Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Neurobiol ; 61(3): 1237-1270, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37698833

RESUMO

A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD.


Assuntos
Produtos Biológicos , Doença de Huntington , Fármacos Neuroprotetores , Ratos , Animais , Doença de Huntington/metabolismo , Ratos Wistar , Acetilcolinesterase , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Produtos Biológicos/uso terapêutico , Nitrocompostos/farmacologia , Propionatos/farmacologia , Propionatos/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças
2.
Pest Manag Sci ; 78(6): 2581-2587, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35334156

RESUMO

BACKGROUND: Coffee (Coffea arabica L.) is one of the main commodities produced in Brazil. Insecticides like the (systemic) neonicotinoid thiamethoxam are widely used to suppress pest populations during coffee production, in particular the Neotropical leaf miner (Leucoptera coffeella Guérin-Mèneville & Perrottet, 1842) (Lepidoptera: Lyonetiidae). In addition to its efficacy against this pest species, thiamethoxam is also thought to be a bioactivator of plant metabolism, but has not yet been tested for such activity. Thus, the objectives of the present study were (1) to assess the concentration-response effects of thiamethoxam on the vegetative vigor of coffee seedlings (C. arabica 'Catuaí 144' cultivar) at different concentrations [2, 20, 40, 80 and 200 mg active ingredient (a.i.) kg-1 ] applied via soil drenching and (2) to evaluate if the plant response interferes with the effectiveness of thiamethoxam in controlling leaf miner populations. The morphophysiological traits of the coffee seedlings were evaluated 20, 40, 60 and 80 days after application, and leaf miner infestations were recorded starting 20 days after the insecticide application with the releasing of adults, and every 20 days afterwards. RESULTS: The results indicated that thiamethoxam has a deleterious effect on the morphophysiological traits of the plants compromising their development with increase in concentrations. However, leaf area exhibited a different pattern with a peak at 50 mg a.i. kg-1 consistent with thiamethoxam-induced hormesis (i.e. biphasic response with stimulatory effect at sublethal range of a toxic substance at the higher concentration). Nonetheless, such bioactivator effect did not affect thiamethoxan effectiveness against the leaf miner even at the lowest concentration tested. CONCLUSION: Thiamethoxan exhibited bioactivation effect on leaf at low concentration, but without compromising efficacy against leaf miner populations. Therefore, its proposed metabolism-boosting properties may encourage the unnecessary use of this insecticide, potentially leading to higher selection for insecticide resistance and an eventual decline in its effectiveness against the Neotropical leaf miner. © 2022 Society of Chemical Industry.


Assuntos
Inseticidas , Mariposas , Animais , Café , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Plântula , Tiametoxam
3.
Int J Mol Sci ; 22(16)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34445757

RESUMO

Nitro-oleic acid (NO2-OA), a nitric oxide (NO)- and nitrite (NO2-)-derived electrophilic fatty acid metabolite, displays anti-inflammatory and anti-fibrotic signaling actions and therapeutic benefit in murine models of ischemia-reperfusion, atrial fibrillation, and pulmonary hypertension. Muscle LIM protein-deficient mice (Mlp-/-) develop dilated cardiomyopathy (DCM), characterized by impaired left ventricular function and increased ventricular fibrosis at the age of 8 weeks. This study investigated the effects of NO2-OA on cardiac function in Mlp-/- mice both in vivo and in vitro. Mlp-/- mice were treated with NO2-OA or vehicle for 4 weeks via subcutaneous osmotic minipumps. Wildtype (WT) littermates treated with vehicle served as controls. Mlp-/- mice exhibited enhanced TGFß signalling, fibrosis and severely reduced left ventricular systolic function. NO2-OA treatment attenuated interstitial myocardial fibrosis and substantially improved left ventricular systolic function in Mlp-/- mice. In vitro studies of TGFß-stimulated primary cardiac fibroblasts further revealed that the anti-fibrotic effects of NO2-OA rely on its capability to attenuate fibroblast to myofibroblast transdifferentiation by inhibiting phosphorylation of TGFß downstream targets. In conclusion, we demonstrate a substantial therapeutic benefit of NO2-OA in a murine model of DCM, mediated by interfering with endogenously activated TGFß signaling.


Assuntos
Anti-Inflamatórios/uso terapêutico , Cardiomiopatia Dilatada/tratamento farmacológico , Nitrocompostos/uso terapêutico , Ácidos Oleicos/uso terapêutico , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Avaliação Pré-Clínica de Medicamentos , Fibroblastos/metabolismo , Fibrose , Coração/efeitos dos fármacos , Proteínas com Domínio LIM/genética , Camundongos , Proteínas Musculares/genética , Miocárdio/metabolismo , Nitrocompostos/farmacologia , Ácidos Oleicos/farmacologia , Fator de Crescimento Transformador beta/metabolismo
4.
ACS Chem Neurosci ; 12(3): 391-418, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33475334

RESUMO

Huntington's disease (HD), a neurodegenerative disease, normally starts in the prime of adult life, followed by a gradual occurrence of characteristic psychiatric disturbances and cognitive and motor dysfunction. To the best of our knowledge, there is no treatment available to completely mitigate the progression of HD. Among various therapeutic approaches, exhaustive literature reports have confirmed the medicinal benefits of natural products in HD experimental models. Building on this information, this review presents a brief overview of the neuroprotective mechanism(s) of natural products against in vitro/in vivo models of HD. Relevant studies were identified from several scientific databases, including PubMed, ScienceDirect, Scopus, and Google Scholar. After screening through literature from 2005 to the present, a total of 14 medicinal plant species and 30 naturally isolated compounds investigated against HD based on either in vitro or in vivo models were included in the present review. Behavioral outcomes in the HD in vivo model showed that natural compounds significantly attenuated 3-nitropropionic acid (3-NP) induced memory loss and motor incoordination. The biochemical alteration has been markedly alleviated with reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and increased mitochondrial energy production. Interestingly, following treatment with certain natural products, 3-NP-induced damage in the striatum was ameliorated, as seen histologically. Overall, natural products afforded varying degrees of neuroprotection in preclinical studies of HD via antioxidant and anti-inflammatory properties, preservation of mitochondrial function, inhibition of apoptosis, and induction of autophagy.


Assuntos
Produtos Biológicos , Doença de Huntington , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Modelos Animais de Doenças , Doença de Huntington/tratamento farmacológico , Atividade Motora , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Nitrocompostos/farmacologia , Nitrocompostos/uso terapêutico , Propionatos/farmacologia , Propionatos/uso terapêutico , Ratos , Ratos Wistar
5.
Sci Rep ; 10(1): 15319, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948795

RESUMO

Nitro-fatty acids are electrophilic anti-inflammatory mediators which are generated during myocardial ischemic injury. Whether these species exert anti-arrhythmic effects in the acute phase of myocardial ischemia has not been investigated so far. Herein, we demonstrate that pretreatment of mice with 9- and 10-nitro-octadec-9-enoic acid (nitro-oleic acid, NO2-OA) significantly reduced the susceptibility to develop acute ventricular tachycardia (VT). Accordingly, epicardial mapping revealed a markedly enhanced homogeneity in ventricular conduction. NO2-OA treatment of isolated cardiomyocytes lowered the number of spontaneous contractions upon adrenergic isoproterenol stimulation and nearly abolished ryanodine receptor type 2 (RyR2)-dependent sarcoplasmic Ca2+ leak. NO2-OA also significantly reduced RyR2-phosphorylation by inhibition of increased CaMKII activity. Thus, NO2-OA might be a novel pharmacological option for the prevention of VT development.


Assuntos
Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Nitrocompostos/farmacologia , Ácidos Oleicos/farmacologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Catecolaminas/farmacologia , Suplementos Nutricionais , Homeostase/efeitos dos fármacos , Isoproterenol/farmacologia , Masculino , Camundongos Endogâmicos , Isquemia Miocárdica/complicações , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/prevenção & controle
6.
Chemosphere ; 240: 124857, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31726599

RESUMO

Colorado potato beetle, Leptinotarsa decemlineata Say (coleoptera: chrysomelidae), is the important pest of potato all over the world. This insect pest is resistant to more than 50 active compounds belonging to various chemical groups. Potential of RNA interference (RNAi) was explored to knock down transcript levels of imidacloprid resistant genes in Colorado potato beetle (CPB) under laboratory conditions. Three important genes belonging to cuticular protein (CP), cytochrome P450 monoxygenases (P450) and glutathione synthetase (GSS) families encoding imidacloprid resistance were targeted. Feeding bio-assays were conducted on various stages of imidacloprid resistant CPB lab population by applying HT115 expressing dsRNA on potato leaflets. Survival rate of insects exposed to CP-dsRNA decreased to 4.23%, 15.32% and 47.35% in 2nd, 3rd and 4th instar larvae respectively. Larval weight and pre-adult duration were also affected due to dsRNAs feeding. Synergism of RNAi with imidacloprid conducted on the 2nd instar larvae, exhibited 100% mortality of larvae when subjected to reduced doses of GSS and CP dsRNAs along with imidacloprid. Utilization of three different dsRNAs against imidacloprid resistant CPB population reveal that dsRNAs targeting CP, P450 and GSS enzymes could be useful tool in management of imidacloprid resistant CPB populations.


Assuntos
Besouros/genética , Resistência a Medicamentos/genética , Genes de Insetos , Inseticidas/farmacologia , Larva/metabolismo , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Animais , Besouros/efeitos dos fármacos , Besouros/crescimento & desenvolvimento , Sistema Enzimático do Citocromo P-450/genética , Regulação para Baixo , Resistência a Medicamentos/efeitos dos fármacos , Glutationa Sintase/genética , Larva/efeitos dos fármacos , Larva/genética , Interferência de RNA/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento
7.
Biorheology ; 56(4): 221-235, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31640080

RESUMO

BACKGROUND: RRx-001 is an anti-cancer immunotherapeutic that increases the sensitivity of drug resistant tumors via multiple mechanisms which involve binding to hemoglobin and enhancing nitrite reductase activity of deoxyhemoglobin. OBJECTIVE: In the present study, the effect of clinically used doses of RRx-001 on erythrocyte deformability was examined. METHODS: A dose dependent effect of RRx-001 (1-1000 micro molar) on erythrocyte deformability was measured by ektacytometer under hypoxia (n = 8). Low dose RRx-001 (20 micro molar) in the presence of ODQ (1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one), L-NAME (L-NG-Nitroarginine methyl ester) or nitrite were examined both in normoxia and hypoxia. Intracellular nitric oxide (NO) levels were measured fluorometrically with DAF-FM-DA. RESULTS: Higher doses of RRx-001 (100, 1000 micro molar) significantly decreased erythrocyte deformability under hypoxia (p < 0.01; p < 0.05, respectively). RRx-001 (20 micro molar), alone or in combination with ODQ or L-NAME, did not change deformability. However, RRx-001 and nitrite caused an increase in deformability (p < 0.01) under hypoxia. RRx-001 induced NO production was more pronounced in the presence of nitrite (p < 0.05). CONCLUSIONS: Co-administration of RRx-001 and nitrite under hypoxic conditions results in a significant increase in erythrocyte deformability that is related to increased NO production. We suggest that measurement of serum nitrite level in RRx-001 treated cancer patients should be routinely undertaken and supplemented if levels are low for maximal activity.


Assuntos
Antineoplásicos/farmacologia , Azetidinas/farmacologia , Neoplasias/sangue , Óxido Nítrico/sangue , Nitritos/farmacologia , Nitrocompostos/farmacologia , Biomarcadores/sangue , Deformação Eritrocítica/efeitos dos fármacos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Humanos , NG-Nitroarginina Metil Éster/farmacologia , Neoplasias/tratamento farmacológico
8.
J Anim Sci ; 97(3): 1317-1324, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649418

RESUMO

Methanogenesis is a metabolic process that allows the rumen ecosystem the ability to maintain the low hydrogen partial pressures needed for proper digestive function. However, rumen methanogenesis is considered to be an inefficient process because it can result in the loss of 4% to 12% of the total energy consumed by the host. Recent studies have shown that some short-chain nitrocompounds such as nitroethane, 2-nitroethanol, 2-nitro-1-propanol, and 3-nitro-1-propionic acid (3NPA) are capable of inhibiting the production of methane during in vitro culture; nevertheless, optimal supplementation doses have yet to be determined. In the present study, in vitro cultures of freshly collected mixed populations of ruminal microbes were supplemented with the naturally occurring nitrocompound, 3NPA, to achieve 0, 3, 6, 9, or 12 mM. Analysis of fermentation products after 24 h of incubation revealed that methane (CH4) production was reduced in a dose-dependent manner by 29% to 96% (P < 0.05) compared with the amount produced by untreated controls (15.03 ± 0.88 µmol mL-1 incubated liquid). Main effects of the supplement were also observed, which resulted in a reduction (P < 0.05) on amounts of total gas and volatile fatty acids (VFA) produced, as well as in an increase of 0.07 to 0.30 µmol mL-1 on rates of 3NPA degradation. Changes in production of metabolites as CH4, hydrogen (H2), VFA, and NH3 indicated that the fermentation efficiency was not compromised dramatically by 3NPA treatment in moderate doses of 6 and 9 mM. Results further revealed that the metabolism of the 3NPA by microbial populations is also dose-dependent. The microbes were able to metabolize more than 75% of the added nitrocompound, with the greatest degradation rates in cultures treated with 9-mM 3NPA. Finally, from a practical standpoint, and considering the magnitude of CH4 reduction, effect on VFA, and percentage of metabolized supplement, the most efficacious dose for 3NPA administration may be between 3 and 9 mM.


Assuntos
Suplementos Nutricionais , Metano/metabolismo , Nitrocompostos/farmacologia , Propionatos/farmacologia , Animais , Ácidos Graxos Voláteis/metabolismo , Fermentação/efeitos dos fármacos , Hidrogênio/metabolismo , Rúmen/microbiologia
9.
Sci Rep ; 9(1): 625, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679494

RESUMO

Chemical insecticides are widely used for pest control worldwide. However, the impact of insecticides on indirect plant defense is seldom reported. Here, using tea plants and the pesticide imidacloprid, effects of chemical insecticides on C6-green leaf volatiles (GLVs) anabolism and release were investigated first time. Compared with the non-treated control plants, the treatment of imidacloprid resulted in the lower release amount of key GLVs: (Z)-3-hexenal, n-hexenal, (Z)-3-hexene-1-ol and (Z)-3-Hexenyl acetate. The qPCR analysis revealed a slight higher transcript level of the CsLOX3 gene but a significantly lower transcript level of CsHPL gene. Our results suggest that imidacloprid treatment can have a negative effect on the emission of GLVs due to suppressing the critical GLVs synthesis-related gene, consequently affecting plant indirect defense.


Assuntos
Camellia sinensis/efeitos dos fármacos , Camellia sinensis/metabolismo , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Acetatos/metabolismo , Aldeídos/metabolismo , Alcenos/metabolismo , Camellia sinensis/genética , Folhas de Planta/genética
10.
Br J Pharmacol ; 176(6): 757-772, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30588602

RESUMO

BACKGROUND AND PURPOSE: Atherosclerosis is characterized by chronic low-grade inflammation with concomitant lipid accumulation in the arterial wall. Anti-inflammatory and anti-atherogenic properties have been described for a novel class of endogenous nitroalkenes (nitrated-unsaturated fatty acids), formed during inflammation and digestion/absorption processes. The lipid-associated antioxidant α-tocopherol is transported systemically by LDL particles including to the atheroma lesions. To capitalize on the overlapping and complementary salutary properties of endogenous nitroalkenes and α-tocopherol, we designed and synthesized a novel nitroalkene-α-tocopherol analogue (NATOH) to address chronic inflammation and atherosclerosis, particularly at the lesion sites. EXPERIMENTAL APPROACH: We synthesized NATOH, determined its electrophilicity and antioxidant capacity and studied its effects over pro-inflammatory and cytoprotective pathways in macrophages in vitro. Moreover, we demonstrated its incorporation into lipoproteins and tissue both in vitro and in vivo, and determined its effect on atherosclerosis and inflammatory responses in vivo using the Apo E knockout mice model. KEY RESULTS: NATOH exhibited similar antioxidant capacity to α-tocopherol and, due to the presence of the nitroalkenyl group, like endogenous nitroalkenes, it exerted electrophilic reactivity. NATOH was incorporated in vivo into the VLDL/LDL lipoproteins particles to reach the atheroma lesions. Furthermore, oral administration of NATOH down-regulated NF-κB-dependent expression of pro-inflammatory markers (including IL-1ß and adhesion molecules) and ameliorated atherosclerosis in Apo E knockout mice. CONCLUSIONS AND IMPLICATIONS: In toto, the data demonstrate a novel pharmacological strategy for the prevention of atherosclerosis based on a creative, natural and safe drug delivery system of a non-conventional anti-inflammatory compound (NATOH) with significant potential for clinical application.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Aterosclerose/tratamento farmacológico , Ciclopentanos/farmacologia , Inflamação/tratamento farmacológico , Nitrocompostos/farmacologia , alfa-Tocoferol/análogos & derivados , alfa-Tocoferol/farmacologia , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Antioxidantes/síntese química , Antioxidantes/química , Aterosclerose/metabolismo , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Feminino , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Estrutura Molecular , Células RAW 264.7
11.
Chemosphere ; 219: 923-932, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30572241

RESUMO

As a neurotoxic insecticide, imidacloprid (IMI) has been widely used for crop protection. However, continuous application of such pesticide in the environment may damage the non-target organisms in soil. In the present study, we aimed to investigate the effects of IMI on earthworms in terms of survival, avoidance behavior, reproduction, detoxification enzyme activity and gene expression using a systematic experimental approach. The results showed that the 14-day LC50 value of IMI was 2.26 (2.09-2.43) mg a.i. kg-1, and the 2-day AC50 value (concentration inducing an avoidance rate of 50%) of IMI was 1.34 (1.02-1.91) mg a.i. kg-1 to E. fetida. For reproduction, the 56-day EC50 value of IMI was 0.87 (0.66-1.33) mg a.i. kg-1 to E. fetida, and there was a positive correlation between the growth rate of earthworms and the number of juveniles in IMI treatments. Activities of carboxylesterase (CarE) and glutathione-S-transferases (GST) in earthworms were disturbed by IMI exposure. Moreover, effects of IMI on the CarE activity in earthworms were more severe and sensitive compared with the GST activity. The expressions of annetocin (ann) and calreticulin (crt) at the transcriptional level were decreased upon IMI exposure, reaching the lowest levels of 0.09 fold and 0.16 fold on day 7 and day 14, respectively. Transcriptionally controlled tumor protein (tctp), heat shock protein 70 (hsp70) and gst exhibited relatively obvious variations (up-regulation or down-regulation) when the exposure duration was extended. Taken together, these results comprehensively contributed to further understandings of the impacts of IMI on earthworms.


Assuntos
Ecotoxicologia/métodos , Neonicotinoides/uso terapêutico , Nitrocompostos/uso terapêutico , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/química , Solo/química , Animais , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia
12.
Chemosphere ; 202: 609-617, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29597178

RESUMO

In this study, honeybee colonies were monitored in a field study conducted on sunflowers grown from seeds treated with the systemic neonicotinoids thiamethoxam or clothianidin. This field trial was carried out in different representative growing areas in Spain over a beekeeping season. The health and development of the colonies was assessed by measuring factors that have a significant influence on their strength and overwintering ability. The parameters assessed were: colony strength (adult bees), brood development, amount of pollen and honey stores and presence and status of the queen. The concentration of residues (clothianidin and thiamethoxam) in samples of beebread and in adult bees was at the level of ng.g-1; in the ranges of 0.10-2.89 ng g-1 and 0.05-0.12 ng g-1; 0.10-0.37 ng g-1 and 0.01-0.05 ng g-1, respectively. Multivariate models were applied to evaluate the interaction among factors. No significant differences were found between the honeybee colonies of the different treatment groups, either exposed or not to the neonicotinoids. The seasonal development of the colonies was affected by the environmental conditions which, together with the initial strength of the bee colonies and the characteristics of the plots, had a significant effect on the different variables studied.


Assuntos
Abelhas/crescimento & desenvolvimento , Guanidinas/farmacologia , Helianthus/fisiologia , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Oxazinas/farmacologia , Sementes/fisiologia , Tiazóis/farmacologia , Animais , Abelhas/efeitos dos fármacos , Mel/análise , Inseticidas/farmacologia , Pólen/química , Espanha , Tiametoxam
13.
Neurotoxicology ; 62: 239-247, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28811174

RESUMO

Neonicotinoids are the most important class of insecticides used in agriculture over the last decade. They act as selective agonists of insect nicotinic acetylcholine receptors (nAChRs). The emergence of insect resistance to these insecticides is one of the major problems, which limit the use of neonicotinoids. The aim of our study is to better understand physiological changes appearing after subchronic exposure to sublethal doses of insecticide using complementary approaches that include toxicology, electrophysiology, molecular biology and calcium imaging. We used cockroach neurosecretory cells identified as dorsal unpaired median (DUM) neurons, known to express two α-bungarotoxin-insensitive (α-bgt-insensitive) nAChR subtypes, nAChR1 and nAChR2, which differ in their sensitivity to imidacloprid. Although nAChR1 is sensitive to imidacloprid, nAChR2 is insensitive to this insecticide. In this study, we demonstrate that subchronic exposure to sublethal dose of imidacloprid differentially changes physiological and molecular properties of nAChR1 and nAChR2. Our findings reported that this treatment decreased the sensitivity of nAChR1 to imidacloprid, reduced current density flowing through this nAChR subtype but did not affect its subunit composition (α3, α8 and ß1). Subchronic exposure to sublethal dose of imidacloprid also affected nAChR2 functions. However, these effects were different from those reported on nAChR1. We observed changes in nAChR2 conformational state, which could be related to modification of the subunit composition (α1, α2 and ß1). Finally, the subchronic exposure affecting both nAChR1 and nAChR2 seemed to be linked to the elevation of the steady-state resting intracellular calcium level. In conclusion, under subchronic exposure to sublethal dose of imidacloprid, cockroaches are capable of triggering adaptive mechanisms by reducing the participation of imidacloprid-sensitive nAChR1 and by optimizing functional properties of nAChR2, which is insensitive to this insecticide.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Neonicotinoides/farmacologia , Neurônios/efeitos dos fármacos , Nitrocompostos/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Gânglios dos Invertebrados/citologia , Masculino , Técnicas de Patch-Clamp , Periplaneta , RNA Mensageiro/metabolismo , Receptores Nicotínicos/genética , Estatísticas não Paramétricas
14.
Histochem Cell Biol ; 148(5): 517-528, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28597061

RESUMO

A variety of tissue biomolecules and intracellular structures are known to be autofluorescent. However, autofluorescent signals in brain tissues often confound analysis of the fluorescent markers used for immunohistochemistry. While investigating tissue and cellular pathologies induced by 3-nitropropionic acid, a mitochondrial toxin selective for striatal neurons, we encountered many autofluorescent signals confined to the lesion core. These structures were excited by blue (wavelength = 488 nm) and yellow-orange (555 nm), but not by red (639 nm) or violet (405 nm) lasers, indicating that this autofluorescence overlaps with the emission spectra of commonly used fluorophores. Almost all of the autofluorescence was localized in activated microglia/macrophages, while reactive astrocytes emitted no detectable autofluorescence. Amoeboid brain macrophages filled with autofluorescent granules revealed very weak expression of the microglial marker, ionized calcium-binding adaptor molecule 1 (Iba1), while activated microglia with evident processes and intense Iba1 immunoreactivity contained scant autofluorescent granules. In addition, immunolabeling with two lysosomal markers, ED1/CD68 and lysosomal-associated membrane protein 1, showed a pattern complementary with autofluorescent signals in activated microglia/macrophages, implying that the autofluorescent structures reside within cytoplasm free of intact lysosomes. A correlative light- and electron-microscopic approach finally revealed the ultrastructural identity of the fluorescent granules, most of which matched to clusters of lipofuscin-like inclusions with varying morphology. Thus, autofluorescence in the damaged brain may reflect the presence of lipofuscin-laden brain macrophages, which should be taken into account when verifying any fluorescent signals that are likely to be correlated with activated microglia/macrophages after brain insults.


Assuntos
Corpo Estriado/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nitrocompostos/farmacologia , Propionatos/farmacologia , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Microscopia , Nitrocompostos/administração & dosagem , Propionatos/administração & dosagem , Ratos , Ratos Sprague-Dawley
15.
Expert Rev Hematol ; 10(6): 575-582, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28448172

RESUMO

BACKGROUND: RRx-001, a clinical macrophage-stimulating anti-cancer agent that also produces nitric oxide (NO) was studied in a model of ischemia-reperfusion injury. METHODS: The production of NO is dependent on the oxygen tension because nitric oxide synthases convert l-arginine to NO and l-citrulline in the presence of O2. Since the P450 enzymes, which metabolize nitrate esters such as nitroglycerin are dependent on oxygen, the generation of 'exogenous' NO is also sensitive to alterations in tissue PO2. I/R injury was studied in a hamster chamber window, with compression of the periphery of the window for 1 h to induce ischemia. Animals received RRx-001 (5 mg/kg) 24 h before ischemia and sodium nitrite (10 nmols/kg) was supplemented 10 min after the start of reperfusion. Vessel diameter, blood flow, adherent leukocytes, and functional capillary density were assessed by intravital microscopy at 0.5, 2, and 24 h following the release of the ischemia. RESULTS: The results demonstrated that, compared to control, RRx-001 preconditioning increased blood flow and functional capillary density, and preserved tissue viability in the absence of side effects over a sustained time period. CONCLUSION: Thus, RRx-001 may serve as a long-lived protective agent during postsurgical restoration of flow and other ischemia-reperfusion associated conditions, increasing blood flow and functional capillary density as well as preserving tissue viability in the absence of side effects.


Assuntos
Azetidinas/farmacologia , Nitrocompostos/farmacologia , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/prevenção & controle , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Capilares/metabolismo , Cricetinae , Modelos Animais de Doenças , Masculino , Mesocricetus , Microcirculação/efeitos dos fármacos , Traumatismo por Reperfusão/etiologia , Nitrito de Sódio/farmacologia
16.
J Econ Entomol ; 110(2): 558-566, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28115498

RESUMO

The performance of five insecticides (bendiocarb, deltamethrin, DDT, malathion, and imidacloprid) using three application methods (oil-based insecticide films on filter paper, and acetone-based insecticide deposits on two substrates: filter paper and glass) was assessed against a susceptible strain of Cimex lectularius (L.) and two resistant strains of Cimex hemipterus (F.). Substrate type significantly affected (P < 0.05) the insecticide knockdown response of the susceptible strain in acetone-based insecticide bioassays, with longer survival time on filter paper than on the glass surface. With the exception of deltamethrin, the different diluents (oil and acetone) also significantly affected (P < 0.05) the insecticide knockdown response of the susceptible strain in the filter paper-based insecticide bioassays, with longer survival time with acetone as the diluent. For both strains of C. hemipterus, there were no significant effects with the different surfaces and diluents for all insecticides except for malathion and imidacloprid, which was largely due to high levels of resistance. The lower effectiveness for the insecticide acetone-based treatment on filter paper may be due to crystal bloom. This occurs when an insecticide, dissolved in a volatile solvent, is applied onto absorptive surfaces. The effect is reduced on nonabsorptive surfaces and slowed down with oil-based insecticides, whereby the oil forms a film on absorptive surfaces. These findings suggest that nonabsorptive surfaces should be used in bioassays to monitor insecticide resistance. If absorptive surfaces are used in bioassays for testing active ingredients, then oil-based insecticides should be preferably used.


Assuntos
Percevejos-de-Cama/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Inseticidas/administração & dosagem , Inseticidas/farmacologia , Animais , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Imidazóis/farmacologia , Controle de Insetos/métodos , Resistência a Inseticidas/efeitos dos fármacos , Malation/farmacologia , Neonicotinoides , Nitrilas/administração & dosagem , Nitrilas/farmacologia , Nitrocompostos/farmacologia , Fenilcarbamatos/administração & dosagem , Fenilcarbamatos/farmacologia , Piretrinas/administração & dosagem , Piretrinas/farmacologia
17.
Sci Rep ; 7: 41255, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112264

RESUMO

The western honeybee (Apis mellifera) is essential for the global economy due to its important role in ecosystems and agriculture as a pollinator of numerous flowering plants and crops. Pesticide abuse has greatly impacted honeybees and caused tremendous loss of honeybee colonies worldwide. The reasons for colony loss remain unclear, but involvement of pesticides and pathogen-pesticide interactions has been hypothesized. Histone deacetylase inhibitors (HDACis) inhibit the activity of histone acetylase, which causes the hyperacetylation of histone cores and influences gene expression. In this study, sodium butyrate, an HDACi, was used as a dietary supplement for honeybees; after treatment, gene expression profiles were analyzed using quantitative PCR. The results showed that sodium butyrate up-regulated genes involved in anti-pathogen and detoxification pathways. The bioassay results showed that honeybees treated with sodium butyrate were more tolerant to imidacloprid. Additionally, sodium butyrate strengthened the immune response of honeybees to invasions of Nosema ceranae and viral infections. We also performed a bioassay in which honeybees were exposed to pesticides and pathogens. Our results provide additional data regarding the mechanism by which honeybees react to stress and the potential application of HDACis in beekeeping.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Transdução de Sinais/genética , Acetilação/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Abelhas/imunologia , Abelhas/microbiologia , Ácido Butírico/farmacologia , Caspase 3/metabolismo , Inativação Metabólica/efeitos dos fármacos , Inativação Metabólica/genética , Microsporidiose/genética , Microsporidiose/patologia , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Nosema/efeitos dos fármacos , Nosema/fisiologia , Transdução de Sinais/efeitos dos fármacos
18.
Mol Neurobiol ; 54(3): 2327-2337, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26957301

RESUMO

L-theanine is unique amino acid which readily crosses blood brain barrier and possesses neuroprotective potential against neurodegenerative disorders including Huntington disease (HD). HD is characterized by selective loss of GABAergic medium spiny neurons. 3-nitropropionic acid (3-NP) induces a spectrum of HD-like neuropathology in rat striatum and widely used as experimental tool to study HD. Therefore, the present study was intended to investigate the effect of L-theanine against 3-NP-induced striatal toxicity and to explore its possible mechanism. Rats were administered with 3-NP for 21 days. L-theanine was given once a day, 1 h prior to 3-NP treatment for 21 days and L-NAME (10 mg/kg, i.p.), NO inhibitor and L-arginine (50 mg/kg; i.p.), NO precursor were administered 1 h prior to L-theanine treatment. Body weight and behavioral observation were made on weekly basis. On the 22nd day, animals were sacrificed, and the striatum was isolated for biochemical (LPO, GSH, and nitrite), pro-inflammatory cytokines and neurochemical analysis. 3-NP treatment significantly altered body weight, locomotor activity, motor coordination, mitochondrial complex-II activity, oxidative defense, pro-inflammatory mediators, and striatal neurotransmitters level. L-theanine pre-treatment (25 and 50 mg/kg/day, p.o.) significantly prevented these alterations. In addition, concurrent treatment of L-NAME with L-theanine (25 mg/kg/day, p.o.) significantly enhanced protective effect of L-theanine (25 mg/kg/day, p.o.) whereas concurrent treatment of L-arginine with L-theanine (50 mg/kg/day, p.o.) significantly ameliorated the protective effect of L-theanine (50 mg/kg/day, p.o.). The neuroprotective potential of L-theanine involves inhibition of detrimental nitric oxide production and prevention of neurotransmitters alteration in the striatum.


Assuntos
Corpo Estriado/efeitos dos fármacos , Glutamatos/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Nitrocompostos/farmacologia , Propionatos/farmacologia , Chá , Animais , Antioxidantes/farmacologia , Doença de Huntington/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar
19.
Nat Prod Commun ; 12(1): 105-106, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30549839

RESUMO

By alkylation of vanillin with 4,5-dichloro-3-chloromethylisothiazole the corresponding ether was synthesized. The latter was then reacted with p-toluidine to afford the corresponding azomethine. During the bioassays of synthesized isothiazolic derivatives of vanillin in mixtures with insecticides (imidacloprid and a-cypermethrin) a strong synergetic effect was observed.


Assuntos
Benzaldeídos/farmacologia , Inseticidas , Tiazóis/farmacologia , Animais , Besouros , Insetos , Resistência a Inseticidas , Larva , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Piretrinas/farmacologia , Toluidinas/farmacologia
20.
PLoS One ; 11(6): e0156886, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27285384

RESUMO

The worldwide use of neonicotinoid pesticides has caused concern on account of their involvement in the decline of bee populations, which are key pollinators in most ecosystems. Here we describe a role of non-neuronal acetylcholine (ACh) for breeding of Apis mellifera carnica and a so far unknown effect of neonicotinoids on non-target insects. Royal jelly or larval food are produced by the hypopharyngeal gland of nursing bees and contain unusually high ACh concentrations (4-8 mM). ACh is extremely well conserved in royal jelly or brood food because of the acidic pH of 4.0. This condition protects ACh from degradation thus ensuring delivery of intact ACh to larvae. Raising the pH to ≥5.5 and applying cholinesterase reduced the content of ACh substantially (by 75-90%) in larval food. When this manipulated brood was tested in artificial larval breeding experiments, the survival rate was higher with food supplemented by 100% with ACh (6 mM) than with food not supplemented with ACh. ACh release from the hypopharyngeal gland and its content in brood food declined by 80%, when honeybee colonies were exposed for 4 weeks to high concentrations of the neonicotinoids clothianidin (100 parts per billion [ppb]) or thiacloprid (8,800 ppb). Under these conditions the secretory cells of the gland were markedly damaged and brood development was severely compromised. Even field-relevant low concentrations of thiacloprid (200 ppb) or clothianidin (1 and 10 ppb) reduced ACh level in the brood food and showed initial adverse effects on brood development. Our findings indicate a hitherto unknown target of neonicotinoids to induce adverse effects on non-neuronal ACh which should be considered when re-assessing the environmental risks of these compounds. To our knowledge this is a new biological mechanism, and we suggest that, in addition to their well documented neurotoxic effects, neonicotinoids may contribute to honeybee colony losses consecutive to a reduction of the ACh content in the brood food.


Assuntos
Acetilcolina/biossíntese , Anabasina/efeitos adversos , Abelhas , Inseticidas/efeitos adversos , Reprodução/efeitos dos fármacos , Reprodução/fisiologia , Acetilcolina/análise , Anabasina/análogos & derivados , Animais , Abelhas/efeitos dos fármacos , Abelhas/metabolismo , Abelhas/fisiologia , Colina O-Acetiltransferase/análise , Colina O-Acetiltransferase/metabolismo , Feminino , Cobaias , Hipofaringe/efeitos dos fármacos , Hipofaringe/metabolismo , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Neurônios/metabolismo , Nitrocompostos/farmacologia , Polinização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA