the right MePD of females, and fewer neurons in the left MePD of males. In contrast, MePD astrocytes were unaffected by the KO. In the ventrolateral (vl) aspect of the VMH, KO females were like wildtype (WT) females, but TRPC2 loss had a dramatic effect in males, with fewer neurons than WT males and a smaller VMHvl overall. We also discovered a glial sex difference in VMHvl of WTs, with females having more astrocytes than males. Interestingly, TRPC2 loss increased astrocyte number in males in this region. We conclude that TRPC2 normally participates in the sexual differentiation of the mouse MePD and VMHvl. These changes in two key VNO-recipient regions may underlie the effects of the TRPC2 KO on behavior.


Assuntos
Caracteres Sexuais , Comportamento Social , Animais , Feminino , Masculino , Camundongos , Agressão/fisiologia , Hipotálamo , Neuroglia
11.
Brain Res ; 1814: 148447, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37301423

RESUMO

Cerebral palsy (CP) is a syndrome characterized by a wide range of sensory and motor damage, associated with behavioral and cognitive deficits. The aim of the present study was to investigate the potential of a model of CP using a combination of perinatal anoxia and sensorimotor restriction of hind paws to replicate motor, behavioral and neural deficits. A total of 30 of male Wistar rats were divided into Control (C, n = 15), and CP (CP, n = 15) groups. The potential of the CP model was assessed by evaluating food intake, the behavioral satiety sequence, performance on the CatWalk and parallel bars, muscle strength, and locomotor activity. The weight of the encephalon, soleus, and extensor digitorum longus (EDL) muscles, and the activation of glial cells (microglia and astrocytes) were also measured. The CP animals showed delayed satiety, impaired locomotion on the CatWalk and open field test, reduced muscle strength, and reduced motor coordination. CP also reduced the weight of the soleus and muscles, brain weight, liver weight, and quantity of fat in various parts of the body. There was also found to be an increase in astrocyte and microglia activation in the cerebellum and hypothalamus (arcuate nucleus, ARC) of animals subjected to CP.


Assuntos
Paralisia Cerebral , Gravidez , Feminino , Ratos , Animais , Masculino , Ratos Wistar , Paralisia Cerebral/complicações , Hipotálamo , Cerebelo , Neuroglia
12.
BMB Rep ; 56(9): 502-507, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37254570

RESUMO

Photobiomodulation therapy has been proposed as a promising therapeutic approach for retinal degenerative diseases. However, its effect on the regenerative capacity in mammalian retina and its intracellular signalling mechanisms remain unknown. Here, we show that photobiomodulation with 670 nm light stimulates Müller glia cell cycle re-entry and dedifferentiation into a progenitor-like state in both the uninjured and injured retina. We also find that 670 nm light treatment inhibits the Hippo pathway, which is activated in Müller glia following NaIO3-induced retinal injury. YAP, a major downstream effector of the Hippo signalling pathway was translocated into the nucleus of Müller glia along with YAP dephosphorylation in retina treated with 670 nm light. Deficiency of YAP attenuated Müller glia cell cycle re-entry and dedifferentiation. Our data reveal that the Hippo-YAP signalling pathway is associated with the photostimulatory effect on regenerative response in mammalian retina, and suggest a potential therapeutic strategy for retinal degenerative diseases. [BMB Reports 2023; 56(9): 502-507].


Assuntos
Terapia com Luz de Baixa Intensidade , Doenças Retinianas , Animais , Humanos , Proliferação de Células , Retina/lesões , Retina/metabolismo , Neuroglia/metabolismo , Mamíferos
13.
Biochemistry (Mosc) ; 88(3): 337-352, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37076281

RESUMO

Lipids comprise an extremely heterogeneous group of compounds that perform a wide variety of biological functions. Traditional view of lipids as important structural components of the cell and compounds playing a trophic role is currently being supplemented by information on the possible participation of lipids in signaling, not only intracellular, but also intercellular. The review article discusses current data on the role of lipids and their metabolites formed in glial cells (astrocytes, oligodendrocytes, microglia) in communication of these cells with neurons. In addition to metabolic transformations of lipids in each type of glial cells, special attention is paid to the lipid signal molecules (phosphatidic acid, arachidonic acid and its metabolites, cholesterol, etc.) and the possibility of their participation in realization of synaptic plasticity, as well as in other possible mechanisms associated with neuroplasticity. All these new data can significantly expand our knowledge about the regulatory functions of lipids in neuroglial relationships.


Assuntos
Comunicação Celular , Lipídeos , Neuroglia , Neurônios , Ácido Araquidônico/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Colesterol/metabolismo , Microglia/citologia , Microglia/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Plasticidade Neuronal , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Ácidos Fosfatídicos/metabolismo , Transdução de Sinais , Humanos , Animais
14.
Chin J Integr Med ; 29(5): 459-469, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36973529

RESUMO

OBJECTIVE: To investigate autophagy-related mechanisms of electroacupuncture (EA) action in improving gastrointestinal motility in mice with functional constipation (FC). METHODS: According to a random number table, the Kunming mice were divided into the normal control, FC and EA groups in Experiment I. The autophagy inhibitor 3-methyladenine (3-MA) was used to observe whether it antagonized the effects of EA in Experiment II. An FC model was established by diphenoxylate gavage. Then the mice were treated with EA stimulation at Tianshu (ST 25) and Shangjuxu (ST 37) acupoints. The first black stool defecation time, the number, weight, and water content of 8-h feces, and intestinal transit rate were used to assess intestinal transit. Colonic tissues underwent histopathological assessment, and the expressions of autophagy markers microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 were detected by immunohistochemical staining. The expressions of phosphoinositide 3-kinases (PI3K)-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) signaling pathway members were investigated by Western blot and quantitative reverse transcription-polymerase chain reaction, respectively. The relationship between enteric glial cells (EGCs) and autophagy was observed by confocal immunofluorescence microscopy, localization analysis, and electron microscopy. RESULTS: EA treatment shortened the first black stool defecation time, increased the number, weight, and water content of 8-h feces, and improved the intestinal transit rate in FC mice (P<0.01). In terms of a putative autophagy mechanism, EA treatment promoted the expressions of LC3 and Beclin-1 proteins in the colonic tissue of FC mice (P<0.05), with glial fibrillary acidic protein (GFAP) and LC3 significantly colocalized. Furthermore, EA promoted colonic autophagy in FC mice by inhibiting PI3K/AKT/mTOR signaling (P<0.05 or P<0.01). The positive effect of EA on intestinal motility in FC mice was blocked by 3-MA. CONCLUSION: EA treatment can inhibit PI3K/AKT/mTOR signaling in the colonic tissues of FC mice, thereby promoting EGCs autophagy to improve intestinal motility.


Assuntos
Eletroacupuntura , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Beclina-1 , Transdução de Sinais , Constipação Intestinal/terapia , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Neuroglia/metabolismo , Mamíferos/metabolismo
15.
J Neuroendocrinol ; 35(3): e13239, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36863859

RESUMO

The third ventricle (3 V) wall of the tuberal hypothalamus is composed of two types of cells; specialized ependymoglial cells called tanycytes located ventrally and ependymocytes dorsally, which control the exchanges between the cerebrospinal fluid and the hypothalamic parenchyma. By regulating the dialogue between the brain and the periphery, tanycytes are now recognized as central players in the control of major hypothalamic functions such as energy metabolism and reproduction. While our knowledge of the biology of adult tanycytes is progressing rapidly, our understanding of their development remains very incomplete. To gain insight into the postnatal maturation of the 3 V ependymal lining, we conducted a comprehensive immunofluorescent study of the mouse tuberal region at four postnatal ages (postnatal day (P) 0, P4, P10, and P20). We analyzed the expression profile of a panel of tanycyte and ependymocyte markers (vimentin, S100, connexin-43 [Cx43], and glial fibrillary acidic protein [GFAP]) and characterized cell proliferation in the 3 V wall using the thymidine analog bromodeoxyuridine. Our results show that most changes in marker expression occur between P4 and P10, with a switch from a 3 V mostly lined by radial cells to the emergence of a tanycytic domain ventrally and an ependymocytic domain dorsally, a drop in cell proliferation and increased expression of S100, Cx43, and GFAP that acquire a mature profile at P20. Our study thus identifies the transition between the first and the second postnatal week as a critical time window for the postnatal maturation of the 3 V wall ependymal lining.


Assuntos
Terceiro Ventrículo , Camundongos , Animais , Masculino , Terceiro Ventrículo/metabolismo , Conexina 43/metabolismo , Neuroglia/metabolismo , Hipotálamo/metabolismo , Células Ependimogliais/metabolismo , Proliferação de Células
16.
Eur J Pharmacol ; 946: 175650, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907262

RESUMO

Enteric glial cells (EGCs) play an important role in visceral hypersensitivity associated with irritable bowel syndrome (IBS). Losartan (Los) is known to reduce pain; however, its function in IBS is unclear. The present study aimed to investigate Los's therapeutic effect on visceral hypersensitivity in IBS rats. Thirty rats were randomly divided into control, acetic acid enema (AA), AA + Los low, medium and high dose groups in vivo. EGCs were treated with lipopolysaccharide (LPS) and Los in vitro. The molecular mechanisms were explored by assessing the expression of EGC activation markers, pain mediators, inflammatory factors and angiotensin-converting enzyme 1(ACE1)/angiotensin II (Ang II)/Ang II type 1 (AT1) receptor axis molecules in colon tissue and EGCs. The results showed that the rats in the AA group showed significantly higher visceral hypersensitivity than the control rats, which was alleviated by different doses of Los. The expression of GFAP, S100ß, substance P (SP), calcitonin gene-related peptide (CGRP), transient receptor potential vanilloid 1 (TRPV1), tumor necrosis factor (TNF), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) was considerably increased in colonic tissues of AA group rats and LPS-treated EGCs compared with control rats and EGCs, and reduced by Los. In addition, Los reversed ACE1/Ang II/AT1 receptor axis upregulation in AA colon tissues and LPS-treated EGCs. These results show that Los inhibits ACE1/Ang II/AT1 receptor axis upregulation by suppressing EGC activation, resulting in reduced expression of pain mediators and inflammatory factors, thereby alleviating visceral hypersensitivity.


Assuntos
Síndrome do Intestino Irritável , Losartan , Animais , Ratos , Ácido Acético/toxicidade , Enema , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Losartan/farmacologia , Losartan/uso terapêutico , Neuroglia , Dor/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Peptidil Dipeptidase A/metabolismo
17.
Physiol Behav ; 263: 114108, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740135

RESUMO

Reciprocal communication between neurons and glia is essential for normal brain functioning and adequate physiological functions, including energy balance. In vertebrates, the homeostatic process that adjusts food intake and energy expenditure in line with physiological requirements is tightly controlled by numerous neural cell types located within the hypothalamus and the brainstem and organized in complex networks. Within these neural networks, peculiar ependymoglial cells called tanycytes are nowadays recognized as multifunctional players in the physiological mechanisms of appetite control, partly by modulating orexigenic and anorexigenic neurons. Here, we review recent advances in tanycytes' impact on hypothalamic neuronal activity, emphasizing on arcuate neurons.


Assuntos
Células Ependimogliais , Hipotálamo , Animais , Células Ependimogliais/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Neuroglia , Encéfalo , Metabolismo Energético/fisiologia
18.
Phytomedicine ; 108: 154540, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36379093

RESUMO

BACKGROUND: Neuroglia are important modulators of neuronal functionality, and thus play an integral role in the pathogenesis and treatment of neuropathic pain (NP). According to traditional Chinese medicine, Frankincense-Myrrh is capable of "activating blood and dissipating blood stasis", and as such these two biological compounds are commonly used to treat NP, however, the mechanisms underlying the efficacy of such treatment are unclear. PURPOSE: This study aimed to further elucidate the protective effects associated with the Frankincense-Myrrh treatment of NP. METHODS: A chronic sciatic nerve compression injury (CCI) model of NP was established, after which animals were gavaged with Frankincense, Myrrh, Frankincense-Myrrh, or the positive control drug pregabalin for 14 days. Network pharmacology approaches were used to identify putative pathways and targets associated with the Frankincense-Myrrh-mediated treatment of NP, after which these targets were subjected to in-depth analyses. The impact of TLR4 blockade on NP pathogenesis was assessed by intrathecally administering a TLR4 antagonist (LRU) or the MyD88 homodimerization inhibitory peptide (MIP). RESULTS: Significant alleviation of thermal and mechanical hypersensitivity in response to Frankincense and Myrrh treatment was observed in NP model mice, while network pharmacology analyses suggested that the pathogenesis of NP may be related to TLR4/MyD88-mediated neuroinflammation. Consistently, Frankincense-Myrrh treatment was found to reduce TLR4, MyD88, and p-p65 expression in spinal dorsal horn neuroglia from treated animals, in addition to inhibiting neuronal TRPV1 and inflammatory factor expression. Intrathecal LRU and MIP delivery were sufficient to alleviate thermal and mechanical hyperalgesia in these CCI model mice, with concomitant reductions in neuronal TRPV1 expression and neuroglial activation in the spinal dorsal horn. CONCLUSION: These data suggest that Frankincense-Myrrh treatment was sufficient to alleviate NP in part via inhibiting TLR4/MyD88 pathway and TRPV1 signaling activity. Blocking TLR4 and MyD88 activation may thus hold value as a means of treating NP.


Assuntos
Boswellia , Franquincenso , Neuralgia , Camundongos , Animais , Franquincenso/química , Franquincenso/metabolismo , Franquincenso/farmacologia , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Commiphora , Resinas Vegetais/química , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Neuroglia , Hiperalgesia , Canais de Cátion TRPV
19.
Chin. j. integr. med ; Chin. j. integr. med;(12): 459-469, 2023.
Artigo em Inglês | WPRIM | ID: wpr-982299

RESUMO

OBJECTIVE@#To investigate autophagy-related mechanisms of electroacupuncture (EA) action in improving gastrointestinal motility in mice with functional constipation (FC).@*METHODS@#According to a random number table, the Kunming mice were divided into the normal control, FC and EA groups in Experiment I. The autophagy inhibitor 3-methyladenine (3-MA) was used to observe whether it antagonized the effects of EA in Experiment II. An FC model was established by diphenoxylate gavage. Then the mice were treated with EA stimulation at Tianshu (ST 25) and Shangjuxu (ST 37) acupoints. The first black stool defecation time, the number, weight, and water content of 8-h feces, and intestinal transit rate were used to assess intestinal transit. Colonic tissues underwent histopathological assessment, and the expressions of autophagy markers microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 were detected by immunohistochemical staining. The expressions of phosphoinositide 3-kinases (PI3K)-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) signaling pathway members were investigated by Western blot and quantitative reverse transcription-polymerase chain reaction, respectively. The relationship between enteric glial cells (EGCs) and autophagy was observed by confocal immunofluorescence microscopy, localization analysis, and electron microscopy.@*RESULTS@#EA treatment shortened the first black stool defecation time, increased the number, weight, and water content of 8-h feces, and improved the intestinal transit rate in FC mice (P<0.01). In terms of a putative autophagy mechanism, EA treatment promoted the expressions of LC3 and Beclin-1 proteins in the colonic tissue of FC mice (P<0.05), with glial fibrillary acidic protein (GFAP) and LC3 significantly colocalized. Furthermore, EA promoted colonic autophagy in FC mice by inhibiting PI3K/AKT/mTOR signaling (P<0.05 or P<0.01). The positive effect of EA on intestinal motility in FC mice was blocked by 3-MA.@*CONCLUSION@#EA treatment can inhibit PI3K/AKT/mTOR signaling in the colonic tissues of FC mice, thereby promoting EGCs autophagy to improve intestinal motility.


Assuntos
Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Eletroacupuntura , Proteína Beclina-1 , Transdução de Sinais , Constipação Intestinal/terapia , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Neuroglia/metabolismo , Mamíferos/metabolismo
20.
Nutrients ; 14(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36501151

RESUMO

Vitamin A (VA) and its metabolite, retinoic acid (RA), play important roles in modulating intestinal mucosal immunity, yet little is known about their regulatory effects on enteric nervous system function. The study aims to explore the protective effects of dietary VA on diarrhea in a piglet model involving enteric glia and immune cell modulation. Twenty-eight weaned piglets were fed either the basal or VA (basal diet supplemented with 18,000 IU/kg VA) diet and with or without irinotecan (CPT-11) injection. CPT-11 induced increased diarrhea incidence, immune infiltration, and reactive enteric gliosis. A diet supplemented with 18,000 IU/kg VA ameliorated the adverse effects of CPT-11 on the gut barrier. VA reduced diarrhea incidence and attenuated enteric glial gliosis, immune cell infiltrations, and inflammatory responses of CPT-induced piglets. An in vitro experiment with 1 nmol/L RA showed direct protective effects on monocultures of enteric glial cells (EGCs) or macrophages in LPS-simulated inflammatory conditions. Furthermore, 1 ng/mL glial-derived neurotropic factors (GDNF) could inhibit M1-macrophage polarization and pro-inflammatory cytokines production. In summary, VA exerted protective effects on the intestinal barrier by modulating enteric glia and immune cells, perhaps enhancing epithelial recovery under CPT-11 challenge. Our study demonstrated that RA signaling might promote the roles of enteric glia in intestinal immunity and tissue repair, which provided a reference for the VA supplementation of patient diets.


Assuntos
Sistema Nervoso Entérico , Vitamina A , Animais , Suínos , Vitamina A/metabolismo , Irinotecano , Neuroglia/metabolismo , Intestino Delgado , Diarreia/induzido quimicamente , Diarreia/prevenção & controle , Diarreia/metabolismo , Gliose , Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA