Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
J Sep Sci ; 47(7): e2300901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605456

RESUMO

An effective method by high-speed countercurrent chromatography coordinated with silver nitrate for the preparative separation of sterones and triterpenoid saponins from Achyranthes bidentata Blume was developed. Methyl tert-butyl ether/n-butanol/acetonitrile/water (4:2:3:8, v/v/v/v) was selected for 20-hydroxyecdysone (compound 1), chikusetsusaponin IVa methyl ester (compound 4), 2'-glycan-11-keto-pigmented saponin V (compound 5), as well as a pair of isomers of 25S-inokosterone (compound 2) and 25R-inokosterone (compound 3), which were further purified by silver nitrate coordinated high-speed countercurrent chromatography. What is more, dichloromethane/methanol/isopropanol/water (6:6:1:4, v/v/v/v) was applied for calenduloside E (compound 6), 3ß-[(O-ß-d-glucuronopyranosyl)-oxy]-oleana-11,13-dien-28-oic acid (compound 7), zingibroside R1 (compound 8) and chikusetsusaponin IVa (compound 9). Adding Ag+ to the solvent system resulted in unique selectivity for 25R/25S isomers of inokosterone, which increased the complexing capability and stability of Ag+ coordinated 25S-inokosterone, as well as the α value between them. These results were further confirmed by the computational calculation of geometry optimization and frontier molecular orbitals assay. Comprehensive mass spectrometry and nuclear magnetic resonance analysis demonstrated the structures of the obtained compounds.


Assuntos
Achyranthes , Colestenos , Ácido Oleanólico/análogos & derivados , Saponinas , Distribuição Contracorrente , Achyranthes/química , Nitrato de Prata , Extratos Vegetais/química , Água/química , Cromatografia Líquida de Alta Pressão/métodos
2.
Environ Sci Pollut Res Int ; 31(11): 16725-16734, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326678

RESUMO

Eisenia andrei is considered in OECD and ISO guidelines to be a suitable replacement for Eisenia fetida in ecotoxicological assays. This suggests that other alternative materials and methods could also be used in standard procedures for toxicity testing. The guidelines also favor using less time-consuming procedures and reducing costs and other limitations to ecotoxicological assessments. In recent years, spent coffee grounds (SCG) have been used to produce vermicompost and biochar and as an additive to organic fertilizers. In addition, the physicochemical characteristics of SCG indicate that the material is a suitable substrate for earthworms, with the organisms performing as well as in natural soil. In the present study, a battery of ecotoxicological tests was established with unwashed and washed SCG and a natural reference soil (LUFA 2.2). The test substrates were spiked with different concentrations of silver nitrate. Survival and reproduction of the earthworm E. andrei were assessed under different conditions, along with substrate basal respiration (SBR) as a proxy for microbial activity. Seedling emergence and the germination index of Lepidium sativum were also determined, following standard guidelines. Exposure to silver nitrate had similar effects on earthworm survival and reproduction, as the estimated effective concentrations (EC10 and EC50) in unwashed SCG and LUFA 2.2 overlapped. A hormetic effect was observed for SBR in LUFA 2.2 spiked with 12.8 mg/kg but not in unwashed SCG. Both SBR and root development were inhibited by similar concentrations of silver nitrate in washed SCG. The findings indicate that unwashed SCG could potentially be used as a substrate in E. andrei toxicity tests and support the eventual inclusion of this material in the standard guidelines.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Solo/química , Café , Nitrato de Prata/farmacologia , Poluentes do Solo/análise , Ecotoxicologia
3.
Sci Prog ; 106(4): 368504231219171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38113117

RESUMO

The tobacco cutworm (Spodoptera litura) is a widespread pest that inflicts severe damage on various crops, including cotton, tobacco, and vegetables, with a particular preference for solanaceous plants. Traditional control methods often rely heavily on synthetic insecticides, leading to adverse effects on the environment, human health, and the development of insecticide resistance. In light of these challenges, this study explores the potential of nanotechnology as an innovative and sustainable approach to combat this notorious pest. Bioassays were conducted using laboratory-reared 3rd instar S. litura larvae. Eight different plant extracts coated with zinc oxide and silver nitrate nanoparticles were tested, with concentrations in both distilled water and ethanol at 3, 5, and 7 ml. Data were collected at 24, 48, and 72-h intervals. The results revealed that the highest larval mortality, reaching 98%, was observed in the group treated with silver nitrate nanoparticles derived from Cymbopogon citratus. In comparison, the group treated with zinc oxide nanoparticles dissolved in ethanol exhibited a larval mortality rate of 90%. Ethanol is a polar solvent that is widely used in the synthesis of nanocomposites. It is capable of forming strong hydrogen bonds with oxygen atoms, making it a good dispersant for zinc oxide nanoparticles. Additionally, ethanol has a low boiling point and a non-toxic nature, which makes it a safe and effective option for the dispersion of nanoparticles. Notably, the study concluded that silver nanoparticles combined with ethanol exhibited prolonged and more potent toxic effects against S. litura when compared to zinc oxide nanoparticles. Overall, this research underscores the potential of nanotechnology as a valuable component of Integrated Pest Management (IPM) strategies. By integrating nanotechnology into pest management practices, we can promote sustainable and environmentally friendly approaches that benefit both farmers and the ecosystem.


Assuntos
Nanopartículas Metálicas , Controle de Pragas , Óxido de Zinco , Animais , Ecossistema , Etanol , Larva , Nanopartículas Metálicas/toxicidade , Nitratos/farmacologia , Extratos Vegetais/farmacologia , Prata/farmacologia , Nitrato de Prata/farmacologia , Spodoptera , Óxido de Zinco/farmacologia
4.
Clin Oral Investig ; 27(11): 6677-6688, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37775587

RESUMO

OBJECTIVES: Disinfection of alginate impression materials is a mandatory step to prevent cross-infection in dental clinics. However, alginate disinfection methods are time-consuming and exert a negative impact on accuracy and mechanical properties. Thus, this study aimed to prepare disinfecting agents (CHX and AgNO3) and silver nanoparticles reduced by a natural plant extract to produce a self-disinfecting dental alginate. METHODS: Conventional alginate impression material was used in this study. Silver nitrate (0.2% AgNO3 group) and chlorohexidine (0.2% CHX group) solutions were prepared using distilled water, and these solutions were later employed for alginate preparation. Moreover, a 90% aqueous plant extract was prepared from Boswellia sacra (BS) oleoresin and used to reduce silver nitrate to form silver nanoparticles that were incorporated in the dental alginate preparation (BS+AgNPs group). The plant extract was characterized by gas chromatography/mass spectrometry (GC/MS) analysis while green-synthesized silver nanoparticles (AgNPs) were characterized by UV-visible (UV-vis) spectroscopy and scanning electron microscopy (SEM). An agar disc diffusion assay was used to test the antimicrobial activity against Candida albicans, Streptococcus mutans, Escherichia coli, methicillin-resistant and susceptible Staphylococcus aureus strains, and Micrococcus luteus. Agar plates were incubated at 37 ± 1 °C for 24 h to allow microbial growth. Diameters of the circular inhibition zones formed around each specimen were measured digitally by using ImageJ software. RESULTS: Chemical analysis of the plant extract revealed the presence of 41 volatile and semi-volatile active compounds. UV-Vis spectrophotometry, SEM, and EDX confirmed the formation of spherical silver nanoparticles using the BS extract. CHX, AgNO3, and the BS+AgNPs modified groups showed significantly larger inhibition zones than the control group against all tested strains. BS+AgNPs and CHX groups showed comparable efficacy against all tested strains except for Staphylococcus aureus, where the CHX-modified alginate had a significantly higher effect. CONCLUSIONS AND CLINICAL RELEVANCE: CHX, silver nitrate, and biosynthesized silver nanoparticles could be promising inexpensive potential candidates for the preparation of a self-disinfecting alginate impression material without affecting its performance. Green synthesis of metal nanoparticles using Boswellia sacra extract could be a very safe, efficient, and nontoxic way with the additional advantage of a synergistic action between metal ions and the phytotherapeutic agents of the plant extract.


Assuntos
Alginatos , Nanopartículas Metálicas , Alginatos/farmacologia , Desinfecção , Nitrato de Prata/farmacologia , Nanopartículas Metálicas/química , Ágar/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Prata , Extratos Vegetais/farmacologia , Staphylococcus aureus , Nanotecnologia/métodos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
5.
J Vector Borne Dis ; 59(3): 216-227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36511037

RESUMO

BACKGROUND & OBJECTIVES: Mosquitoes are insects of public health importance that act as a vector to transmit various vector-borne diseases in humans including dengue, malaria, filariasis and yellow fever. The continually employed synthetic insecticides have developed resistance in mosquitoes. Nano-based botanical insecticides can be considered as the best alternative due to several advantages like being simple, non-pathogenic, biodegradable and safe to the environment. The present work reported the maximum larvicidal potential of green synthesized silver nanoparticles (AgNPs) derived from the leaf extract of Solanum xanthoearpum against the third instar larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus over its crude leaf extract. METHODS: The synthesis of AgNPs was done by adding leaf extract into silver nitrate solution in a conical flask. The characterization of AgNPs was done using different techniques such as UV-Vis, SEM, TEM, XRD, DLS and SAED. FT-IR analysis was done to find out the compound responsible for bio-reduction of silver nitrate. Larvicidal activity of AgNPs was checked against An. stephensi, Ae. aegypti, and Cx. quinquefasciatus according to WHO standard protocol and toxicity was evaluated against Poecilia reticulate. RESULTS: A change in colour was observed indicating the synthesis of AgNPs which was further confirmed by a strong surface plasmon resonance peak at 421nm under the UV-Vis spectrum. SEM and TEM micrographs exhibited that the most common shape of AgNPs was spherical. XRD spectrum showed crystalline nature of silver nanoparticles. FT-IR spectrum showed the presence of various functional groups such as carboxyl and hydroxyl which might be responsible for bio-reduction and capping of silver nanoparticles. Further, silver nanoparticles were very effective against An. stephensi, Ae. aegypti, and Cx. quinquefasciatus with LC50 and LC90 values of 1.90, 2.36, 2.93, 3.82, 4.31 and 7.63 ppm, respectively, as compared to aqueous leaf extract after 72 h of exposure and were non-toxic against non-target organism P. retieulata. Interpretation & eonelusion: From the above finding, it can be concluded that fabricated AgNPs can be promising eco-friendly tools for controlling mosquito vectors.


Assuntos
Aedes , Anopheles , Culex , Inseticidas , Nanopartículas Metálicas , Solanum , Animais , Humanos , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nitrato de Prata , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Prata/farmacologia , Inseticidas/farmacologia , Inseticidas/química , Larva , Folhas de Planta
6.
Molecules ; 27(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36234841

RESUMO

Silver nanoparticles (AgNPs) have recently gained interest in the medical field because of their biological features. The present study aimed at screening Rhizophora apiculata secondary metabolites, quantifying their flavonoids and total phenolics content, green synthesis and characterization of R. apiculata silver nanoparticles. In addition, an assessment of in vitro cytotoxic, antioxidant, anti-inflammatory and wound healing activity of R. apiculata and its synthesized AgNPs was carried out. The powdered plant material (leaves) was subjected to Soxhlet extraction to obtain R. apiculata aqueous extract. The R. apiculata extract was used as a reducing agent in synthesizing AgNPs from silver nitrate. The synthesized AgNPs were characterized by UV-Vis, SEM-EDX, XRD, FTIR, particle size analyzer and zeta potential. Further aqueous leaf extract of R. apiculata and AgNPs was subjected for in vitro antioxidant, anti-inflammatory, wound healing and cytotoxic activity against A375 (Skin cancer), A549 (Lung cancer), and KB-3-1 (Oral cancer) cell lines. All experiments were repeated three times (n = 3), and the results were given as the mean ± SEM. The flavonoids and total phenolics content in R. apiculata extract were 44.18 ± 0.086 mg/g of quercetin and 53.24 ± 0.028 mg/g of gallic acid, respectively. SEM analysis revealed R. apiculata AgNPs with diameters ranging from 35 to 100 nm. XRD confirmed that the synthesized silver nanoparticles were crystalline in nature. The cytotoxicity cell viability assay revealed that the AgNPs were less toxic (IC50 105.5 µg/mL) compared to the R. apiculata extract (IC50 47.47 µg/mL) against the non-cancerous fibroblast L929 cell line. Antioxidant, anti-inflammatory, and cytotoxicity tests revealed that AgNPs had significantly more activity than the plant extract. The AgNPs inhibited protein denaturation by a mean percentage of 71.65%, which was equivalent to the standard anti-inflammatory medication diclofenac (94.24%). The AgNPs showed considerable cytotoxic effect, and the percentage of cell viability against skin cancer, lung cancer, and oral cancer cell lines was 31.84%, 56.09% and 22.59%, respectively. R. apiculata AgNPs demonstrated stronger cell migration and percentage of wound closure (82.79%) compared to the plant extract (75.23%). The overall results revealed that R. apiculata AgNPs exhibited potential antioxidant, anti-inflammatory, wound healing, and cytotoxic properties. In future, R. apiculata should be further explored to unmask its therapeutic potential and the mechanistic pathways of AgNPs should be studied in detail in in vivo animal models.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Neoplasias Bucais , Rhizophoraceae , Animais , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/química , Antioxidantes/química , Antioxidantes/farmacologia , Diclofenaco/farmacologia , Ácido Gálico/farmacologia , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Quercetina/farmacologia , Substâncias Redutoras/farmacologia , Prata/farmacologia , Nitrato de Prata/farmacologia , Cicatrização
7.
Molecules ; 27(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234942

RESUMO

In the current decade, nanoparticles are synthesized using solvents that are environmentally friendly. A number of nanoparticles have been synthesized at room temperature using water as a solvent, such as gold (Au) and silver (Ag) nanoparticles. As part of nanotechnology, nanoparticles are synthesized through biological processes. Biological methods are the preferred method for the synthesis of inorganic nanoparticles (AgNPs) as a result of their simple and non-hazardous nature. Nanoparticles of silver are used in a variety of applications, including catalysts, spectrally selective coatings for solar absorption, optical objectives, pharmaceutical constituents, and chemical and biological sensing. Antimicrobial agents are among the top uses of silver nanoparticles. In the current study, silver nanoparticles were biologically manufactured through Madhuca longifolia, and their antibacterial activity against pathogenic microorganisms, anticancer, anti-inflammatory, and antioxidant activities were assessed. UV-Vis spectroscopy, XRD (X-ray diffraction), transmission electron microscopy, Zeta Potential, and FTIR were used to characterize silver nanoparticles. The current work describes a cheap and environmentally friendly method to synthesize silver nanoparticles from silver nitrate solution by using plant crude extract as a reducing agent.


Assuntos
Anti-Infecciosos , Madhuca , Nanopartículas Metálicas , Antibacterianos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Substâncias Redutoras , Prata/farmacologia , Nitrato de Prata , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Difração de Raios X
8.
Acta Trop ; 236: 106700, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36181877

RESUMO

Fascioliasis is an important zoonotic disease but treatment with the mainstay drugs poses challenge of parasite resistance. The aim of the study was to determine the anthelmintic efficacy of ethanolic leaf extract of Calotropis procera (CP) and its synthesized silver nanoparticles (AgNPs) against the eggs and miracidia of Fasciola species. The ethanolic extract of C. procera was used to synthesise its corresponding green-synthesis derivative using silver nitrate (CP-AgNPs). The synthesized silver nanoparticles were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD) and Scanning Electron Microscopy/Energy Dispersive X-ray (SEM/EDX). The ova and miracidia of Fasciola spp. were exposed to 1, 2, and 4 mg/ml CP ethanolic extracts and its corresponding AgNPs. FTIR showed that the formulation was capped with compounds present in the extract. The XRD showed the crystalline property of CP-AgNPs. The SEM image showed clusters of irregularly shape nanoparticles. The ovicidal activities were concentration dependent and showed highest activities 81.02±4.03% and 92.91±1.25% in 4 mg/ml CP and CP-AgNPs respectively (p < 0.05). The LC50 of CP (1.49 mg/ml) was more than 3 folds higher than that of CP-AgNPs (0.47 mg/ml). While CP did not cause miracidia death after 60 min exposure, however, 100% miracidia death were observed within 30 min exposure in all the tested concentration with CP-AgNPs. The positive control (ABZ) only showed 100% mortality after 60 min of exposure of miracidia. The study showed that green-synthesised C. procera nanoparticles showed superior ovicidal and miracicidal activities over C. procera leaf extracts and could be a source of potential antifasciola agent.


Assuntos
Calotropis , Nanopartículas Metálicas , Antibacterianos , Porcelana Dentária , Ligas Metalo-Cerâmicas , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta , Prata/farmacologia , Nitrato de Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio , Difração de Raios X
9.
Theriogenology ; 192: 122-131, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36088809

RESUMO

Citrate-coated silver nanoparticles were synthesized in one step method using tri-sodium citrate and silver nitrate at pH 6.1. After synthesis, the resulting silver nano-suspension was characterized using UV-visible spectroscopy, dynamic light scattering, high resolution-scanning electron microscopy, energy dispersive x-ray spectroscopy and fourier transform infrared-spectroscopy. The particles were intraperitoneally injected into Swiss albino male mice for a period of one complete spermatogenic cycle. The LD50 was determined following the procedure of Dixon's Up-and-Down method. The intra-testicular level of silver was measured using the technique of inductively coupled plasma-mass spectrometry. The intra-testicular location of accumulated nanoparticles was observed using auto-metallography. The cytology and volume of Leydig cells were assessed and analysed. Following the exposure to silver nanoparticles, it was found that accumulation of nanoparticles inside the seminiferous tubules is a dose-dependent process. The deposition of silver agglomerate induced morphometric changes in the lumen of seminiferous tubules and Leydig cells. The exposure also caused significant changes at the level of structural integrity of sperm chromatin material and variable damages to sperm DNA.


Assuntos
Nanopartículas Metálicas , Nitrato de Prata , Animais , Cromatina , DNA , Células Intersticiais do Testículo , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos , Extratos Vegetais/farmacologia , Sêmen , Túbulos Seminíferos , Prata , Nitrato de Prata/química , Citrato de Sódio , Espermatozoides
10.
Microsc Res Tech ; 85(11): 3530-3540, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35861158

RESUMO

The green method is not only harmonious to our environment but saves time and is comparatively cheaper than other methods. The current study is aimed to synthesize the silver nanoparticles (AgNPs) using the green method by using the leaves of Loranthus pulverulentus Wall (LPW) which functioned as a reducing as well as capping agent. The synthesis of biogenic AgNPs was confirmed by UV-Vis spectroscopy (UV-Vis.), Scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), and Fourier transform infrared (FTIR). The absorbance maxima of the synthesized AgNPs were observed in the range of 405-435 nm. The SEM was used to find out the size and shape of the synthesized AgNPs, which revealed that the NPs were rectangular having sizes from 05 to 16 nm. XRD revealed that the synthesized NPs were crystalline and face-centered cubic (FCC). EDX analysis reflected the elemental composition of the synthesized product and showed that the percentage of silver = 92. FTIR was used to confirm the functional groups responsible for the reduction and stabilization of silver ions. It revealed that biomolecules present in plant extract were responsible for the reduction and stabilization of silver ions. The effect of temperature, pH, reaction time, silver nitrate concentration, and plant extract concentration on the synthesis of AgNPs were also investigated. The synthesized silver nanoparticles were tested against four bacterial strains which showed strong antibacterial activity. We conclude that biogenic silver nanoparticles could be used as antibacterial agents to treat various diseases. RESEARCH HIGHLIGHTS: Loranthus pulverulentus Wall leaf extract mediated synthesis of silver nanoparticles. Effects of pH 3, 4, 6, 9, and 11, reaction time 5, 10, 20, 40 min, 1, 2, and 3 h, temperature 30, 40, 50, 60°C, silver nitrate concentration 0.5, 1.0, 2.0, and 3.0 mM and plant extract concentration 0.5, 1.0, 2.0, and 3.0 g on the AgNPs synthesis were also studied Scanning electron microscopy analysis revealed a small size of synthesized silver nanoparticles (8 nm). The synthesized silver nanoparticles were found effective against various bacterial pathogens.


Assuntos
Nanopartículas Metálicas , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/farmacologia , Nitrato de Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
11.
Sci Rep ; 12(1): 8831, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614187

RESUMO

Rubia cordifolia L. is a widely used traditional medicine in the Indian sub-continent and Eastern Asia. In the present study, the aqueous leaf extract of the R. Cordifolia was used to fabricate silver nanoparticles (RC@AgNPs), following a green synthesis approach. Effect of temperature (60 °C), pH (8), as well the concentration of leaf extract (2 ml) and silver nitrate (2 mM) were optimized for the synthesis of stable RC@AgNPs. The phytofabrication of nanosilver was validated by UV-visible spectral analysis, which displayed a distinctive surface plasmon resonance peak at 432 nm. The effective functional molecules as capping and stabilizing agents, and responsible for the conversion of Ag+ to nanosilver (Ag0) were identified using the FTIR spectra. The spherical RC@AgNPs with an average size of ~ 20.98 nm, crystalline nature, and 61% elemental composition were revealed by TEM, SEM, XRD, and. EDX. Biogenic RC@AgNPs displayed a remarkable anticancer activity against B16F10 (melanoma) and A431 (carcinoma) cell lines with respective IC50 of 36.63 and 54.09 µg/mL, respectively. Besides, RC@AgNPs showed strong antifungal activity against aflatoxigenic Aspergillus flavus, DNA-binding properties, and DPPH and ABTS free radical inhibition. The presented research provides a potential therapeutic agent to be utilized in various biomedical applications.


Assuntos
Nanopartículas Metálicas , Rubia , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/farmacologia , Nitrato de Prata
12.
Chemosphere ; 300: 134497, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35398470

RESUMO

The green synthesis of nanoparticles (NPs) is the safest, ecofriendly, cost-effective, and non-hazardous approach of nanotechnology. In the current study, we described the green synthesis of silver nanoparticles (AgNPs) using Cuphea carthagenensis aqueous leaf extract as a reducing, capping, and stabilizing agent. The study aims at the synthesis, characterization, optimization, and determination of the antibacterial activity of Cc-AgNPs against clinically important human pathogens. Coating of cotton fabrics with Cc-AgNPs and their efficacy against skin infection causing organisms was also evaluated. Furthermore, antioxidant activity, growth assay and time kill assay of Cc-AgNPs were also performed in the study. The biosynthesized Cc-AgNPs were characterized by UV-visible spectrometry, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The spectroscopic and microscopic analysis demonstrated biosynthesis of face-centered cubic (fcc) crystalline spherical Cc-AgNPs with an average particle size of 10.65 ± 0.1 nm. Optimized peak synthesis of Cc-AgNPs was reported at pH7, 55 °C, 4 mM silver nitrate, and 5:45 (plant extract: silver nitrate). Cc-AgNPs exhibited potent antioxidant effect and antibacterial activity against both Gram-positive and Gram-negative bacteria. The lowest MIC (15 µg/ml) and MBC (25 µg/ml) values were reported against S. typhimurium. The Cc-AgNPs coated fabrics demonstrated potent antibacterial activity against tested strains. This application could be helpful in wound healing management. Furthermore, the hemolytic analysis demonstrated that Cc-AgNPs exhibit non-toxic nature against Red Blood Cells (RBCs) at the tested concentrations. In conclusion, the investigation demonstrated a fast, stable, and eco-friendly approach to the biosynthesis of Cc-AgNPs along with their antibacterial and antioxidant properties.


Assuntos
Cuphea , Nanopartículas Metálicas , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/farmacologia , Nitrato de Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
13.
Prep Biochem Biotechnol ; 52(1): 99-107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33890844

RESUMO

The objective of this study is to synthesize neem-silver nitrate nanoparticles (neem-AgNPs) using aqueous extracts of Azadirachta indica A. Juss for malaria therapy. Neem leaves collected from FRIM Malaysia were authenticated and extracted using Soxhlet extraction method. The extract was introduced to 1 mM of silver nitrate solution for neem-AgNPs synthesis. Synthesized AgNPs were further characterized by ultraviolet-visible spectroscopy and the electron-scanning microscopy. Meanwhile, for the anti-plasmodial activity of the neem-AgNPs, two lab-adapted Plasmodium falciparum strains, 3D7 (chloroquine-sensitive), and W2 (chloroquine-resistant) were tested. Red blood cells hemolysis was monitored to observe the effects of neem-AgNPs on normal and parasitized red blood cells. The synthesized neem-AgNPs were spherical in shape and showed a diameter range from 31-43 nm. When compared to aqueous neem leaves extract, the half inhibitory concentration (IC50) of the synthesized neem-AgNPs showed a four-fold IC50 decrease against both parasite strains with IC50 value of 40.920 µg/mL to 8.815 µg/mL for 3D7, and IC50 value of 98.770 µg/mL to 23.110 µg/mL on W2 strain. The hemolysis assay indicates that the synthesized neem-AgNPs and aqueous extract alone do not have hemolysis activity against normal and parasitized red blood cells. Therefore, this study shows the synthesized neem-AgNPs has a great potential to be used for malaria therapy.


Assuntos
Antimaláricos/química , Azadirachta/química , Extratos Vegetais/química , Nitrato de Prata/química , Antimaláricos/síntese química , Antimaláricos/farmacologia , Química Verde , Humanos , Malária Falciparum/tratamento farmacológico , Nanopartículas/química , Plasmodium falciparum/efeitos dos fármacos , Nitrato de Prata/síntese química , Nitrato de Prata/farmacologia
14.
Braz. j. biol ; 82: e237604, 2022. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1285586

RESUMO

This study goal to evaluate the effects of different concentrations of lead (Pb) and silver (Ag) on germination, initial growth and anatomical alterations of Lactuca sativa L. Plants use various mechanisms to reduce the impacts caused by anthropic action, such as xenobiotic elements of soils and water contaminated by heavy metals. These metals were supplied as lead nitrate and silver nitrate and the following treatments were established: control for both metals, maximum dose of heavy metals, for arable soils, allowed by the National Council of the Environment (Ag = 25 mg. Kg-1, Pb = 180 mg. Kg-1), double (Ag = 50 mg. Kg-1, Pb = 360 mg. Kg-1) and triple (Ag = 75 mg. Kg-1, Pb = 540 mg. Kg -1) of this dosage. Vigor and germination tests of the seeds and possible anatomical changes in the leaves and roots of lettuce plants were performed. The species showed a high capacity to germinate under Pb and Ag stress, and the germination was never completely inhibited; however, the germination decreased with increasing Pb concentrations, but not under Ag stress. The use of increasing doses of metals reduced seed vigor and increased chlorophyll content. An increase in biomass was also observed in plants from treatments submitted to Pb. The phytotoxic effects of metals were more pronounced at 15 days after sowing. Anatomically, L. sativa was influenced by metal concentrations, and had a reduction of up to 79.9% in root epidermis thickness at the highest Pb concentration, although some structures did not suffer significant changes. The results suggest that L. sativa presents tolerance to high concentrations of heavy metals, showing possible mechanisms to overcome the stress caused by these metals. In this research lettuce possibly used the mechanism of exclusion of metals retaining Pb and Ag in the roots preserving the photosynthetic apparatus in the aerial part of the plants. In general, the chemical element Pb was more toxic than Ag, in these experimental conditions.


Este estudo teve como objetivo avaliar os efeitos de diferentes concentrações de chumbo (Pb) e prata (Ag) na germinação, crescimento inicial e alterações anatômicas de Lactuca sativa L. As plantas utilizam vários mecanismos para reduzir os impactos causados pela ação antrópica, como elementos xenobióticos de solos e água contaminada por metais pesados. Esses metais foram fornecidos como nitrato de chumbo e nitrato de prata e foram estabelecidos os seguintes tratamentos: controle para ambos os metais, dose máxima de metais pesados, para solos cultiváveis, permitida pelo Conselho Nacional do Meio Ambiente (Ag = 25mg.Kg-1, Pb = 180mg.Kg-1), dobro (Ag = 50mg.Kg-1, Pb = 360mg.Kg-1) e triplo (Ag = 75mg.Kg-1, Pb = 540 mg.Kg -1) desta dosagem. Foram realizados testes de vigor e germinação das sementes e possíveis alterações anatômicas nas folhas e raízes das plantas de alface. A espécie apresentou alta capacidade de germinar sob estresse de Ag e Pb, e a germinação nunca foi completamente inibida; entretanto, a germinação diminuiu com o aumento das concentrações de Pb, mas não sob estresse de Ag. O uso de doses crescentes dos metais, reduziu o vigor das sementes e aumentou o teor de clorofila. Também foi observado aumento da biomassa nas plantas a partir dos tratamentos submetidos ao Pb. Os efeitos fitotóxicos dos metais foram mais acentuados aos 15 dias após a semeadura. Anatomicamente, L. sativa foi influenciada pelas concentrações de metais, e teve uma redução de até 79,9% na espessura da epiderme radicular na maior concentração de Pb, embora algumas estruturas não tenham sofrido alterações significativas. Os resultados sugerem que L. sativa apresenta tolerância a altas concentrações de metais pesados, mostrando possíveis mecanismos para superar o estresse causado por esses metais. Nesta pesquisa a alface possivelmente utilizou o mecanismo de exclusão de metais retendo Pb e Ag nas raízes preservando o aparato fotossintético na parte aérea das plantas. De forma geral o elemento químico Pb se mostrou mais tóxico que Ag, nestas condições experimentais.


Assuntos
Poluentes do Solo/toxicidade , Metais Pesados/análise , Metais Pesados/toxicidade , Nitrato de Prata , Solo , Lactuca , Chumbo/toxicidade , Nitratos/toxicidade
15.
Braz. J. Pharm. Sci. (Online) ; 58: e19519, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1383984

RESUMO

Abstract Silver nanoparticles (AgNPs) are among the most known nanomaterials being used for several purposes, including medical applications. In this study, Calendula officinalis L. flower extract and silver nitrate were used for green synthesis of silver nanoparticles under red, green and blue light-emitting diodes. AgNPs were characterized by Ultraviolet-Visible Spectrophotometry, Field Emission Scanning Electron Microscopy, Dynamic Light Scattering, Electrophoretic Mobility, Fourier Transform Infrared Spectroscopy and X-ray Diffraction. Isotropic and anisotropic silver nanoparticles were obtained, presenting hydrodinamic diameters ranging 90 - 180 nm, polydispersity (PdI > 0.2) and moderate stability (zeta potential values around - 20 mV)


Assuntos
Prata , Nitrato de Prata/agonistas , Calendula/efeitos adversos , Flores/genética , Nanopartículas/análise , Espectrofotometria/métodos , Difração de Raios X/métodos , Microscopia Eletrônica de Varredura/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Luz
16.
Molecules ; 26(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34641304

RESUMO

The current research work illustrates an economical and rapid approach towards the biogenic synthesis of silver nanoparticles using aqueous Punica granatum leaves extract (PGL-AgNPs). The optimization of major parameters involved in the biosynthesis process was done using Box-Behnken Design (BBD). The effects of different independent variables (parameters), namely concentration of AgNO3, temperature and ratio of extract to AgNO3, on response viz. particle size and polydispersity index were analyzed. As a result of experiment designing, 17 reactions were generated, which were further validated experimentally. The statistical and mathematical approaches were employed on these reactions in order to interpret the relationship between the factors and responses. The biosynthesized nanoparticles were initially characterized by UV-vis spectrophotometry followed by physicochemical analysis for determination of particle size, polydispersity index and zeta potential via dynamic light scattering (DLS), SEM and EDX studies. Moreover, the determination of the functional group present in the leaves extract and PGL-AgNPs was done by FTIR. Antibacterial and antibiofilm efficacies of PGL-AgNPs against Gram-positive and Gram-negative bacteria were further determined. The physicochemical studies suggested that PGL-AgNPs were round in shape and of ~37.5 nm in size with uniform distribution. Our studies suggested that PGL-AgNPs exhibit potent antibacterial and antibiofilm properties.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Punica granatum/química , Nitrato de Prata/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Nitrato de Prata/química
17.
Pak J Pharm Sci ; 34(3): 995-1001, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34602424

RESUMO

A novel method, for the synthesis of silver nanoparticles that are eco-friendly by means of mixed reductants method, has been developed. The combined extract of Mentha viridis plant and Prunus domestica gum were used as reducing agents for the synthesis of silver nanoparticles of the size less than 40 nm in diameter. The effect of time and concentration on the formation of silver nanoparticles were also monitored. The silver nanoparticles formed were verified by surface Plasmon spectra using single and double beam UV-Vis spectrophotometer. The XRD technique and scanning electron microscopy were performed to analyze the crystalline structure, crystallite size and morphology. The synthesized silver nanoparticles were tested against different bacterial and fungus strains. The silver nanoparticles showed good inhibition in antimicrobial study and low MIC for bacterial strains. The antioxidant assay was performed to check the scavenging activity. In DPPH, the silver nanoparticles showed good scavenging activity and were found close to that of ascorbic acid.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Mentha , Nanopartículas Metálicas , Prunus domestica , Prata/farmacologia , Anti-Infecciosos/química , Antioxidantes/química , Aspergillus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Técnicas de Química Sintética , Química Farmacêutica , Fusarium/efeitos dos fármacos , Hypocreales/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Penicillium chrysogenum/efeitos dos fármacos , Espectroscopia Fotoeletrônica , Extratos Vegetais , Gomas Vegetais , Proteus vulgaris/efeitos dos fármacos , Pseudomonas/efeitos dos fármacos , Substâncias Redutoras , Prata/química , Nitrato de Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Ressonância de Plasmônio de Superfície
18.
Ecotoxicol Environ Saf ; 211: 111930, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33472113

RESUMO

Emerging research in mammalian cells suggests that ionic (AgNO3) and nano silver (AgNP) can disrupt the metabolism of selenium which plays a vital role in oxidative stress control. However, the effect of silver (Ag) on selenoprotein function in fish is poorly understood. Here we evaluate the effects of AgNO3 and citrate coated AgNP (cit-AgNP) on selenoprotein function and oxidative stress using a fish cell line derived from the rainbow trout (Oncorhynchus mykiss) intestine (RTgutGC). Cell viability was evaluated using a cytotoxicity assay which measures simultaneously metabolic activity, membrane integrity and lysosome integrity. Cells exposed to equimolar amounts of AgNO3 and cit-AgNP accumulated the same amount of silver intracellularly, however AgNO3 was more toxic than cit-AgNP. Selenoenzymes glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) mRNA levels and enzyme activity were measured. While mRNA levels remained unaffected by AgNO3 or cit-AgNP, the enzyme activity of GPx was inhibited by AgNO3 (1 µM) and cit-AgNP (5 µM) and TrxR activity was inhibited by AgNO3 (0.4 µM) and cit-AgNP (1, 5 µM). Moreover, cells exposed to 1 µM of AgNO3 and cit-AgNP showed an increase in metallothionein b (MTb) mRNA levels at 24 h of exposure, confirming the uptake of silver, but returned to control levels at 72 h suggesting silver scavenging by MTb. Oxidative stress was not observed at any of the doses of AgNO3 or cit-AgNP tested. Overall, this study shows that AgNO3 or cit-AgNP can inhibit the activity of selenoenzymes but do not induce oxidative stress in RTgutGC cells.


Assuntos
Nanopartículas Metálicas/toxicidade , Selenoproteínas/metabolismo , Prata/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citratos , Ácido Cítrico , Glutationa Peroxidase/metabolismo , Intestinos , Íons/metabolismo , Metalotioneína/metabolismo , Oncorhynchus mykiss/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Selênio , Nitrato de Prata/toxicidade
19.
Pak J Pharm Sci ; 33(3): 937-945, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33191216

RESUMO

The majority of the world population suffers from mental and behavioral disorder. It is the need of the time to find an alternate of presently available medicines in order to decrease the medical expense. Homeopathic remedies are available and prescribed by homeopaths for treatment of anxiety and depression. Unfortunately, no data are available that proves its potential to relieve mental illness. The current study is designed to assess neuro behavioral and antidepressant like effects of homeopathic remedies Staphysagria, Argentum nitricum and Ignatia amara in comparison with standard drug (escitalopram). Different neuro behavioral activities were analyzed. The animals were administered the doses of all homeopathic remedied (60 µl to the rats) and escitalopram (0.042 mg to rats) through the oral route. The activities were observed on day 30th and day 60th. Our result suggests that the swimming time in Staphysagria treated group were significantly improved (p<0.001) after day 60th and significance rise was observed (p<0.01) in Ignatia amara treated animals, whereas significant decline (p<0.05) in struggling time was observed in Argentum nitricum administered animals after the 60th day as compared to 30th day. The central square crossings were improved highly significantly (p<0.001) after the 30th day dosing, by all three remedies and peripheral squares crossing were found highly significantly increased (p<0.001) after chronic dosing in Staphysagria and Ignatia amara treated groups. It is concluded from the results that all three homeopathic remedies produce comparable effects like standard drug while among all three remedies Staphysagria possess a potent antidepressant activity. To the best of our knowledge the current study reports first time the anti-depressant potential of homeopathic remedies in rodents.


Assuntos
Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Homeopatia , Locomoção/efeitos dos fármacos , Extratos Vegetais/farmacologia , Nitrato de Prata/farmacologia , Animais , Delphinium , Depressão/fisiopatologia , Modelos Animais de Doenças , Feminino , Masculino , Teste de Campo Aberto , Ratos , Strychnos , Natação , Fatores de Tempo
20.
Molecules ; 25(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066253

RESUMO

Plants that synthesize bioactive compounds that have high antioxidant value and elicitation offer a reliable in vitro technique to produce important nutraceutical compounds. The objective of this study is to promote the biosynthesis of these phenolic compounds on a large scale using elicitors in date palm cell suspension culture. Elicitors such as pectin, yeast extract (YE), salicylic acid (SA), cadmium chloride (CdCl2), and silver nitrate (AgNO3) at 50, 100, and 200 mg/L concentrations are used. The effects of elicitors on cell culture were determined in terms of biomass [packed cell volume (PCV), fresh and dry weight], antioxidant activity, and phenolic compounds (catechin, caffeic acid, kaempferol, apigenin) were determined using high-performance liquid chromatography (HPLC). Results revealed that enhanced PCV (12.3%), total phenolic content [317.9 ± 28.7 mg gallic acid equivalents (GAE)/100 g of dry weight (DW)], and radical scavenging activity (86.0 ± 4.5%) were obtained in the 50 mg/L SA treated cell culture of Murashige and Skoog (MS) medium. The accumulation of optimum catechin (26.6 ± 1.3 µg/g DW), caffeic acid (31.4 ± 3.8 µg/g DW), and kaempferol (13.6 ± 1.6 µg/g DW) was found in the 50 mg/L SA-treated culture when compared to the control. These outcomes could be of great importance in the nutraceutical and agronomic industries.


Assuntos
Técnicas de Cultura de Células/métodos , Fenóis/metabolismo , Phoeniceae/citologia , Phoeniceae/efeitos dos fármacos , Biomassa , Biotecnologia/métodos , Cloreto de Cádmio/farmacologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Flavonoides/metabolismo , Pectinas/farmacologia , Phoeniceae/metabolismo , Ácido Salicílico/farmacologia , Nitrato de Prata/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA