Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 220(2): 261-9, 2003 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-12670690

RESUMO

Paracoccus pantotrophus grown anaerobically under denitrifying conditions expressed similar levels of the periplasmic nitrate reductase (NAP) when cultured in molybdate- or tungstate-containing media. A native PAGE gel stained for nitrate reductase activity revealed that only NapA from molybdate-grown cells displayed readily detectable nitrate reductase activity. Further kinetic analysis showed that the periplasmic fraction from cells grown on molybdate (3 microM) reduced nitrate at a rate of V(max)=3.41+/-0.16 micromol [NO(3)(-)] min(-1) mg(-1) with an affinity for nitrate of K(m)=0.24+/-0.05 mM and was heat-stable up to 50 degrees C. In contrast, the periplasmic fraction obtained from cells cultured in media supplemented with tungstate (100 microM) reduced nitrate at a much slower rate, with much lower affinity (V(max)=0.05+/-0.002 micromol [NO(3)(-)] min(-1) mg(-1) and K(m)=3.91+/-0.45 mM) and was labile during prolonged incubation at >20 degrees C. Nitrate-dependent growth of Escherichia coli strains expressing only nitrate reductase A was inhibited by sub-mM concentrations of tungstate in the medium. In contrast, a strain expressing only NAP was only partially inhibited by 10 mM tungstate. However, none of the above experimental approaches revealed evidence that tungsten could replace molybdenum at the active site of E. coli NapA. The combined data show that tungsten can function at the active site of some, but not all, molybdoenzymes from mesophilic bacteria.


Assuntos
Escherichia coli/enzimologia , Nitrato Redutases/metabolismo , Paracoccus/enzimologia , Tungstênio/farmacologia , Anaerobiose , Meios de Cultura , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Molibdênio/farmacologia , Nitrato Redutases/análise , Nitrato Redutases/biossíntese , Nitratos/metabolismo , Oxirredução , Paracoccus/efeitos dos fármacos , Paracoccus/crescimento & desenvolvimento , Compostos de Tungstênio/farmacologia
2.
Dis Markers ; 14(2): 91-7, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9868596

RESUMO

It has been suggested that nitrate and nitrite may play a role in the etiology of human oral cancer. We investigated whether salivary nitrate and nitrite and the activity of nitrate reductase (NRase) may affect the risk of oral cancer in Egypt, an area with high levels of environmental nitrosating agents. Levels of salivary nitrite (8.3 +/- 1.0 micrograms/ml) and nitrate (44 +/- 3.7 micrograms/ml) and activity of NRase (74 +/- 10 nmol/ml/min) were significantly (P < 0.05) higher in oral cancer patients (n = 42) compared to control Egyptian healthy individuals (n = 40, nitrite = 5.3 +/- 0.3 micrograms/ml, nitrate = 27 +/- 1.2 micrograms/ml, and NRase activity = 46 +/- 4 nmol/ml/min). The adjusted odds ratio (OR) and the 95% confidence intervals (C.I.) for risk of oral cancer, categorized by the levels of salivary nitrate and nitrite and NRase activity, showed a higher cancer risk associated with nitrite > 7.5 micrograms/ml (OR: 3.0, C.I.: 1.0-9.3), nitrite > 40 micrograms/ml (OR: 4.3, C.I.: 1.4-13.3) and NRase activity > 50 nmol/ml/min (OR: 2.9, C.I.: 1.1-7.4). Our findings suggest that increased consumption of dietary nitrate and nitrite is associated with elevated levels of salivary nitrite. Together with the increased activity of salivary NRase, these observations may explain, at least in part, the role of nitrate and nitrite in the development of oral cancer in individuals from an area with a high burden of N-nitroso precursors.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Bucais/metabolismo , Nitrato Redutases/análise , Nitratos/análise , Nitritos/análise , Saliva/química , Adulto , Dieta , Egito , Exposição Ambiental , Feminino , Frutas , Humanos , Masculino , Carne , Pessoa de Meia-Idade , Neoplasias Bucais/induzido quimicamente , Nitrato Redutase , Nitrato Redutases/metabolismo , Nitratos/administração & dosagem , Nitritos/administração & dosagem , Fatores de Risco , Chá
3.
J Biochem ; 102(3): 525-30, 1987 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-2828343

RESUMO

Cytochrome a1c1 (nitrite-cytochrome c oxidoreductase) purified from Nitrobacter winogradskyi (formerly N. agilis) contained molybdenum, non-heme iron, and acid-labile sulfur in addition to hemes a and c; it contained 1 mol of heme a, 4-5 g atoms of non-heme iron, 2-5 g atoms of acid-labile sulfur, and 1-2 g atoms of molybdenum per mol of heme c, but did not contain copper. The fluorescence spectra of the molybdenum cofactor derivative prepared from cytochrome a1c1 were very similar to those of the cofactor derivative from xanthine oxidase, and the aponitrate reductase of nit-1 mutant of Neurospora crassa was complemented by addition of the molybdenum cofactor derived from the cytochrome. Further, the ESR spectrum of cytochrome a1c1 was similar to that of liver sulfite oxidase. The content of cytochrome a1 in the cells cultivated with the medium in which tungsten was substituted for molybdenum markedly decreased as compared with that in the cells cultivated in the molybdenum-supplemented medium. These results indicate that cytochrome a1c1 is an iron-sulfur molybdoenzyme which contains hemes a and c.


Assuntos
Citocromos a1 , Citocromos c1 , Heme/análogos & derivados , Nitrato Redutases/análise , Nitrobacter/enzimologia , Oxirredutases/isolamento & purificação , Espectroscopia de Ressonância de Spin Eletrônica , Heme/análise , Molibdênio/análise , Enxofre/análise , Tungstênio/metabolismo
4.
Microbiologia ; 2(2): 89-96, 1986 Oct.
Artigo em Espanhol | MEDLINE | ID: mdl-3078142

RESUMO

The nitrogenase activity, nitrate reductase activity and oxygen uptake as well as the hydrogen incorporation and ATP content were examined in the root nodules and bacteroids, respectively, formed by Rhizobium leguminosarum strains 128C53 (hydrogenase positive) and 300 (hydrogenase negative) in symbiosis with Pisum sativum plants grown in the presence of 2 mM KNO3. The strain 128C53 showed the greatest values for all parameters analyzed, except for the nitrate reductase activity, which was higher for the strain 300. Similarly, nodule nitrate reductase activity in strain 300 was greater than that in strain 128C53 when plants grew in the absence of combined nitrogen. In general, the highest values were obtained when determinations were made after 7 hours of plant illumination. However, the hydrogenase activity of strain 128C53 and the nitrate reductase activities of both strains increased with the light period, reaching a maximum after 14 hours of illumination. These results suggest that the benefits derived from the superior symbiotic properties and from the presence of hydrogenase activity in strain 128C53 could be counteracted by the higher rates of the nodule nitrate reductase activity in strain 300.


Assuntos
Trifosfato de Adenosina/análise , Proteínas de Bactérias/análise , Fabaceae/microbiologia , Hidrogenase/análise , Fixação de Nitrogênio , Oxigênio/metabolismo , Plantas Medicinais , Rhizobium/metabolismo , Metabolismo Energético , Fabaceae/metabolismo , Hidrogênio/metabolismo , Nitrato Redutase , Nitrato Redutases/análise , Fixação de Nitrogênio/efeitos da radiação , Nitrogenase/análise , Rhizobium/classificação , Simbiose
5.
Biochim Biophys Acta ; 385(2): 354-61, 1975 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-123779

RESUMO

Extracts of Aspergillus nidulans wild type (bi-1) and the nitrate reductase mutant niaD-17 were active in the in vitro restoration of NADPH-dependent nitrate reductase when mixed with extracts of Neurospora crassa, nit-1. Among the A. nidulans cnx nitrate reductase mutants tested, only the molybdenum repair mutant, cnxE-14 grown in the presence of 10-minus 3 M Na2 MoO4 was active in the restoration assay. Aspergillus extracts contained an inhibitor(s) which was measured by the decrease in NADPH-dependent nitrate reductase formed when extracts of Rhodospirillum rubrum and N. crassa, nit-1 were incubated at room temperature. The inhibition by extracts of A. nidulans, bi-1, cnxE-14, cnxG-4 and cnxH-3 was a linear function of time and a logarithmic function of the protein concentration in the extract. The molybdenum content of N. crassa wild type and nit-1 mycelia were found to be similar, containing approx. 10 mu g molybdenum/mg dry mycelium. The NADPH-dependent cytochrome c reductase associated with nitrate reductase was purified from both strains. The NADPH-dependent cytochrome c reductase associated with nitrate reductase was purified from both strains. The enzyme purified from wild-type N. crassa contained more than 1 mol of molybdenum per mol of enzyme, whereas the enzyme purified from nit-1 contained negligible amounts of molybdenum.


Assuntos
Aspergillus nidulans , Molibdênio/metabolismo , Neurospora crassa/enzimologia , Neurospora/enzimologia , Nitrato Redutases/metabolismo , Aspergillus nidulans/enzimologia , Redutases do Citocromo/análise , Molibdênio/análise , Mutação , Neurospora crassa/análise , Nitrato Redutases/análise , Nitrato Redutases/antagonistas & inibidores , Extratos Vegetais/farmacologia , Biossíntese de Proteínas , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA