Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 2): 131329, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574906

RESUMO

The bacterial nanocellulose (BnC) membranes were produced extracellularly by a novel aerobic acetic acid bacterium Komagataeibacter melomenusus. The BnC was modified in situ by adding carboxymethyl cellulose (CMC) into the culture media, obtaining a BnC-CMC product with denser fibril arrangement, improved rehydration ratio and elasticity in comparison to BnC. The proteolytic enzyme bromelain (Br) and antimicrobial peptide nisin (N) were immobilized to BnC matrix by ex situ covalent binding and/or adsorption. The optimal Br immobilization conditions towards the maximized specific proteolytic activity were investigated by response surface methodology as factor variables. At optimal conditions, i.e., 8.8 mg/mL CMC and 10 mg/mL Br, hyperactivation of the enzyme was achieved, leading to the specific proteolytic activity of 2.3 U/mg and immobilization efficiency of 39.1 %. The antimicrobial activity was observed against Gram-positive bacteria (S. epidermidis, S. aureus and E. faecalis) for membranes with immobilized N and was superior when in situ modified BnC membranes were used. N immobilized on the BnC or BnC-CMC membranes was cytocompatible and did not cause changes in normal human dermal fibroblast cell morphology. BnC membranes perform as an efficient carrier for Br or N immobilization, holding promise in wound debridement and providing antimicrobial action against Gram-positive bacteria, respectively.


Assuntos
Acetobacteraceae , Bromelaínas , Celulose , Nisina , Nisina/farmacologia , Nisina/química , Bromelaínas/química , Bromelaínas/farmacologia , Celulose/química , Celulose/farmacologia , Acetobacteraceae/química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização/efeitos dos fármacos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/farmacologia , Nanoestruturas/química , Testes de Sensibilidade Microbiana
2.
Nutrients ; 16(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474811

RESUMO

Lactic-acid-bacteria-derived bacteriocins are used as food biological preservatives widely. Little information is available on the impact of bacteriocin intake with food on gut microbiota in vivo. In this study, the effects of fermented milk supplemented with nisin (FM-nisin) or plantaricin Q7 (FM-Q7) from Lactiplantibacillus plantarum Q7 on inflammatory factors and the gut microbiota of mice were investigated. The results showed that FM-nisin or FM-Q7 up-regulated IFN-γ and down-regulated IL-17 and IL-12 in serum significantly. FM-nisin down-regulated TNF-α and IL-10 while FM-Q7 up-regulated them. The results of 16S rRNA gene sequence analysis suggested that the gut microbiome in mice was changed by FM-nisin or FM-Q7. The Firmicutes/Bacteroides ratio was reduced significantly in both groups. It was observed that the volume of Akkermansia_Muciniphila was significantly reduced whereas those of Lachnospiraceae and Ruminococcaceae were increased. The total number of short-chain fatty acids (SCFAs) in the mouse feces of the FM-nisin group and FM-Q7 group was increased. The content of acetic acid was increased while the butyric acid content was decreased significantly. These findings indicated that FM-nisin or FM-Q7 could stimulate the inflammation response and alter gut microbiota and metabolic components in mice. Further in-depth study is needed to determine the impact of FM-nisin or FM-Q7 on the host's health.


Assuntos
Microbioma Gastrointestinal , Lactobacillales , Nisina , Camundongos , Animais , Nisina/metabolismo , Nisina/farmacologia , Leite/metabolismo , RNA Ribossômico 16S/genética , Lactobacillales/metabolismo , Ácido Butírico
3.
J Anim Sci ; 1022024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266070

RESUMO

Nisin (Ni) is a polypeptide bacteriocin produced by lactic streptococci (probiotics) that can inhibit the majority of gram-positive bacteria, and improve the growth performance of broilers, and exert antioxidative and anti-inflammatory properties. The present study investigated the potential preventive effect of Nisin on necrotic enteritis induced by Clostridium perfringens (Cp) challenge. A total of 288 Arbor Acres broiler chickens of 1-d-olds were allocated using 2 × 2 factorial arrangement into four groups with six replicates (12 chickens per replicate), including: (1) control group (Con, basal diet), (2) Cp challenge group (Cp, basal diet + 1.0 × 108 CFU/mL Cp), (3) Ni group (Ni, basal diet + 100 mg/kg Ni), and (4) Ni + Cp group (Ni + Cp, basal diet + 100 mg/kg Ni + 1.0 × 108 CFU/mL Cp). The results showed that Cp challenge decreased the average daily gain (ADG) of days 15 to 21 (P<0.05) and increased interleukin-6 (IL-6) content in the serum (P < 0.05), as well as a significant reduction in villus height (VH) and the ratio of VH to crypt depth (VCR) (P<0.05) and a significant increase in crypt depth (CD) of jejunum (P<0.05). Furthermore, the mRNA expressions of Occludin and Claudin-1 were downregulated (P<0.05), while the mRNA expressions of Caspase3, Caspase9, Bax, and Bax/Bcl-2 were upregulated (P<0.05) in the jejunum. However, the inclusion of dietary Ni supplementation significantly improved body weight (BW) on days 21 and 28, ADG of days 15 to 21 (P<0.05), decreased CD in the jejunum, and reduced tumor necrosis factor-α (TNF-α) content in the serum (P<0.05). Ni addition upregulated the mRNA levels of Claudin-1 expression and downregulated the mRNA expression levels of Caspase9 in the jejunum (P<0.05). Moreover, Cp challenge and Ni altered the cecal microbiota composition, which manifested that Cp challenge decreased the relative abundance of phylum Fusobacteriota and increased Shannon index (P<0.05) and the trend of phylum Proteobacteria (0.05

Necrotic enteritis (NE), a severe digestive disorder in broiler chickens caused by Clostridium perfringens (Cp), a gram-positive bacterium, is a widespread issue in the global poultry industry, leading to significant economic losses. Nisin (Ni), a polypeptide bacteriocin produced by probiotic lactic streptococci, has been found to enhance daily weight gain and feed intake, while also exhibiting inhibitory effects on gram-positive bacteria and anti-inflammatory properties. In this study, a NE infection model in broilers was established to examine the potential preventive effects of Ni. These results demonstrated that Cp challenge reduced growth performance, caused inflammatory responses and intestinal apoptosis, damaged intestinal morphology and barrier function, and was accompanied by changes in the composition of the gut microbiota. Dietary supplementation with Ni improved growth performance and protected intestine against Cp challenge-induced damage in broilers. As a result, Ni may be a potential safe and effective additive for NE prevention in broiler production.


Assuntos
Infecções por Clostridium , Nisina , Doenças das Aves Domésticas , Animais , Clostridium perfringens , Galinhas , Intestinos , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Nisina/farmacologia , Claudina-1 , Proteína X Associada a bcl-2/farmacologia , Dieta/veterinária , RNA Mensageiro/genética , Imunidade , Doenças das Aves Domésticas/microbiologia , Suplementos Nutricionais , Ração Animal/análise
4.
Ann Clin Microbiol Antimicrob ; 23(1): 7, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245727

RESUMO

The ability of Staphylococcus epidermidis and S. aureus to form strong biofilm on plastic devices makes them the major pathogens associated with device-related infections (DRIs). Biofilm-embedded bacteria are more resistant to antibiotics, making biofilm infections very difficult to effectively treat. Here, we evaluate the in vitro activities of anti-staphylococcal drug oxacillin and antimicrobial peptide nisin, alone and in combination, against methicillin-resistant S. epidermidis (MRSE) clinical isolates and the methicillin-resistant S. aureus ATCC 43,300. The minimum inhibitory concentrations (MIC) and minimum biofilm eradication concentrations (MBEC) of oxacillin and nisin were determined using the microbroth dilution method. The anti-biofilm activities of oxacillin and nisin, alone or in combination, were evaluated. In addition, the effects of antimicrobial agents on the expression of icaA gene were examined by quantitative real-time PCR. MIC values for oxacillin and nisin ranged 4-8 µg/mL and 64-128 µg/mL, respectively. Oxacillin and nisin reduced biofilm biomass in all bacteria in a dose-dependent manner and this inhibitory effect was enhanced with combinatorial treatment. MBEC ranges for oxacillin and nisin were 2048-8192 µg/mL and 2048-4096 µg/mL, respectively. The addition of nisin significantly decreased the oxacillin MBECs from 8- to 32-fold in all bacteria. At the 1× MIC and 1/2× MIC, both oxacillin and nisin decreased significantly the expression of icaA gene in comparison with untreated control. When two antimicrobial agents were combined at 1/2× MIC concentration, the expression of icaA were significantly lower than when were used alone. Nisin/conventional oxacillin combination showed considerable anti-biofilm effects, including inhibition of biofilm formation, eradication of mature biofilm, and down-regulation of biofilm-related genes, proposing its applications for treating or preventing staphylococcal biofilm-associated infections, including device-related infections.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Nisina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Oxacilina/farmacologia , Nisina/farmacologia , Nisina/uso terapêutico , Staphylococcus epidermidis , Staphylococcus aureus Resistente à Meticilina/genética , Peptídeos Antimicrobianos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Anti-Infecciosos/farmacologia , Staphylococcus , Biofilmes , Testes de Sensibilidade Microbiana
5.
Prep Biochem Biotechnol ; 54(4): 494-502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37607210

RESUMO

The production of Nisin, an FDA-approved food preservative, was attempted by Lactococcus lactis subsp. lactis ATCC® 11454 using the underutilized milk industry effluent, acid-whey, as a substrate. Nisin production was further improved by studying the effect of supplementation of nutrients and non-nutritional parameters. The addition of yeast extract (6% w/v) as nitrogen source and sucrose (4% w/v) as carbon source were found to be suitable nutrients for the maximum nisin production. The changes in the medium pH due to lactic acid accumulation during batch fermentation and its influence on the production of nisin were analyzed in the optimized whey medium (OWM). The production characteristics in OWM were further compared with the nisin production in MRS media. The influence of nisin as an inducer for its own production was also studied and found that the addition of nisin at 0.22 mg/ml promote the nisin production. The analysis of consumption of various metal ions present in the OWM during the nisin production was also analyzed, and found that the copper ions are the most consumed ion. The highest nisin yield of 2.6 × 105 AU/mL was obtained with OWM.


Assuntos
Lactococcus lactis , Nisina , Nisina/metabolismo , Soro do Leite/metabolismo , Lactococcus lactis/metabolismo , Proteínas do Soro do Leite , Fermentação , Suplementos Nutricionais , Íons , Meios de Cultura
6.
Int J Biol Macromol ; 254(Pt 2): 127812, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923038

RESUMO

In the paper, Nisin was grafted onto native pectin by the 1-ethyl-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl) method. Structure characterisation showed that the carboxyl group of pectin interacted with the amino group of Nisin and formed an amide bond. The highest grafting ratio of the modified pectin was up to 24.89 %. The emulsifying property of modified pectin, significantly improved, and emulsification performance improved with increasing grafting ratio. Emulsifying activity, emulsion stability, Zeta potential, and droplet morphology data demonstrate a notable enhancement in pectin's emulsifying properties due to Nisin's introduction, with the degree of grafting showing a direct correlation with the improvement observed. Pectin-based emulsion is utilized to load curcumin, enhancing its stability and bioavailability. Research findings highlight that the incorporation of Nisin-modified pectin significantly elevates curcumin encapsulation efficiency, while decelerating its release rate. Moreover, the stability of curcumin loaded in the modified pectin under light exposure, alkaline conditions, and long-term storage is also significantly improved. Ultimately, the bioavailability of curcumin escalates from 0.368 to 0.785.


Assuntos
Curcumina , Nisina , Emulsões/química , Curcumina/química , Nisina/química , Pectinas/química , Polímeros/química
7.
Food Microbiol ; 118: 104402, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38049261

RESUMO

Microbial safety of fresh produce continues to be a major concern. Novel antimicrobial methods are needed to minimize the risk of contamination. This study investigated the antimicrobial efficacy of pulsed light (PL), a novel nisin-organic acid based antimicrobial wash (AW) and the synergy thereof in inactivating E. coli O157:H7 on Romaine lettuce. Treatment effects on background microbiota and produce quality during storage at 4 °C for 7 days was also investigated. A bacterial cocktail containing three outbreak strains of E. coli O157:H7 was used as inoculum. Lettuce leaves were spot inoculated on the surface before treating with PL (1-60 s), AW (2 min) or combinations of PL with AW. PL treatment for 10 s, equivalent to fluence dose of 10.5 J/cm2, was optimal and resulted in 2.3 log CFU/g reduction of E. coli O157:H7, while a 2 min AW treatment, provided a comparable pathogen reduction of 2.2 log CFU/g. Two possible treatment sequences of PL and AW combinations were investigated. For PL-AW combination, inoculated lettuce leaves were initially exposed to optimum PL dose followed by 2 min AW treatment, whereas for AW-PL combination, inoculated lettuce were subjected to 2 min AW treatment prior to 10 s PL treatment. Both combination treatments (PL-AW and AW-PL) resulted in synergistic inactivation as E. coli cells were not detectable after treatment, indicating >5 log pathogen reductions. Combination treatments significantly (P < 0.05) reduced spoilage microbial populations on Romaine lettuce and also hindered their growth in storage for 7 days. The firmness and visual quality appearance of lettuce were not significantly (P > 0.05) influenced due to combination treatments. Overall, the results reveal that PL and AW combination treatments can be implemented as a novel approach to enhance microbial safety, quality and shelf life of Romaine lettuce.


Assuntos
Anti-Infecciosos , Escherichia coli O157 , Nisina , Lactuca/microbiologia , Microbiologia de Alimentos , Nisina/farmacologia , Contagem de Colônia Microbiana , Anti-Infecciosos/farmacologia , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos
8.
Cell Mol Biol (Noisy-le-grand) ; 69(9): 149-155, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37807320

RESUMO

Despite advancements in treatment and detection, cancer remains one of the most common causes of death worldwide. Conventional chemotherapeutic drugs used to treat cancer have non-specific toxicity toward normal body cells, which leads to several adverse effects. Second, malignancies are known to develop resistance to chemotherapy over time. As a result, the demand for novel anticancer drugs is growing daily. The most frequent type of cancer among women is breast cancer. Utilizing cloned Nisin as an anticancer was the purpose of this study using Gibson cloning and a cell-free peptide synthesis system, then purification of the target protein. The antiproliferative effect of Nisin against a breast cancer MCF-7 cell line was also determined using an MTT assay, and viability in cell lines was measured using acridine orange and propidium iodide. Our findings demonstrate the successful isolation and cloning of the NisA, gene in addition to inducing of peptide synthesis system and then purification of a target protein. MTT assay results indicate that Nisin exhibits a high and selective cytotoxicity against the MCF-7 cell line with an IC50 value of 11.68 µg/ml. This data suggest that the NisA gene had in vitro antiproliferative effect against breast cancer cell. However, more research, including a combination of the NisA gene with other anticancer therapy in clinical use. In addition, in vivo studies are required.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nisina , Feminino , Humanos , Células MCF-7 , Nisina/farmacologia , Nisina/uso terapêutico , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células
9.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677622

RESUMO

Liposomes are among the most studied nanostructures. They are effective carriers of active substances both in the clinical field, such as delivering genes and drugs, and in the food industry, such as promoting the controlled release of bioactive substances, including food preservatives. However, toxicological screenings must be performed to ensure the safety of nanoformulations. In this study, the nematode Caenorhabditis elegans was used as an alternative model to investigate the potential in vivo toxicity of nanoliposomes encapsulating the antimicrobial peptide nisin. The effects of liposomes containing nisin, control liposomes, and free nisin were evaluated through the survival rate, lethal dose (LD50), nematode development rate, and oxidative stress status by performing mutant strain, TBARS, and ROS analyses. Due to its low toxicity, it was not possible to experimentally determine the LD50 of liposomes. The survival rates of control liposomes and nisin-loaded liposomes were 94.3 and 73.6%, respectively. The LD50 of free nisin was calculated as 0.239 mg mL-1. Free nisin at a concentration of 0.2 mg mL-1 significantly affected the development of C. elegans, which was 25% smaller than the control and liposome-treated samples. A significant increase in ROS levels was observed after exposure to the highest concentrations of liposomes and free nisin, coinciding with a significant increase in catalase levels. The treatments induced lipid peroxidation as evaluated by TBARS assay. Liposome encapsulation reduces the deleterious effect on C. elegans and can be considered a nontoxic delivery system for nisin.


Assuntos
Antibacterianos , Nanopartículas , Nisina , Fosfatidilcolinas , Animais , Antibacterianos/toxicidade , Caenorhabditis elegans , Lecitinas , Lipossomos , Nisina/toxicidade , Espécies Reativas de Oxigênio , Substâncias Reativas com Ácido Tiobarbitúrico , Sistemas de Liberação de Medicamentos
10.
Photodiagnosis Photodyn Ther ; 41: 103255, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36567010

RESUMO

BACKGROUND: White spot lesions (WSLs) remain one of the most critical adverse sequelae of fixed orthodontic treatment, despite materials and techniques advances in orthodontics. WSLs seem to be a multi-factorial interaction including increased microbial plaque due to intrabuccal appliances that limit the oral-cleansing mechanism and change in the oral microbiome during fixed appliance wear. The aim of this study was to investigate the synergistic effect of propolis quantum dots (PQD), nisin (Nis), and quercetin nanoparticles (nQCT)-mediated photodynamic therapy (PQD-Nis-nQCT-mediated aPDT) in the eradication of Streptococcus mutans biofilms and the remineralization of WSLs ex-vivo. MATERIALS AND METHODS: The cytotoxicity of PQD-Nis-nQCT composite on human gingival fibroblasts was evaluated using neutral red. Intracellular reactive oxygen species (ROS) generation following PQD-Nis-nQCT-mediated aPDT was measured. Enamel slabs were prepared and demineralized using a demineralization solution containing S. mutans. Demineralized enamel slabs were divided into 9 groups (n = 10) and treated in the following groups: 1) Artificial saliva (negative control), 2) 2% neutral sodium fluoride gel (NSF; positive control or treatment control, 3) PQD, 4) Nis, 5) nQCT, 6) Nis-nQCT, 7) PQD-Nis-nQCT 8) Blue laser irradiation (light), 9) PQD-Nis-nQCT with irradiation (PQD-Nis-nQCT-mediated aPDT). Then, the surface changes, microhardness, and surface topography of the demineralized slabs were examined following each treatment using DIAGNOdent Pen reading, digital hardness tester, and SEM, respectively. After the determination of minimum biofilm eradication concentration (MBEC) of PQD, Nis, and nQCT by microtiter plate assay, the synergistic antimicrobial effects of PQD and Nis-nQCT were determined via evaluation of fractional biofilm eradication concentration (FBEC) index. The anti-biofilm effects of each treatment on S. mutans were assessed using a colorimetric assay. The virulence­associated gtfB gene expression was assessed following PQD-Nis-nQCT-mediated aPDT by quantitative real­time PCR. RESULTS: PQD-Nis-nQCT at 2048 µg/mL had no significant cell cytotoxicity on human gingival fibroblasts compared to the control group (P > 0.05). A significantly increased (7.6 fold) in intracellular ROS was observed following PQD-Nis-nQCT-mediated aPDT (13.9 ± 1.41) when compared to the control (1.83 ± 0.13). Following each treatment, the microhardness of the demineralized enamel surface significantly increased except for the artificial saliva (negative) and blue laser irradiation groups. The highest change in microhardness improvement was detected in the PQD-Nis-nQCT-mediated aPDT group (P < 0.05). Also, DIAGNODent Pen reading revealed the highest significant improved change in the level of mineralization degree in the PQD-Nis-nQCT-mediated aPDT group. Nis and blue light irradiation groups, like the artificial saliva-treated demineralized enamel slabs (control group), did not lead to remineralization (P > 0.05). Also, the PQD-Nis-nQCT-mediated aPDT treatment results obtained from SEM revealed that remineralization of demineralized enamel slabs in that group has significantly improved compared to the others. Light-activated nQCT, PQD, Nis-nQCT, and PQD-Nis-nQCT composite significantly reduced pre-formed biofilms of S. mutans compared with unactivated forms of test materials. The relative expression level of the virulence gtfB gene was significantly decreased (7.53-fold) in the presence of PQD-Nis-nQCT-mediated aPDT (P < 0.05). CONCLUSION: PQD-Nis-nQCT-mediated aPDT can be used for the eradication of S. mutans biofilms and remineralization of WSLs. The found in vitro efficacy should be tested further through clinical studies.


Assuntos
Cárie Dentária , Nisina , Fotoquimioterapia , Própole , Pontos Quânticos , Animais , Humanos , Cavalos , Fotoquimioterapia/métodos , Própole/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Streptococcus mutans , Nisina/farmacologia , Espécies Reativas de Oxigênio , Saliva Artificial/farmacologia , Biofilmes
11.
BMC Microbiol ; 22(1): 28, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039005

RESUMO

BACKGROUND: The biofilm-forming ability of Acinetobacter baumannii in the burn wound is clinically problematic due to the development of antibiotic-resistant characteristics, leading to new approaches for treatment being needed. In this study, antimicrobial photo-sonodynamic therapy (aPSDT) was used to assess the anti-biofilm efficacy and wound healing activity in mice with established A. baumannii infections. METHODS: Following synthesis and confirmation of Curcumin-Nisin-based poly (L-lactic acid) nanoparticle (CurNisNp), its cytotoxic and release times were evaluated. After determination of the sub-significant reduction (SSR) doses of CurNisNp, irradiation time of light, and ultrasound intensity against A. baumannii, anti-biofilm activity and the intracellular reactive oxygen species (ROS) generation were evaluated. The antibacterial and anti-virulence effects, as well as, histopathological examination of the burn wound sites of treated mice by CurNisNp-mediated aPSDTSSR were assessed and compared with silver sulfadiazine (SSD) as the standard treatment group. RESULTS: The results showed that non-cytotoxic CurNisNp has a homogeneous surface and a sphere-shaped vesicle with continuous release until the 14th day. The dose-dependent reduction in cell viability of A. baumannii was achieved by increasing the concentrations of CurNisNp, irradiation time of light, and ultrasound intensity. There was a time-dependent reduction in biofilm growth, changes in gene expression, and promotion in wound healing by the acceleration of skin re-epithelialization in mice. Not only there was no significant difference between aPSDTSSR and SSD groups in antibacterial and anti-virulence activities, but also wound healing and re-epithelialization occurred more efficiently in aPSDTSSR than in the SSD group. CONCLUSIONS: In conclusion, CurNisNp-mediated aPSDT might be a promising complementary approach to treat burn wound infections.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Curcumina/farmacologia , Ácido Láctico/farmacologia , Nanopartículas/química , Nisina/farmacologia , Fotoquimioterapia/métodos , Cicatrização/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Terapia por Ultrassom/métodos
12.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801752

RESUMO

Bovine mastitis is a significant economic burden for dairy enterprises, responsible for premature culling, prophylactic and therapeutic antibiotic use, reduced milk production and the withholding (and thus wastage) of milk. There is a desire to identify novel antimicrobials that are expressly directed to veterinary applications, do not require a lengthy milk withholding period and that will not have a negative impact on the growth of lactic acid bacteria involved in downstream dairy fermentations. Nisin is the prototypical lantibiotic, a family of highly modified antimicrobial peptides that exhibit potent antimicrobial activity against many Gram-positive microbes, including human and animal pathogens including species of Staphylococcus and Streptococcus. Although not yet utilized in the area of human medicine, nisin is currently applied as the active agent in products designed to prevent bovine mastitis. Over the last decade, we have harnessed bioengineering strategies to boost the specific activity and target spectrum of nisin against several problematic microorganisms. Here, we screen a large bank of engineered nisin derivatives to identify novel derivatives that exhibit improved specific activity against a selection of staphylococci, including mastitis-associated strains, but have unchanged or reduced activity against dairy lactococci. Three such peptides were identified; nisin A M17Q, nisin A T2L and nisin A HTK.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Lactococcus/efeitos dos fármacos , Mastite Bovina/microbiologia , Nisina/química , Staphylococcus/efeitos dos fármacos , Animais , Bioengenharia/métodos , Bovinos , Feminino , Testes de Sensibilidade Microbiana , Leite/microbiologia , Peptídeos/química , Engenharia de Proteínas/métodos
13.
Photodiagnosis Photodyn Ther ; 34: 102304, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33901689

RESUMO

AIM: Present lab-based study intended to appraise the effect of nisin, Mixture of Tetracycline, Acid and Detergent (MTAD), and photodynamic therapy (PDT) when used as a canal disinfectant on push-out bond strength (PBS) of fiber post to radicular dentin MATERIALS AND METHODS: Forty uni-radicular premolar teeth were extracted and disinfected in 0.5 % thymol solution. All specimens were decoronated to achieve standardize root length of 14 mm. Cleaning and shaping of the canal were done using protaper NiTi system. The canal space was dried and obturated. Post space was prepared using peso reamers up to 10 mm length and samples were randomly divided into 4 groups (n = 10). Group 1 irrigated with 10 % Nisin with MTAD, group 2: 1.3 % NaOCl and MTAD, Group 3 irrigated with 2.5 % NaOCl and 17 % EDTA and post space of samples in group 4 with PDT with MTAD. Fiber-reinforced composite post (FRCP) was fitted in canal space using self-etch resin cement. Each sample was cut into 1 mm from coronal, middle, and apical and subjected to PBS via a universal testing machine. For comparison of means, Analysis of variance (ANOVA) and Tukey multiple comparison test was used maintaining the level of significance at p < 0.05. RESULT: Samples in group 3 post space irrigated with 2.5 % NaOCl and 17 % EDTA demonstrated the highest PBS at all root levels (cervical: 8.83 ± 0.14 MPa, middle: 7.63 ± 0.82 MPa and apical: 5.82 ± 0.32 MPa) in comparison to other tested groups. Whereas, group 1 in which Nisin 10 % with MTAD was used as a canal disinfectant displayed the lowest PBS at all levels (cervical: 6.91 ± 0.54 MPa, middle: 6.15 ± 0.31 MPa, and apical: 3.62 ± 0.68 MPa). CONCLUSION: Post space irrigated with 1.3 % NaOCl and MTAD shows PBS similar to control group 2.5 % NaOCl and 17 % EDTA. Both types of irrigation methods have potential and can be recommended in clinical scenarios. Whereas, 10 % Nisin and PDT with MTAD as chelator needs further inquiry.


Assuntos
Nisina , Fotoquimioterapia , Dentina , Vidro , Teste de Materiais , Azul de Metileno , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Irrigantes do Canal Radicular
14.
J Food Prot ; 84(2): 233-239, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32977338

RESUMO

ABSTRACT: This study was conducted to evaluate the antimicrobial and preservative effects of the combinations of nisin (NS), tea polyphenols (TP), rosemary extract (RE), and chitosan (CS) on pasteurized chicken sausage. An orthogonal test revealed that the most effective preservative was a mixture of 0.05% NS plus 0.05% TP plus 0.03% RE plus 0.55% CS (weight by sausage weight). This mixture had antimicrobial and antioxidant effects in pasteurized chicken sausage and extended the shelf life to >30 days at 4°C. The inhibitory effects of NS, TP, RE, and CS were also evaluated against Pseudomonas aeruginosa, lactic acid bacteria (LAB), and Staphylococcus aureus, the dominant spoilage and pathogenic bacteria in pasteurized chicken sausage. NS had the greatest inhibitory effect on LAB and S. aureus, with inhibitory zone diameters of 19.7 and 17.8 mm, respectively. TP had the largest inhibitory effect on P. aeruginosa, with a clear zone diameter of 18.2 mm. These results indicate that the combination of NS, TP, RE, and CS could be used as a natural preservative to efficiently inhibit the growth of microorganisms in pasteurized chicken sausage and improve its safety and shelf life.


Assuntos
Anti-Infecciosos , Quitosana , Nisina , Rosmarinus , Animais , Galinhas , Quitosana/farmacologia , Nisina/farmacologia , Extratos Vegetais , Polifenóis/farmacologia , Staphylococcus aureus , Chá
15.
Int J Food Microbiol ; 338: 109019, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33310341

RESUMO

In this work, the antibacterial activity of a crude extract of the endophytic fungus Flavodon flavus (JB257), isolated from leaves of Justicia brandegeana, was evaluated against both the vegetative and sporulated forms of Alicyclobacillus acidoterrestris. The microdilution technique was performed in order to determine the antibacterial activity of the crude extract alone as well as in combination with the bacteriocin, nisin. The minimum inhibitory concentration (MIC) of the crude extract and nisin alone against A. acidoterrestris vegetative forms were 250 µg/mL and 31.5 µg/mL, respectively, while the minimum bactericidal concentrations (MBC) were 1000 µg/mL and 62.5 µg/mL,respectively. For A. acidoterrestris spores, treatment with the crude extract at a concentration of 500 µg/mL caused a 47% reduction in growth, while nisin at 62.5 µg/mL could reduce 100% of the growth. The in vitro evaluation of the crude extract combined with nisin against A. acidoterrestris by the Checkerboard method showed a synergistic interaction between the two compounds. In addition, greater selectivity towards bacterial cells over host cells, a human hepatocyte cell line, was achieved when the crude extract was combined with nisin, Using scanning electron microscopy, interferences in the cell membrane of A. acidoterrestris could be observed after treatment with the crude extract. The results presented in this study indicate that the crude extract of the endophyte F. flavus has biotechnological potential in the food industry, especially for the treatment of orange juices through the control of A. acidoterrestris.


Assuntos
Alicyclobacillus/efeitos dos fármacos , Citrus sinensis/microbiologia , Microbiologia de Alimentos/métodos , Sucos de Frutas e Vegetais/microbiologia , Justicia/química , Justicia/microbiologia , Polyporales/química , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Nisina/farmacologia
16.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35008746

RESUMO

Due to growing antimicrobial resistance to antibiotics, novel methods of treatment of infected wounds are being searched for. The aim of this research was to develop a composite wound dressing based on natural polysaccharides, i.e., gellan gum (GG) and a mixture of GG and alginate (GG/Alg), containing lipid nanoparticles loaded with antibacterial peptide-nisin (NSN). NSN-loaded stearic acid-based nanoparticles (NP_NSN) were spherical with an average particle size of around 300 nm and were cytocompatible with L929 fibroblasts for up to 500 µg/mL. GG and GG/Alg sponges containing either free NSN (GG + NSN and GG/Alg + NSN) or NP_NSN (GG + NP_NSN and GG/Alg + NP_NSN) were highly porous with a high swelling capacity (swelling ratio above 2000%). Encapsulation of NSN within lipid nanoparticles significantly slowed down NSN release from GG-based samples for up to 24 h (as compared to GG + NSN). The most effective antimicrobial activity against Gram-positive Streptococcus pyogenes was observed for GG + NP_NSN, while in GG/Alg it was decreased by interactions between NSN and Alg, leading to NSN retention within the hydrogel matrix. All materials, except GG/Alg + NP_NSN, were cytocompatible with L929 fibroblasts and did not cause an observable delay in wound healing. We believe that the developed materials are promising for wound healing application and the treatment of bacterial infections in wounds.


Assuntos
Alginatos/química , Lipossomos/química , Nanopartículas/química , Nisina/uso terapêutico , Polissacarídeos Bacterianos/química , Infecção dos Ferimentos/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Linhagem Celular , Concentração de Íons de Hidrogênio , Lipossomos/ultraestrutura , Camundongos , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Nanopartículas/ultraestrutura , Nisina/isolamento & purificação , Infecção dos Ferimentos/patologia
17.
PLoS One ; 15(5): e0233284, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469943

RESUMO

Human milk provides complete nutrition for infants and at the same time promotes the growth of specific bacteria in the infant gastrointestinal tract. Breastfeeding can often be discontinued due to mastitis which is an inflammation of the breast tissue. We isolated 18 Staphylococcus aureus strains from milk donated by healthy (n = 6), subclinical (n = 6), and mastitic (n = 6) mothers, two strains of which were VISA (Vancomycin Intermediate S. aureus). All tested strains (n = 12) were able to form biofilms. We then examined the impact of nisin A and vancomycin alone and in combination on biofilm formation and eradication of selected strains (n = 8). We observed strain-specific responses, with the combinatorial treatment at 1/4X MIC (for both singularly) significantly inhibiting biofilm formation for seven out of eight strains when compared with nisin A or vancomycin alone. None of the selected treatments were able to eradicate pre-formed biofilms. Finally, we selected two strains, namely a VISA (APC3814H) and a strong biofilm former (APC3912CM) and used confocal microscopy to evaluate the effects of the antimicrobial agents at 1X MIC on biofilm inhibition and eradication. All treatments inhibited biofilm formation of APC3814H but were ineffective in eradicating a pre-formed biofilm. Single treatments at 1X MIC against APC3912CM cells did not prevent biofilm formation whereas combination treatment caused increased death of APC3912CM cells. Finally, the combination treatment reduced the thickness of the pre-formed APC3912CM biofilm as compared with the single treatments.


Assuntos
Biofilmes/efeitos dos fármacos , Mastite/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Leite Humano/efeitos dos fármacos , Nisina/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/uso terapêutico , Antibacterianos/uso terapêutico , Biofilmes/crescimento & desenvolvimento , Quimioterapia Combinada , Feminino , Humanos , Mastite/microbiologia , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Leite Humano/microbiologia , Infecções Estafilocócicas/microbiologia
18.
Int J Food Microbiol ; 319: 108494, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31918346

RESUMO

Nisin and grape seed extract (GSE) have been widely used as food preservatives; however, the mechanism against pathogens at molecular level has not been well elucidated. This work aimed to investigate their antimicrobial effect against Listeria monocytogenes and to elucidate the mechanism by NMR-based metabolomics. Nisin exhibited enhanced in vitro antilisterial effect when combined with GSE (4.49 log CFU/mL reduction). Marked change in cell membrane permeability was observed in the combination group using confocal laser scanning microscopy; this was verified by increased leakage of protein and nucleic acid. The underlying antimicrobial mechanism was revealed by NMR coupled with multivariate analysis. Significant decreases in threonine, cysteine, ATP, NADP, adenine were observed, whereas a few of metabolites such as lactic acid and γ-aminobutyric acid (GABA) increased after nisin-GSE treatment (P < 0.05). Pathway analysis further manifested that the nisin-GSE inhibited the survival of L. monocytogenes by blocking the TCA cycle, amino acid biosynthesis and energy-producing pathway. Lastly, nisin and GSE were applied to shrimp and binary combination showed remarkably antilisterial activity (1.79 log CFU/g reduction). GABA shunt and protein degradation from shrimp compensated the unbalanced glycolysis and amino acid metabolism by providing energy and carbon source for L. monocytogenes inoculated on shrimp. Thus, they were more tolerant to nisin and GSE stresses as compared to the broth-grown culture.


Assuntos
Antibacterianos/farmacologia , Conservantes de Alimentos/farmacologia , Extrato de Sementes de Uva/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Nisina/farmacologia , Penaeidae/microbiologia , Animais , Contagem de Colônia Microbiana , Conservação de Alimentos/métodos , Metabolômica , Alimentos Marinhos/microbiologia
19.
J Food Prot ; 83(1): 68-74, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31845829

RESUMO

The antimicrobial activity of a new nisin-based organic acid sanitizer (NOAS), developed in our laboratory, was tested against viable aerobic mesophilic bacteria and Salmonella populations inoculated on produce surfaces. The activity of NOAS was compared with 200 ppm of chlorinated wash water and a bioluminescence ATP technique to determine the efficacy of treatments compared with plate count methods. The activity of the 10% final concentration of NOAS against viable populations of 109 CFU/mL Salmonella in phosphate-buffered saline (PBS), sterile deionized distilled water, and buffered peptone water was tested in vitro and on grape tomatoes inoculated with Salmonella at 2.5 log CFU/g. A similar batch of inoculated tomatoes were treated with 200 ppm of total available chlorinated water. All treatments for inactivation of viable Salmonella in vitro was tested up to 30 min and 5 min for the attached populations on tomatoes. Inactivation of viable Salmonella at 109 log CFU/mL by 10% the NOAS solution averaged >107 log CFU/mL in PBS, sterile deionized distilled water, and buffered peptone water. Similarly, Salmonella bacteria inactivated on tomato surfaces by the NOAS solution was significantly (P < 0.05) greater than numbers on chlorinated washed tomatoes, and surviving bacterial populations on NOAS and chlorine-treated tomatoes were <1 and 4 CFU/g, respectively. A significant linear correlation coefficient (r2 = 0.99) between the bioluminescence ATP assay and aerobic plate counts of inoculated and untreated grape tomatoes were recorded but not with NOAS and chlorine-treated tomatoes, as bacterial populations were less than the minimum baseline for determination. Also, the results indicated that the NOAS solution is a better alternative antimicrobial wash solution than 200 ppm of chlorinated water.


Assuntos
Desinfetantes/farmacologia , Contaminação de Alimentos/prevenção & controle , Frutas/microbiologia , Nisina/farmacologia , Salmonella/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Trifosfato de Adenosina , Cloro , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Medições Luminescentes
20.
World J Microbiol Biotechnol ; 35(10): 158, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31595344

RESUMO

Presence of bacterial contaminants at levels > 107 colony forming units per milliliter (CFU/mL) during ethanol production processes reduces the alcoholic fermentation yield by 30%. Antibiotics are currently used to control contamination, but their residues may be detected in yeast extract, restricting this by-product trade to several countries. Thus, the objective of this study was to assess antimicrobial activity of the natural compounds hops extract, 4-hydroxybenzoic acid, nisin Z, and lysozyme against Lactobacillus fermentum, Leuconostoc mesenteroides, and Saccharomyces cerevisiae, aiming development of a formula. Minimum Inhibitory Concentration of each antimicrobial was determined for bacteria and subsequently, nisin (30 mg/L) and hops extract (5 mg/L) were tested together, showing inhibitory effects combining doses of each antimicrobial that were equivalent to an eightfold reduction of their original Minimum Inhibitory Concentrations (3.75 and 0.625 mg/L, respectively), resulting in a FICIndex of 0.25. Thereon, a formula containing both compounds was developed and tested in fermentation assays, promoting reductions on bacterial population and no severe interferences in yeast viability or population even at extreme doses. Therefore, these compounds have great potential to successfully substitute conventional antibiotics in the ethanol industry.


Assuntos
Anti-Infecciosos/farmacologia , Etanol/metabolismo , Fermentação/fisiologia , Humulus/química , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Microbiologia Industrial , Lactobacillales/efeitos dos fármacos , Limosilactobacillus fermentum/efeitos dos fármacos , Leuconostoc mesenteroides/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Muramidase/farmacologia , Nisina/análogos & derivados , Nisina/farmacologia , Parabenos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA