Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 643
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(5): 3037-3046, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629564

RESUMO

Through lettuce potting experiments, the effects of different types of biochar (apple branch, corn straw, and modified sorghum straw biochar with phosphoric acid modification) on lettuce growth under tetracycline (TC) and copper (Cu) co-pollution were investigated. The results showed that compared with those under CK, the addition of biochar treatment significantly increased the plant height, root length, shoot fresh weight, and root fresh weight of lettuce (P < 0.05). The addition of different biochars significantly increased the nitrate nitrogen, chlorophyll, and soluble protein content in lettuce physiological indicators to varying degrees, while also significantly decreasing the levels of malondialdehyde, proline content, and catalase activity. The effects of biochar on lettuce physiological indicators were consistent during both the seedling and mature stages. Compared with those in CK, the addition of biochar resulted in varying degrees of reduction in the TC and Cu contents of both the aboveground and underground parts of lettuce. The aboveground TC and Cu levels decreased by 2.49%-92.32% and 12.79%-36.47%, respectively. The underground TC and Cu levels decreased by 12.53%-55.64% and 22.41%-42.29%, respectively. Correlation analysis showed that nitrate nitrogen, chlorophyll, and soluble protein content of lettuce were negatively correlated with TC content, whereas malondialdehyde, proline content, and catalase activity were positively correlated with TC content. The resistance genes of lettuce were positively correlated with TC content (P < 0.05). In general, modified biochar was found to be more effective in improving lettuce growth quality and reducing pollutant accumulation compared to unmodified biochar, with modified sorghum straw biochar showing the best remediation effect.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Cobre , Lactuca , Poluentes Ambientais/análise , Solo , Catalase , Nitratos/análise , Antibacterianos , Tetraciclina/análise , Carvão Vegetal , Poluentes do Solo/análise , Clorofila/análise , Malondialdeído , Nitrogênio/análise , Prolina
2.
Harmful Algae ; 130: 102542, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38061823

RESUMO

Cyanobacterial blooms and the toxins they produce pose a growing threat worldwide. Mitigation of such events has primarily focused on phosphorus management and has largely neglected the role of nitrogen. Previous bloom research and proposed management strategies have primarily focused on temperate, dimictic lakes, and less on warm-monomictic systems like those at subtropical latitudes. The in-lake conditions, concentration of total microcystins, and microbial functioning of twenty warm-monomictic lakes in the southcentral United States were explored in the spring and summer of 2021. Our data revealed widespread microcystins in lakes across this region, some of which exceeded regulatory limits. Microcystins were higher in the spring compared to the summer, indicating that warm-monomictic lakes, even across a large range of precipitation, do not follow the trends of temperate dimictic lakes. Microcystins were found in surface waters and bottom waters well below the photic zone, reflecting the persistence of these toxins in the environment. Principal components analyses showed a strong association between microcystins, nitrate + nitrite, and Planktothrix relative abundance and transcriptional activity. Many systems exhibited stronger denitrification in the spring, perhaps contributing to the decreased toxin concentrations in the summer. Counter to most sampled lakes, one lake with the highest concentration of total microcystins indicated nitrogen cycle disruption, including inhibited denitrification. These findings are relevant to mitigating cyanobacterial blooms and toxin production in warm-monomictic systems, and suggests a need to consider nitrogen, and not solely phosphorus, in nutrient management discussions.


Assuntos
Cianobactérias , Microcistinas , Estados Unidos , Microcistinas/análise , Lagos/microbiologia , Nitratos/análise , Nitritos/análise , Ciclo do Nitrogênio , Nitrogênio/análise , Fósforo/análise
3.
Environ Sci Pollut Res Int ; 30(58): 122508-122523, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37968487

RESUMO

The predicting groundwater nitrate pollution risk, especially in terms of changes in fertilizing, has not been fully investigated so far. In particular, there is no comprehensive method to assess this risk in areas of different land use type, and not only in agricultural areas. The aim of this study was to develop a novel multicriteria methodology for groundwater nitrate pollution risk assessment, which meets these issues. A further aim was to determine how much this risk would change if the amount of organic and synthetic fertilization was reduced. An assumption was that groundwater pollution risk is a combination of the potential adverse impacts of land use, fertilization, and intrinsic groundwater vulnerability to pollution. The impact of fertilization was holistically evaluated by balancing nitrogen from spatially differentiated the size of the breeding, species of livestock, manure and synthetic fertilizers input, and spatially differentiated topsoil, with nitrogen uptake by different crops. The nitrate concentration in the leachate was used as a measure of the impact of fertilization. This concentration was compared to the natural baseline nitrate concentration in groundwater. Three fertilization scenarios for groundwater pollution risk assessment in two study areas were discussed. Under typical agricultural, climatic, soil, and geological conditions in Europe for the current total fertilization level of 95-120 kg N ha-1 groundwater nitrate pollution risk is low and moderate, but for fertilization of 150-180 kg N ha-1, a reduction in the total fertilization (synthetic and manure) by 40 to 50% may be required to achieve low risk of degradation of natural groundwater quality. Predictive simulations of groundwater nitrate pollution risk confirmed that reducing synthetic and organic fertilization has an effect, especially in areas with intensive fertilization. This method may allow for a holistic and scenario-based assessment of groundwater pollution risk and may help decision-makers introduce solutions to manage this risk under conditions of climate change, preservation of groundwater quality, and food security.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Nitratos/análise , Esterco , Monitoramento Ambiental/métodos , Melhoramento Vegetal , Nitrogênio/análise , Medição de Risco/métodos , Poluentes Químicos da Água/análise
4.
Environ Sci Pollut Res Int ; 30(34): 82485-82505, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37326727

RESUMO

This study examines the uranium, fluoride, and nitrate dispositions in groundwater as well as potential health risks in Kota district, Rajasthan, India. Total 198 groundwater samples were collected in both dry and wet periods and analyzed for physicochemical parameters along with U, F-, and NO3- using standard methods. Results indicate that the electrical conductivity, total dissolved solids, total hardness, alkalinity, Ca2+, Mg2+, HCO3-, Cl-, NO3-, and F- exceed the WHO standard limits of drinking water in both periods. Uranium concentration is at the broader of drinking water permissible limit (30 µg/L) and found about 1.05 times more. Nitrate and fluoride concentrations ranged from 9.8 to 412.0 mg/L and 0.1 to 4.0 mg/L for the dry season, while in the wet period, they varied from 10.0 to 954.0 mg/L and 0.1 to 3.5 mg/L, respectively. Correlation studies show a significantly strong positive correlation between uranium and total alkalinity and carbonate. Natural background levels (NBLs) were explored to assess the source of groundwater pollution. It shows that the second inflection points of NBLs estimated for NO3-, F-, and U are about 168 mg/L, 1.2 mg/L, and 7.3 µg/L, respectively, during the experimental period. The USEPA technique was used to evaluate the non-carcinogenic health risks associated with consuming the NO3- and F--contaminated groundwater. The health risks in Kota district show that children are more at risk than adults. The risk assessment of uranium reveals that the excess cancer risk (ECR) and hazard quotient (HQ) are found to be below the standard limits, but a high concentration of uranium (31.6 µg/L) is observed at Amarpura village of Digod block. This study will provide a baseline of uranium, fluoride, and nitrate dispositions in groundwater for simulating mass transport model and safe use of drinking water.


Assuntos
Água Potável , Água Subterrânea , Urânio , Poluentes Químicos da Água , Criança , Adulto , Humanos , Fluoretos/análise , Nitratos/análise , Água Potável/análise , Monitoramento Ambiental/métodos , Índia , Poluentes Químicos da Água/análise , Medição de Risco
5.
Environ Monit Assess ; 195(7): 892, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37368078

RESUMO

High-frequency monitoring of water quality in catchments brings along the challenge of post-processing large amounts of data. Moreover, monitoring stations are often remote and technical issues resulting in data gaps are common. Machine learning algorithms can be applied to fill these gaps, and to a certain extent, for predictions and interpretation. The objectives of this study were (1) to evaluate six different machine learning models for gap-filling in a high-frequency nitrate and total phosphorus concentration time series, (2) to showcase the potential added value (and limitations) of machine learning to interpret underlying processes, and (3) to study the limits of machine learning algorithms for predictions outside the training period. We used a 4-year high-frequency dataset from a ditch draining one intensive dairy farm in the east of The Netherlands. Continuous time series of precipitation, evapotranspiration, groundwater levels, discharge, turbidity, and nitrate or total phosphorus were used as predictors for total phosphorus and nitrate concentrations respectively. Our results showed that the random forest algorithm had the best performance to fill in data-gaps, with R2 higher than 0.92 and short computation times. The feature importance helped understanding the changes in transport processes linked to water conservation measures and rain variability. Applying the machine learning model outside the training period resulted in a low performance, largely due to system changes (manure surplus and water conservation) which were not included as predictors. This study offers a valuable and novel example of how to use and interpret machine learning models for post-processing high-frequency water quality data.


Assuntos
Monitoramento Ambiental , Nitratos , Monitoramento Ambiental/métodos , Nitratos/análise , Qualidade da Água , Aprendizado de Máquina , Fósforo/análise
6.
Planta Med ; 89(11): 1045-1051, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315934

RESUMO

This follow-up study assessed the impact of a nitrate-rich diet on salivary nitrate/nitrite levels and the recovery of therapy-induced vascular impairments in a cohort of 39 periodontitis patients treated by standard subgingival mechanical plaque removal (PMPR). At baseline, saliva samples for nitrate/nitrite analysis were collected, and peripheral/central blood and augmentation pressure was documented using the Arteriograph recording system. Immediately after, PMPR vascular parameters were reassessed. All study patients received a randomly allocated supply of a lettuce beverage to be consumed for 14 days, containing either a daily dosage of 200 mg nitrate (test group, n = 20) or being void of nitrate (placebo group, n = 19). At day 14, salivary and vascular parameters were reassessed. Initial salivary and vascular parameters did not differ significantly between the groups. PMPR impaired all vascular parameters in both groups with no differences between the groups. At day 14, salivary nitrate/nitrite levels of the test group were significantly elevated compared to baseline. All vascular parameters had significantly recovered from the impairment inflicted by PMPR. In the placebo group, by contrast, salivary parameters did not differ significantly from baseline, and the recovery of impaired vascular parameters was restricted to a significant improvement of diastolic blood pressure. Correlation analysis identified a significant inverse correlation between salivary nitrate/nitrite sum and central/peripheral blood pressure and augmentation pressure. In conclusion, the data of this subanalysis suggest that increasing salivary nitrate/nitrite levels by a diet rich in nitrate may improve recovery of therapy-induced vascular impairments after PMPR.


Assuntos
Nitratos , Nitritos , Humanos , Nitratos/análise , Nitratos/farmacologia , Nitritos/análise , Seguimentos , Assistência ao Convalescente , Dieta , Saliva/química
7.
Environ Sci Pollut Res Int ; 30(26): 68536-68547, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37126174

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) and substituted PAHs (SPAHs) are persistent organic pollutants prevalent globally, and SPAHs have received widespread attention in recent years due to their stronger toxicity and carcinogenicity compared to PAHs. There is a lack of systematic examination of PAHs and their derivatives in watersheds. Thus, to clarify the current status, possible sources, and potential risks of PAHs and their derivatives in watersheds, a study was conducted on Yitong River in China. The results showed that the concentrations of ∑PAHs, ∑OPAHs, and ∑NPAHs ranged from 297.9-1158.3 ng/L, 281.1-587.2 ng/L, and 65.7-269.1 ng/L, respectively. Diagnostic ratio analysis showed that the PAHs were mainly derived from petroleum sources, agricultural waste, and coal combustion. Nitrated PAHs (NPAHs) were mainly derived from liquid combustion sources, and oxygenated PAHs (OPAHs) were derived mainly from petroleum source emissions and atmospheric deposition. The exposure risk model of PAHs revealed that 86% of the studied sites would pose carcinogenic risks after dermal contact. The contaminant causing a major carcinogenic risk was DahA, and none of the sites produced non-carcinogenic risks. The lifetime carcinogenic risk of NPAHs was 8.85 × 10-10-1.44 × 10-4, and some surface waters presented with potential carcinogenic risks.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental/métodos , Rios , China , Nitratos/análise , Carcinógenos/análise , Petróleo/análise , Medição de Risco
8.
Sci Total Environ ; 882: 163641, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080304

RESUMO

The effects of exotic plants on soil nitrogen (N) transformations may influence species invasion success. However, the complex interplay between invasive plant N uptake and N transformation in soils remains unclear. In the present study, a series of 15N-labeled pot experiments were carried out with Solidago canadensis L. (S. canadensis), an invasive plant, and the Ntrace tool was used to clarify the preferred inorganic N form and its effects on soil N transformation. According to the results, nitrate-N (NO3--N) uptake rates by S. canadensis were 2.38 and 2.28 mg N kg-1 d-1 in acidic and alkaline soil, respectively, which were significantly higher than the ammonium-N (NH4+-N) uptake rates (1.76 and 1.56 mg N kg-1 d-1, respectively), indicating that S. canadensis was a NO3--N-preferring plant, irrespective of pH condition. Gross N mineralization rate was 0.41 mg N kg-1 d-1 in alkaline soil in the presence of S. canadensis L., which was significantly lower than that in the control (no plant, CK, 2.44 mg N kg-1 d-1). Gross autotrophic nitrification rate also decreased from 5.95 mg N kg-1 d-1 in the CK to 0.04 mg N kg-1 d-1 in the presence of S. canadensis in alkaline soil. However, microbial N immobilization rate increased significantly from 1.09 to 2.16 mg N kg-1 d-1, and from 0.02 to 2.73 mg N kg-1 d-1 after S. canadensis planting, in acidic and alkaline soil, respectively. Heterotrophic nitrification rate was stimulated in the presence of S. canadensis to provide NO3--N to support the N requirements of plants and microbes. The results suggested that S. canadensis can influence the mineralization-immobilization turnover (MIT) to optimize its N requirements while limiting N supply for other plants in the system. The results of the present study enhance our understanding of the competitiveness and mechanisms of invasion of alien plants.


Assuntos
Solidago , Nitrogênio/análise , Solo , Nitrificação , Nitratos/análise
9.
J Sci Food Agric ; 103(11): 5472-5480, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37046389

RESUMO

BACKGROUND: Biofortification of vegetables is an important innovation technique in the horticultural sector. Vegetables can be a vector of different minor elements that have beneficial effects on human health. Selenium (Se) is an important element for human nutrition and plays a significant role in defence mechanisms. The aim of this work was to investigate the effect of Se in the nutrient solutions on the crop biofortification ability, yield, and quality parameters of four baby leafy vegetables destined to the minimally processed industry. Experiments were performed on lamb's lettuce, lettuce, wild rocket, and spinach. These crops were cultivated in the floating systems with nutrient solution enriched with 0, 2.6, 3.9, and 5.2 µmol L-1 Se provided as sodium selenate. RESULTS: At harvest, Se concentrations, yield, nitrate concentration, sugars, and some mineral elements were measured. Data collected and analyses showed that yield, nitrate, sucrose, and reducing sugars were not affected by Se treatments, even if varied among species. Se concentrations linearly increased in leaves of different species by increasing the Se concentration in the nutrient solution. Rocket was the species with the highest accumulation ability and reached a concentration of 11 µg g-1 fresh weight Se in plants grown with 5.2 µmol L-1 Se. CONCLUSION: A floating system with Se-enriched nutrient solution is an optimal controlled growing biofortification system for leafy vegetables. The accumulation ability decreased in different species in the order wild rocket, spinach, lettuce, and lamb's lettuce, highlighting a crop-dependent behaviour and their attitude to biofortification. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Selênio , Verduras , Humanos , Biofortificação/métodos , Selênio/análise , Nitratos/análise , Lactuca , Nutrientes/análise , Folhas de Planta/química
10.
Sci Total Environ ; 874: 162599, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36871730

RESUMO

The Kvarken Archipelago is Finland's World Heritage site designated by UNESCO. How climate change has affected the Kvaken Archipelago remains unclear. This study was conducted to investigate this issue by analyzing air temperature and water quality in this area. Here we use long-term historical data sets of 61 years from several monitoring stations. Water quality parameters included chlorophyll-a; total phosphorus; total nitrogen; coliform bacteria thermos tolerant; temperature; nitrate as nitrogen; nitrite-nitrate as nitrogen, and Secchi depth and correlations analysis was conducted to identify the most relevant parameters. Based on the correlation analysis of weather data and water quality parameters, air temperature showed a significant correlation with water temperature (Pearson's correlations = 0.89691, P < 0.0001). The air temperature increased in April (R2 (goodness-of-fit) = 0.2109 &P = 0.0009) and July (R2 = 0.1207 &P = 0.0155) which has indirectly increased the chlorophyll-a level (e.g. in June increasing slope = 0.39101, R2 = 0.4685, P < 0.0001) an indicator of phytoplankton growth and abundance in the water systems. The study concludes that there might be indirect effects of the likely increase in air temperature on water quality in the Kvarken Archipelago, in particular causing water temperature and chlorophyll-a concentration to increase at least in some months.


Assuntos
Nitratos , Qualidade da Água , Temperatura , Nitratos/análise , Monitoramento Ambiental , Clorofila A/análise , Clorofila/análise , Fitoplâncton , Nitrogênio/análise , Fósforo/análise
11.
Environ Sci Technol ; 57(19): 7328-7335, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-36920429

RESUMO

Identifying phosphorus (P) sources is critical for solving eutrophication and controlling P in aquatic environments. Phosphate oxygen isotopes (δ18Op) have been used to trace P sources. However, the application of this method has been greatly restricted due to δ18OP values from the potential source having wide and overlapping ranges. In this research, P sources were traced by combining δ18Op with multiple stable isotopes of nitrogen (δ15N), hydrogen (δD), and dissolved inorganic carbon (δ13C). Then, a Bayesian-based Stable Isotope Analysis in R (SIAR) model and IsoSource model were used to estimate the proportional contributions of the potential sources in the Tuojiang River. δ18Op was not in equilibrium with ambient water, and statistically significant differences in the δ18Op values were found between the potential sources, indicating that δ18Op can be used to trace the P sources. δ15N, δD, and δ13C could assist δ18Op in identifying the main sources of P. The SIAR and IsoSource models suggested that industrial and domestic sewage was the largest contributor, followed by phosphate rock and phosphogypsum and agricultural sewage. The uncertainty of the calculation results of the SIAR model was lower than that of the IsoSource model. These findings provide new insights into tracing P sources using multiple stable isotopes in watersheds.


Assuntos
Rios , Poluentes Químicos da Água , Esgotos , Teorema de Bayes , Fósforo , China , Fosfatos , Isótopos de Oxigênio/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Isótopos de Nitrogênio/análise , Nitratos/análise
12.
Environ Sci Pollut Res Int ; 30(22): 63052-63064, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36952168

RESUMO

Nitrogen (N) loss by surface runoff inevitably results in severe N pollution and eutrophication of aquatic ecosystems. In this study, surface runoff from different land uses in the East Tiaoxi River watershed was collected, and the N concentrations, sources and losses were measured using the dual isotope (δ15N-NO3- and δ18O-NO3-), a Bayesian isotopic mixing (SIAR) model and Soil Conservation Service Curve Number (SCS-CN) method. The results showed that the N concentrations in surface runoff from agricultural lands were higher than those from urban areas and forestlands, and nitrate (NO3-), particulate nitrogen (PN) and dissolved organic nitrogen (DON) were the major forms of N in surface runoff in the East Tiaoxi River watershed. The total loss rate of total nitrogen (TN) from surface runoff in the East Tiaoxi River watershed was 5.38 kg·ha-1·a-1, with NO3--N (46%) contributing the most to TN loss. The TN, and NO3--N loss rates in surface runoff from tea planting lands (21.08 kg·ha-1·a-1, 11.98 kg·ha-1·a-1) and croplands (16.93 kg·ha-1·a-1, 10.96 kg·ha-1·a-1) were high, those from vegetable lands and urban areas were medium, and those from economic and natural forestlands were low in the East Tiaoxi River watershed. The NO3--N contributions of chemical fertiliser (CF), soil N (SN), sewage/manure (SM), and atmospheric deposition (AD) in surface runoff in the East Tiaoxi River watershed were 124.32 × 103, 104.84 × 103, 82.25 × 103 and 58.69 × 103 kg·a-1, respectively. The N pollutant losses in surface runoff from agricultural lands (croplands with rice growing, vegetable lands and tea planting lands) were responsible for most of the N pollutants being transported into the East Tiaoxi River systems.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Nitrogênio/análise , Teorema de Bayes , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Solo , Rios , Chá , China , Nitratos/análise , Isótopos de Nitrogênio/análise
13.
Trials ; 24(1): 94, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750904

RESUMO

BACKGROUND: There is no evidence of the use of beetroot juice with a previously recommended dose of nitrate (NO3) (> 300 mg) on the cardiovascular performance during and recovery following exercise in postmenopausal women with systemic arterial hypertension (SAH). METHODS: We will investigate the effects of beetroot juice rich in NO3 acutely (800 mg) and during a week with daily doses (400 mg) on blood pressure, heart rate (HR), cardiac autonomic control, endothelial function, inflammatory, hormonal, and stress biomarkers oxidative stress and enzymes involved in nitric oxide synthesis and mitochondrial regulation, under resting conditions, as well as mediated by submaximal aerobic exercise sessions. Through a randomized, crossover, triple-blind, placebo-controlled clinical trial, 25 physically inactive women with SAH will undergo an acute and 1-week trial, each with two intervention protocols: (1) placebo and (2) beetroot, in which will ingest beet juice with or without NO3 in its composition with a 7-day washout interval. On collection days, exercise will be performed on a treadmill for 40 min at a speed corresponding to 65-70% of VO2peak. The collection of variables (cardiovascular, autonomic, and blood samples for molecular analyses) of the study will take place at rest (135 min after ingestion of the intervention), during exercise (40 min), and in the effort recovery stage (during 60 min) based on previously validated protocols. The collections were arranged so that the measurement of one variable does not interfere with the other and that they have adequate intervals between them. DISCUSSION: The results of this research may help in the real understanding of the nutritional compounds capable of generating safety to the cardiovascular system during physical exercise, especially for women who are aging and who have cardiovascular limitations (e.g., arterial hypertension) to perform physical exercise. Therefore, our results will be able to help specific nutritional recommendations to optimize cardiovascular health. TRIAL REGISTRATION: ClinicalTrials.gov NCT05384340. Registered on May 20, 2022.


Assuntos
Beta vulgaris , Sistema Cardiovascular , Hipertensão , Humanos , Feminino , Nitratos/análise , Nitratos/uso terapêutico , Nitritos/análise , Pós-Menopausa , Exercício Físico/fisiologia , Suplementos Nutricionais , Estudos Cross-Over , Método Duplo-Cego , Ensaios Clínicos Controlados Aleatórios como Assunto
14.
Huan Jing Ke Xue ; 44(2): 1074-1084, 2023 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-36775630

RESUMO

The aim of this study was to examine the effects of different fertilization methods on the physicochemical properties and bacterial community structure of lemon rhizosphere/non-rhizosphere soil in order to provide theoretical basis for scientific and rational fertilization of orchards. A pot experiment was carried out, and six fertilization treatments were set up:control (CK), conventional fertilization (FM), organic fertilizer (P), fresh organic fertilizer (NP), 70% chemical fertilizer+30% organic fertilizer (70FP), and 50% chemical fertilizer+50% organic fertilizer (50FP). Chemical analysis, real-time fluorescence quantitative PCR, and terminal restriction fragment length polymorphism (T-RFLP) were used to study the effects of different fertilization treatments on the physicochemical properties of rhizosphere and non-rhizosphere soils, the abundance of the bacterial 16S rRNA gene, and bacterial community structure. Redundancy analysis (RDA) was used to explore the environmental factors affecting the bacterial community structure of lemon rhizosphere/non-rhizosphere soil. The results showed the following:① the pH and contents of organic matter, alkali-hydrolyzed nitrogen, available phosphorus, available potassium, and nitrate nitrogen in rhizosphere/non-rhizosphere soil were significantly increased by reducing the amount of chemical fertilizer and applying organic fertilizer (50FP and 70FP) (P<0.05). Compared with conventional fertilization (FM) and single application of organic fertilizer (P and NP), the soil available P content, available K content, and nitrate nitrogen content increased by 24.76%-97.98%, 6.87%-45.11%, and 18.42%-55.82%, respectively. ② Fertilizer reduction combined with organic fertilizer significantly increased the abundance of soil bacteria and soil respiration intensity (P<0.05), and the abundance of soil rhizosphere bacteria and soil respiration intensity under the 50FP treatment increased by 15.83%-232.98% and 8.0%-162.5% compared with that under conventional fertilization and organic fertilizer alone, respectively. The bacterial abundance of rhizosphere soil was positively correlated with the pH and contents of organic matter, total nitrogen, and total phosphorus. ③ The PCoA and RDA analysis results showed that the single organic fertilizer and organic fertilizer and chemical fertilizer de-weighting of rhizosphere bacterial community structure and not adding fertilizer had a bigger difference between processing, and the main environmental factors influencing the rhizosphere/non rhizosphere bacterial community structure were organic matter, total nitrogen, total phosphorus, total potassium, alkali solution nitrogen, nitrate nitrogen, and available potassium. Fertilizer reduction combined with organic fertilizer could significantly increase soil nutrient content, increase soil bacterial abundance, and change the bacterial community structure of rhizosphere soil, and the 50FP treatment yielded better results. Therefore, 50% Chemical fertilizer+50% organic fertilizer (50FP) was a better fertilization method to improve the physical and chemical properties of orchard soil, increase the abundance of soil bacteria, and improve the soil respiration intensity.


Assuntos
Fertilizantes , Solo , Solo/química , Fertilizantes/análise , RNA Ribossômico 16S/genética , Nitratos/análise , Microbiologia do Solo , Bactérias , Fósforo/farmacologia , Potássio , Nitrogênio/análise
15.
Environ Sci Pollut Res Int ; 30(15): 43804-43816, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36662436

RESUMO

Increased anthropogenic activities have led to the accumulation of certain minerals to ecotoxic levels in the environment, which could influence the secondary metabolism of plants. Shikonin, an exudate from the roots of Onosma dichroantha, is a secondary metabolite involved in plant defense and invasion success; however, the interactive effects of copper (Cu), cadmium (Cd), calcium (Ca), and nitrate (NO3) in shikonin biosynthesis and accumulation are not known. Here, the individual, curvilinear, and pairwise effects of these elements on shikonin biosynthesis in callus culture of O. dichroantha have been investigated by means of a statistical modeling approach and multivariate regression analyses. Although the main effects of the examined minerals seemed to be suppressive, their combined interactions could enhance callus growth and secondary metabolism of O. dichroantha. Accordingly, maximum values were recorded for the callus growth index (6.85 at 23.25 µM Cu, 70 mM NO3, 1 mM Ca, 27.50 µM Cd), total phenolics (24.83 mg gallic acid equivalent at 9.75 µM Cu, 70 mM NO3, 1 mM Ca, 62.50 µM Cd), total flavonoids (6.12 mg quercetin equivalent at 30 µM Cu, 80 mM NO3, 1.5 mM Ca, 45 µM Cd), and shikonin (24.33 µg g-1 FW at 9.75 µM Cu, 70 mM NO3, 2 mM Ca, 27.5 µM Cd). Overall, these data show that increasing concentrations of the examined minerals in culture medium can markedly influence the secondary metabolism of O. dichroantha cells and suggest that a comparable phenomenon may exist in a wider range of medicinal plants, grown on polluted environments, which may affect their invasive capabilities.


Assuntos
Boraginaceae , Cádmio , Cádmio/metabolismo , Cobre/metabolismo , Nitratos/análise , Cálcio/metabolismo , Flavonoides/farmacologia , Raízes de Plantas/metabolismo
16.
Sci Total Environ ; 858(Pt 1): 159664, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306832

RESUMO

The rewetting of degraded peatlands has been adopted as a method to address climate change. Concerns have been raised about the effects of peat inundation and drying cycles, in more extreme climate events, on the potential release of nitrogen (N) species, in particular ammonium (NH4-N), once rewetted, as well as the physico-chemical and biological properties of the peat. This study used intact peat cores to measure the impact of two different cycles of peat inundation and drying (1 month and 2 month) over a total study duration of 56 weeks on the (1) NH4-N, nitrate-N (NO3-N) and dissolved reactive phosphorus (DRP) in the soil pore water; (2) microbial community structure; (3) physico-chemical properties of the peat; and (4) the structure of the peat, and therefore its ability to mitigate flood risks and storm surges. The study found that rewetted cores released NO3-N in the pore water up to a concentration of 6.25 mg L-1, but had no appreciable impact on NH4-N, which remained below 1.7 mg L-1 over the study duration. DRP moved quickly though the upper layers of the cores, but physico-chemical analysis suggested it was adsorbed to more iron-rich soil, which was present at depths below 0.4 m in the cores. Time intervals between inundation produced no significant difference on the forms of inorganic N released, nor did it compact the soil or change the microbial community structure. The depth of the water table, however, had a significant impact on inorganic N release, particularly NO3-N, which indicates that this N species, and not NH4-N, may be problematic in rewetted peatlands.


Assuntos
Nitrogênio , Solo , Solo/química , Nitrogênio/análise , Fósforo/análise , Nitratos/análise , Água/química
17.
Sci Rep ; 12(1): 20980, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470973

RESUMO

The tropical estuarine ecosystem is fascinating for studying the dynamics of water quality and phytoplankton diversity due to its frequently changing hydrological conditions. Most importantly, phytoplankton is the main supplier of ω3 polyunsaturated fatty acids (PUFA) in the coastal food web for fish as they could not synthesize PUFA. This study evaluated seasonal variations of water quality parameters in the Meghna River estuary (MRE), explored how phytoplankton diversity changes according to hydro-chemical parameters, and identified the major phytoplankton groups as the main source of PUFA for hilsa fish. Ten water quality indicators including temperature, dissolved oxygen, pH, salinity, dissolved inorganic nitrogen (DIN = nitrate, nitrite, ammonia) and phosphorus, dissolved silica and chlorophyll-a were evaluated. In addition, phytoplankton diversity was assessed in the water and hilsa fish gut. Principal component analysis (PCA) was used to analyze the spatio-temporal changes in the water quality conditions, and the driving factors in the MRE. Four main components were extracted and explained 75.4% variability of water quality parameters. The most relevant driving factors were dissolved oxygen, salinity, temperature, and DIN (nitrate, nitrite and ammonia). These variabilities in physicochemical parameters and dissolved inorganic nutrients caused seasonal variations in two major groups of phytoplankton. Peak abundance of Chlorophyta (green algae) occurred in water in nutrient-rich environments (nitrogen and phosphorus) during the wet (36%) season, while Bacillariophyta (diatoms) were dominant during the dry (32%) season that depleted dissolved silica. Thus, the decrease of green algae and the increase of diatoms in the dry season indicated the potential link to seasonal changes of hydro-chemical parameters. The green algae (53.7%) were the dominant phytoplankton group in the hilsa gut content followed by diatoms (22.6%) and both are contributing as the major source of PUFAs for hilsa fish according to the electivity index as they contain the highest amounts of PUFAs (60 and 28% respectively).


Assuntos
Clorófitas , Diatomáceas , Animais , Fitoplâncton , Estuários , Ecossistema , Nitratos/análise , Nitritos/análise , Amônia/análise , Bangladesh , Monitoramento Ambiental , Fósforo/análise , Estações do Ano , Nitrogênio/análise , Peixes , Oxigênio/análise , Ácidos Graxos Insaturados , Dióxido de Silício/análise
18.
Artigo em Inglês | MEDLINE | ID: mdl-36141889

RESUMO

Much previous research has indicated most composts of pruning waste are characterized by potential phytotoxicity, it is highly correlated with the chemical compounds of raw materials. Cinnamomum camphora, a common kind of pruning waste in Southeast Asia and East Asia, is characterized by intense bioactivities due to complex chemical components. This study investigated the potential phytotoxicity of C. camphora pruning waste in light of germination and higher plant growth. C. camphora extracted from leaves completely inhibited seed germination and still showed suppression of root elongation at an extremely low dosage. C. camphora extract also displayed significant inhibition of nutrient absorption in tomato seedlings, including moisture, available nutrients (N, P and K) and key microelements (Fe, Mn, Zn and S). The gene expression of aquaporins and transporters of nitrate and phosphate was significantly up-regulated in roots. This could be regarded as a positive response to C. camphora extract for enhancing nutrient absorption. Moreover, the severe damage to the plasma membrane in roots caused by C. camphora extract might seriously affect nutrient absorption. Camphor is the main component of the C. camphora extract that may induce the phytotoxicity of plasma membrane damage, resulting in the inhibition of nutrient absorption and low biomass accumulation. This study provided a new understanding of the ecotoxicological effects of C. camphora pruning waste, indicating that the harmless disposal of pruning waste requires much attention and exploration in the future.


Assuntos
Cinnamomum camphora , Cânfora/metabolismo , Cinnamomum camphora/química , Cinnamomum camphora/genética , Cinnamomum camphora/metabolismo , Germinação , Nitratos/análise , Fosfatos/análise , Extratos Vegetais/metabolismo , Extratos Vegetais/toxicidade , Folhas de Planta/química
19.
Chemosphere ; 308(Pt 2): 136415, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36099988

RESUMO

Determining the water quality status of a river and accurately identifying potential pollution sources threatening the river are pillars in effective control of pollution and sustainable water management. In this study, water quality indices, multivariate statistics and absolute principal component score-multiple linear regression (APCS-MLR) were applied to evaluate the water quality of the Karasu River, the main tributary of the Euphrates River (Turkey). For this, 19 water quality variables were monitored monthly at eight stations along the river during one year. Based on the mean dissolved oxygen (DO), electrical conductivity (EC), nitrate-nitrogen (NO3-N), orthophosphate-phosphorus (PO4-P), total phosphorus (TP), ammonium-nitrogen (NH4-N), chemical oxygen demand (COD) and total nitrogen (TN) levels, most stations of the river had "very good" water status according to surface water quality criteria. Spatial cluster analysis (CA) divided eight stations into three regions as clean region, moderate clean region and very clean region. The mean values of Nutrient Pollution Index indicated that the river was "no polluted". Similarly, Water Quality Index and Organic Pollution Index values indicated that the river water quality was between "good" and "excellent". A minimum water quality index (WQImin) consisted of ten crucial parameters was not significantly different with the WQI based on all the 17 parameters. Discriminant analysis (DA) results showed that water temperature (WT), EC, chlorophyll-a (Chl-a), potassium (K), calcium (Ca), NO3-N and COD are the variables responsible for temporal changes, while WT, total dissolves solids (TDS), Chl-a, K, magnesium (Mg), Ca, NH4-N and COD are the variables responsible for spatial changes in the river water quality. Principal component analysis/factor analysis (PCA/FA) identified four potential sources, including anthropogenic, natural, seasonal and phytoplankton. Source apportionment in the APCS-MLR model revealed that seasonal and anthropogenic sources contributed 35.2% and 25.5% to river water quality parameters, respectively, followed by phytoplankton (21.4%) and natural sources (17.9%).


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Compostos de Amônio/análise , Cálcio/análise , Clorofila/análise , Monitoramento Ambiental/métodos , Modelos Lineares , Magnésio/análise , Nitratos/análise , Nitrogênio/análise , Oxigênio/análise , Fosfatos/análise , Fósforo/análise , Potássio/análise , Rios , Turquia , Poluentes Químicos da Água/análise , Qualidade da Água
20.
Environ Monit Assess ; 194(11): 807, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36123411

RESUMO

Organic and inorganic nitrogen ions in the environment play important role across environmental matrices. Rainwater samples collected from ambient and different roofing surfaces (zinc, aluminium, asbestos and stone-coated roofing sheets) from selected locations at Ogale, Rumuodomaya/Rumuodome, Diobu and Chokocho within Rivers State, Niger Delta, Nigeria, from April to June, July to August and September to October depicting three regiments of early, mid and late rains. The samples were analysed for Kjeldahl nitrogen, ammonium, nitrate and nitrite using APHA methodology. Quantitative assessment showed that Kjeldahl nitrogen were in range of 0.11 to 28.05 mg/L; ammonium 0.50 to 20.22 mg/L, nitrate from 0.12 to 22.69 mg/L and nitrite from 0.15 to 3.90 mg/L. Parameters decreased from early to late rain, which can be attributed to rain dilution factor potential, wind pattern and emission from anthropogenic sources that influenced the rainwater quality across surfaces. Nitrogen results showed that dry and wet deposition has great impact; atmospheric aerosols and biogeochemical interactions can affect water quality. Monthly variation showed that Ogale had high regression compared to other locations due to close proximity to oil and gas emission and marine contribution. Neutralization factor showed that nitrate-nitrite compounds have strong correlation with ammonium ion. Non-carcinogenic risk assessment using US EPA model showed hazard index less than one (1), thus no associated health effect of nitrate and nitrite in rainwater. In conclusion, it is evident that nitrate/nitrite levels and other nitrogen derivatives in rainwater in crude oil-producing Niger Delta and its continuous consumption can cause negative health outcome.


Assuntos
Compostos de Amônio , Petróleo , Aerossóis/análise , Alumínio/análise , Compostos de Amônio/análise , Quimiometria , Monitoramento Ambiental/métodos , Nigéria , Nitratos/análise , Nitritos/análise , Nitrogênio/análise , Óxidos de Nitrogênio/análise , Compostos Orgânicos , Petróleo/análise , Medição de Risco , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA