Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pain ; 19: 17448069221148351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36526437

RESUMO

Sensory neuron hyperexcitability is a critical driver of pathological pain and can result from axon damage, inflammation, or neuronal stress. G-protein coupled receptor signaling can induce pain amplification by modulating the activation of Trp-family ionotropic receptors and voltage-gated ion channels. Here, we sought to use calcium imaging to identify novel inhibitors of the intracellular pathways that mediate sensory neuron sensitization and lead to hyperexcitability. We identified a novel stimulus cocktail, consisting of the SSTR2 agonist L-054,264 and the S1PR3 agonist CYM5541, that elicits calcium responses in mouse primary sensory neurons in vitro as well as pain and thermal hypersensitivity in mice in vivo. We screened a library of 906 bioactive compounds and identified 24 hits that reduced calcium flux elicited by L-054,264/CYM5541. Among these hits, silymarin, a natural product derived from milk thistle, strongly reduced activation by the stimulation cocktail, as well as by a distinct inflammatory cocktail containing bradykinin and prostaglandin E2. Silymarin had no effect on sensory neuron excitability at baseline, but reduced calcium flux via Orai channels and downstream mediators of phospholipase C signaling. In vivo, silymarin pretreatment blocked development of adjuvant-mediated thermal hypersensitivity, indicating potential use as an anti-inflammatory analgesic.


Assuntos
Nociceptores , Silimarina , Camundongos , Animais , Nociceptores/metabolismo , Cálcio/metabolismo , Silimarina/metabolismo , Silimarina/farmacologia , Dor/metabolismo , Células Receptoras Sensoriais/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Gânglios Espinais/metabolismo
2.
Cells ; 11(15)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35954234

RESUMO

Hypersensitivity to mechanical stimuli is a cardinal symptom of neuropathic and inflammatory pain. A reduction in spinal inhibition is generally considered a causal factor in the development of mechanical hypersensitivity after injury. However, the extent to which presynaptic inhibition contributes to altered spinal inhibition is less well established. Here, we used conditional deletion of GABAA in NaV1.8-positive sensory neurons (Scn10aCre;Gabrb3fl/fl) to manipulate selectively presynaptic GABAergic inhibition. Behavioral testing showed that the development of inflammatory punctate allodynia was mitigated in mice lacking pre-synaptic GABAA. Dorsal horn cellular circuits were visualized in single slices using stimulus-tractable dual-labelling of c-fos mRNA for punctate and the cognate c-Fos protein for dynamic mechanical stimulation. This revealed a substantial reduction in the number of cells activated by punctate stimulation in mice lacking presynaptic GABAA and an approximate 50% overlap of the punctate with the dynamic circuit, the relative percentage of which did not change following inflammation. The reduction in dorsal horn cells activated by punctate stimuli was equally prevalent in parvalbumin- and calretinin-positive cells and across all laminae I-V, indicating a generalized reduction in spinal input. In peripheral DRG neurons, inflammation following complete Freund's adjuvant (CFA) led to an increase in axonal excitability responses to GABA, suggesting that presynaptic GABA effects in NaV1.8+ afferents switch from inhibition to excitation after CFA. In the days after inflammation, presynaptic GABAA in NaV1.8+ nociceptors constitutes an "open gate" pathway allowing mechanoreceptors responding to punctate mechanical stimulation access to nociceptive dorsal horn circuits.


Assuntos
Hiperalgesia , Nociceptores , Animais , Adjuvante de Freund , Hiperalgesia/metabolismo , Inflamação/metabolismo , Camundongos , Nociceptores/metabolismo , Ácido gama-Aminobutírico
3.
Pain ; 163(8): 1530-1541, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34817438

RESUMO

ABSTRACT: Nociceptors are known to directly recognize bacterial cell wall components or secreted toxins, thereby leading to pain induced by bacterial infection. However, direct activation of nociceptors by bacterial metabolites remains unclear although bacteria produce numerous metabolites related to health and disease. In this study, we investigated whether and how a common bacterial metabolite, indole, which is produced by normal microflora of the gastrointestinal tract and oral cavity, can directly activate nociceptive sensory neurons. We found that indole elicits calcium response and evokes inward currents in subsets of dorsal root ganglia (DRG) neurons. Intraplantar (i.pl.) injection of indole produced nocifensive behaviors in adult mice, which were enhanced in complete Freund's adjuvant-induced chronic inflammatory condition. Indole increased calcitonin gene-related peptide release in DRG neurons, and i.pl. injection of indole increased hind paw thickness, suggesting its role in generation of neurogenic inflammation. These in vitro and in vivo indole-induced responses were pharmacologically blocked by transient receptor potential ankyrin 1 (TRPA1) antagonist, HC-030031, and significantly abolished in TRPA1 knockout (KO) mice, indicating that indole targets TRPA1 for its action in DRG neurons. Nocifensive licking behavior induced by the injection of live Escherichia coli was significantly decreased in tryptophanase mutant (TnaA KO) E. coli- injected mice that lack indole production, further supporting the idea that bacteria-derived indole can induce pain during infection. Identifying the mechanism of action of indole through TRPA1 provides insights into bacteria-neuron interactions and the role of bacterial metabolites in pain signaling, especially in inflammation-accompanied bacterial infection.


Assuntos
Indóis , Nociceptores , Canal de Cátion TRPA1 , Animais , Escherichia coli/metabolismo , Gânglios Espinais , Indóis/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptores/metabolismo , Dor/induzido quimicamente , Dor/metabolismo , Células Receptoras Sensoriais/metabolismo , Canal de Cátion TRPA1/antagonistas & inibidores , Canal de Cátion TRPA1/genética
4.
Ann Rheum Dis ; 80(12): 1604-1614, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34663597

RESUMO

Crystal structures activate innate immune cells, especially macrophages and initiate inflammatory responses. We aimed to understand the role of the mechanosensitive TRPV4 channel in crystal-induced inflammation. Real-time RT-PCR, RNAscope in situ hybridisation, and Trpv4eGFP mice were used to examine TRPV4 expression and whole-cell patch-clamp recording and live-cell Ca2+ imaging were used to study TRPV4 function in mouse synovial macrophages and human peripheral blood mononuclear cells (PBMCs). Both genetic deletion and pharmacological inhibition approaches were used to investigate the role of TRPV4 in NLRP3 inflammasome activation induced by diverse crystals in vitro and in mouse models of crystal-induced pain and inflammation in vivo. TRPV4 was functionally expressed by synovial macrophages and human PBMCs and TRPV4 expression was upregulated by stimulation with monosodium urate (MSU) crystals and in human PBMCs from patients with acute gout flares. MSU crystal-induced gouty arthritis were significantly reduced by either genetic ablation or pharmacological inhibition of TRPV4 function. Mechanistically, TRPV4 mediated the activation of NLRP3 inflammasome by diverse crystalline materials but not non-crystalline NLRP3 inflammasome activators, driving the production of inflammatory cytokine interleukin-1ß which elicited TRPV4-dependent inflammatory responses in vivo. Moreover, chemical ablation of the TRPV1-expressing nociceptors significantly attenuated the MSU crystal-induced gouty arthritis. In conclusion, TRPV4 is a common mediator of inflammatory responses induced by diverse crystals through NLRP3 inflammasome activation in macrophages. TRPV4-expressing resident macrophages are critically involved in MSU crystal-induced gouty arthritis. A neuroimmune interaction between the TRPV1-expressing nociceptors and the TRPV4-expressing synovial macrophages contributes to the generation of acute gout flares.


Assuntos
Artralgia/metabolismo , Artrite/metabolismo , Artropatias por Cristais/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Nociceptores/metabolismo , Canais de Cátion TRPV/genética , Adulto , Animais , Artralgia/imunologia , Artrite/imunologia , Artrite Gotosa/imunologia , Artrite Gotosa/metabolismo , Artropatias por Cristais/imunologia , Gota/imunologia , Gota/metabolismo , Humanos , Inflamassomos/imunologia , Inflamação , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Imagem Óptica , Técnicas de Patch-Clamp , Membrana Sinovial/citologia , Células THP-1 , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Ácido Úrico
5.
Mol Neurobiol ; 58(9): 4770-4785, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34176096

RESUMO

Family with sequence similarity 19 (chemokine (C-C motif)-like) member A5 (FAM19A5) is a chemokine-like secretory protein recently identified as involved in the regulation of osteoclast formation, post-injury neointima formation, and depression. Although roles for FAM19A5 have been described in nervous system development and psychiatric disorders, its role in the nervous system remains poorly understood. Here, we analyzed the evolutionary history of FAM19A genes in vertebrates and identified FAM19A5l, a paralogous zebrafish gene originating from a common ancestral FAM19A5 gene. Further, zebrafish FAM19A5l is expressed in trigeminal and dorsal root ganglion neurons as well as distinct neuronal subsets of the central nervous system. Interestingly, FAM19A5l+ trigeminal neurons are nociceptive neurons that localized with TRPA1b and TRPV1 and respond to mustard oil treatment. Behavioral analysis further revealed that the nociceptive response to mustard oil decreases in FAM19A5l-knockout zebrafish larvae. In addition, TRPA1b and NGFa mRNA levels are down- and upregulated in FAM19A5l-knockout and -overexpressing transgenic zebrafish, respectively. Together, our data suggest that FAM19A5l plays a role in nociceptive responses to mustard oil by regulating TRPA1b and NGFa expression in zebrafish.


Assuntos
Citocinas/metabolismo , Neurônios/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Óleos de Plantas/farmacologia , Animais , Animais Geneticamente Modificados , Citocinas/genética , Mostardeira , Neurônios/metabolismo , Nociceptividade/fisiologia , Nociceptores/metabolismo , Peixe-Zebra
6.
Molecules ; 26(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546181

RESUMO

Capsaicin is a potent agonist of the TRPV1 channel, a transduction channel that is highly expressed in nociceptive fibers (pain fibers) throughout the peripheral nervous system. Given the importance of TRPV1 as one of several transduction channels in nociceptive fibers, much research has been focused on the potential therapeutic benefits of using TRPV1 antagonists for the management of pain. However, an antagonist has two limitations. First, an antagonist in principle generally only affects one receptor. Secondly, most antagonists must have an ongoing presence on the receptor to have an effect. Capsaicin overcomes both liabilities by disrupting peripheral terminals of nociceptive fibers that express TRPV1, and thereby affects all of the potential means of activating that pain fiber (not just TRPV1 function). This disruptive effect is dependent on the dose and can occur within minutes. Thus, unlike a typical receptor antagonist, continued bioavailability at the level of the receptor is not necessary. By disrupting the entire terminal of the TRPV1-expressing nociceptive fiber, capsaicin blocks all the activation mechanisms within that fiber, and not just TRPV1 function. Topical capsaicin, an FDA approved treatment for neuropathic pain, addresses pain from abnormal nociceptor activity in the superficial layers of the skin. Effects after a single administration are evident over a period of weeks to months, but in time are fully reversible. This review focuses on the rationale for using capsaicin by injection for painful conditions such as osteoarthritis (OA) and provides an update on studies completed to date.


Assuntos
Capsaicina/uso terapêutico , Neuralgia/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Humanos , Neuralgia/metabolismo , Neuralgia/patologia , Nociceptores/metabolismo , Nociceptores/patologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Canais de Cátion TRPV/metabolismo
7.
J Neuroinflammation ; 17(1): 183, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532285

RESUMO

BACKGROUND: Recently, mineralocorticoid receptors (MR) were identified in peripheral nociceptive neurons, and their acute antagonism was responsible for immediate and short-lasting (non-genomic) antinociceptive effects. The same neurons were shown to produce the endogenous ligand aldosterone by the enzyme aldosterone synthase. METHODS: Here, we investigate whether endogenous aldosterone contributes to inflammation-induced hyperalgesia via the distinct genomic regulation of specific pain signaling molecules in an animal model of Freund's complete adjuvant (FCA)-induced hindpaw inflammation. RESULTS: Chronic intrathecal application of MR antagonist canrenoate-K (over 4 days) attenuated nociceptive behavior in rats with FCA hindpaw inflammation suggesting a tonic activation of neuronal MR by endogenous aldosterone. Consistently, double immunofluorescence confocal microscopy showed abundant co-localization of MR with several pain signaling molecules such as TRPV1, CGRP, Nav1.8, and trkA whose enhanced expression of mRNA and proteins during inflammation was downregulated following i.t. canrenoate-K. More importantly, inhibition of endogenous aldosterone production in peripheral sensory neurons by continuous intrathecal delivery of a specific aldosterone synthase inhibitor prevented the inflammation-induced enhanced transcriptional expression of TRPV1, CGRP, Nav1.8, and trkA and subsequently attenuated nociceptive behavior. Evidence for such a genomic effect of endogenous aldosterone was supported by the demonstration of an enhanced nuclear translocation of MR in peripheral sensory dorsal root ganglia (DRG) neurons. CONCLUSION: Taken together, chronic inhibition of local production of aldosterone by its processing enzyme aldosterone synthase within peripheral sensory neurons may contribute to long-lasting downregulation of specific pain signaling molecules and may, thus, persistently reduce inflammation-induced hyperalgesia.


Assuntos
Aldosterona/metabolismo , Hiperalgesia/metabolismo , Inflamação/metabolismo , Dor/metabolismo , Animais , Citocromo P-450 CYP11B2/antagonistas & inibidores , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Ratos , Ratos Wistar , Receptores de Mineralocorticoides/efeitos dos fármacos , Receptores de Mineralocorticoides/metabolismo
8.
Brain Res Bull ; 154: 61-67, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31722251

RESUMO

7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid (resolvin D1 [RvD1]) is biosynthesized from docosahexaenoic acid (DHA), and belongs to a novel family of lipid mediators showing remarkable anti-inflammatory effects; however, the effect of RvD1 on inflammation-induced hyperexcitability of nociceptive neurons under in vivo conditions remains to be determined. The present study, therefore, investigated whether under in vivo conditions, systemic administration of RvD1 could attenuate the inflammation-induced hyperexcitability of spinal trigeminal nucleus caudalis (SpVc) wide-dynamic range (WDR) neurons associated with hyperalgesia in rats. The threshold of escape from mechanical stimulation applied to the orofacial area in rats with complete Freund's adjuvant-induced inflammation was significantly lower than in naïve rats. The lowered mechanical threshold in rats with inflammation was returned to control levels following administration of RvD1 (3 ng/kg, i.p.) for 3 days. The mean discharge frequency of SpVc WDR neurons in rats with inflammation was significantly decreased after RvD1 administration for both non-noxious and noxious mechanical stimuli. Increased spontaneous discharge of SpVc WDR neurons in rats with inflammation was also significantly decreased after RvD1 administration. Noxious pinch-evoked afterdischarge frequency and occurrence in rats with inflammation was significantly diminished after RvD1 administration. Expansion of the receptive field in rats with inflammation also returned to control levels after RvD1 administration. These results suggest that administration of RvD1 attenuates inflammation-induced hyperexcitability of SpVc WDR neurons associated with inflammatory hyperalgesia. These findings support the idea that RvD1, derived from DHA, as well as DHA itself, are potential complementary or alternative therapeutic agents for the alleviation of inflammatory hyperalgesia.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Hiperalgesia/metabolismo , Nervo Trigêmeo/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Núcleo Caudado/efeitos dos fármacos , Núcleo Caudado/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Hiperalgesia/tratamento farmacológico , Inflamação , Masculino , Neurônios/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Ratos , Ratos Wistar , Nervo Trigêmeo/efeitos dos fármacos , Núcleo Espinal do Trigêmeo/efeitos dos fármacos
9.
Brain Behav Immun ; 78: 116-130, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30682503

RESUMO

The orphan nuclear receptors REV-ERBα and REV-ERBß (REV-ERBs) are crucial in the regulation of inflammatory-related gene transcription in astroglioma cells, but their role in nociceptive transduction has yet to be elaborated. Spinal dorsal horn astrocytes contribute to the maintenance of chronic pain. Treatment of cultured spinal astrocytes with specific REV-ERBs agonists SR9009 or GSK4112 significantly prevented lipopolysaccharide (LPS)-induced mRNA upregulation of pronociceptive molecules interleukin-1ß (IL-1ß) mRNA, interleukin-6 (IL-6) mRNA and matrix metalloprotease-9 (MMP-9) mRNA, but not CCL2 mRNA expression. Treatment with SR9009 also blocked tumor necrosis factor-induced IL-1ß mRNA, IL-6 mRNA and MMP-9 mRNA. In addition, treatment with SR9009 significantly blocked LPS-induced upregulation of IL-1ß protein, IL-6 protein and MMP-9 activity. The inhibitory effects of SR9009 on LPS-induced expression of pronociceptive molecules were blocked by knockdown of REV-ERBs expression with short interference RNA, confirming that SR9009 exerts its effect through REV-ERBs. Intrathecal LPS treatment in male mice induces hind paw mechanical hypersensitivity, and upregulation of IL-1ß mRNA, IL-6 mRNA and glial fibrillary acidic protein (GFAP) expression in spinal dorsal horn. Intrathecal pretreatment of SR9009 prevented the onset of LPS-induced mechanical hypersensitivity, cytokine expression and GFAP expression. Intrathecal injection of SR9009 also ameliorated mechanical hypersensitivity during the maintenance phase of complete Freund's adjuvant-induced inflammatory pain and partial sciatic nerve ligation-, paclitaxel-, and streptozotocin-induced neuropathy in mice. The current findings suggest that spinal astrocytic REV-ERBs could be critical in the regulation of nociceptive transduction through downregulation of pronociceptive molecule expression. Thus, spinal REV-ERBs could be an effective therapeutic target in the treatment of chronic pain.


Assuntos
Astrócitos/metabolismo , Nociceptores/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Citocinas/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Glicina/análogos & derivados , Glicina/farmacologia , Hiperalgesia/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Neuralgia/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/fisiologia , Cultura Primária de Células , Pirrolidinas/farmacologia , Ratos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/metabolismo , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Tiofenos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
10.
JCI Insight ; 3(11)2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29875317

RESUMO

Functional bowel disorder patients can suffer from chronic abdominal pain, likely due to visceral hypersensitivity to mechanical stimuli. As there is only a limited understanding of the basis of chronic visceral hypersensitivity (CVH), drug-based management strategies are ill defined, vary considerably, and include NSAIDs, opioids, and even anticonvulsants. We previously reported that the 1.1 subtype of the voltage-gated sodium (NaV; NaV1.1) channel family regulates the excitability of sensory nerve fibers that transmit a mechanical pain message to the spinal cord. Herein, we investigated whether this channel subtype also underlies the abdominal pain that occurs with CVH. We demonstrate that NaV1.1 is functionally upregulated under CVH conditions and that inhibiting channel function reduces mechanical pain in 3 mechanistically distinct mouse models of chronic pain. In particular, we use a small molecule to show that selective NaV1.1 inhibition (a) decreases sodium currents in colon-innervating dorsal root ganglion neurons, (b) reduces colonic nociceptor mechanical responses, and (c) normalizes the enhanced visceromotor response to distension observed in 2 mouse models of irritable bowel syndrome. These results provide support for a relationship between NaV1.1 and chronic abdominal pain associated with functional bowel disorders.


Assuntos
Dor Crônica/tratamento farmacológico , Colo/efeitos dos fármacos , Síndrome do Intestino Irritável/complicações , Dor Visceral/tratamento farmacológico , Bloqueadores do Canal de Sódio Disparado por Voltagem/administração & dosagem , Animais , Dor Crônica/diagnóstico , Dor Crônica/etiologia , Dor Crônica/patologia , Colo/inervação , Colo/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Gânglios Espinais/citologia , Humanos , Síndrome do Intestino Irritável/induzido quimicamente , Síndrome do Intestino Irritável/patologia , Masculino , Dose Máxima Tolerável , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Medição da Dor , Ácido Trinitrobenzenossulfônico/administração & dosagem , Ácido Trinitrobenzenossulfônico/toxicidade , Dor Visceral/diagnóstico , Dor Visceral/etiologia , Dor Visceral/patologia
11.
Inflamm Res ; 67(8): 633-654, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29767332

RESUMO

INTRODUCTION: Pain is an unpleasant sensation triggered by noxious stimulation. It is one of the most prevalent conditions, limiting productivity and diminishing quality of life. Non steroidal anti inflammatory drugs (NSAIDs) are widely used as pain relievers in present day practice as pain is mostly initiated due to inflammation. However, due to potentially serious side effects, long term use of these antihyperalgesic drugs raises concern. Therefore there is a demand to search novel medicines with least side effects. Herbal products have been used for centuries to reduce pain and inflammation, and phytochemicals are known to cause fewer side effects. However, identification of active phytochemicals of herbal medicines and clear understanding of the molecular mechanism of their action is needed for clinical acceptance. MATERIALS AND METHODS: In this review, we have briefly discussed the cellular and molecular changes during hyperalgesia via inflammatory mediators and neuro-modulatory action involved therein. The review includes 54 recently reported phytochemicals with antihyperalgesic action, as per the literature available with PubMed, Google Scholar and Scopus. CONCLUSION: Compounds of high interest as potential antihyperalgesic agents are: curcumin, resveratrol, capsaicin, quercetin, eugenol, naringenin and epigallocatechin gallate (EGCG). Current knowledge about molecular targets of pain and their regulation by these phytochemicals is elaborated and the scope of further research is discussed.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Dor/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Analgésicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Citocinas/metabolismo , Humanos , Óxido Nítrico Sintase/metabolismo , Nociceptores/metabolismo , Dor/metabolismo , Dor/fisiopatologia , Compostos Fitoquímicos/farmacologia , Prostaglandina-Endoperóxido Sintases/metabolismo
12.
Anesthesiology ; 128(4): 796-809, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29356757

RESUMO

BACKGROUND: In naive rats, corticosteroids activate neuronal membrane-bound glucocorticoid and mineralocorticoid receptors in spinal cord and periphery to modulate nociceptive behavior by nongenomic mechanisms. Here we investigated inflammation-induced changes in neuronal versus glial glucocorticoid and mineralocorticoid receptors and their ligand-mediated nongenomic impact on mechanical nociception in rats. METHODS: In Wistar rats (n = 5 to 7/group) with Freund's complete adjuvant hind paw inflammation, we examined glucocorticoid and mineralocorticoid receptor expression in spinal cord and peripheral sensory neurons versus glial using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blot, immunohistochemistry, and radioligand binding. Moreover, we explored the expression of mineralocorticoid receptors protecting enzyme 11-betahydroxysteroid dehydrogenase type 2 as well as the nociceptive behavioral changes after glucocorticoid and mineralocorticoid receptors agonist or antagonist application. RESULTS: Hind paw inflammation resulted in significant upregulation of glucocorticoid receptors in nociceptive neurons of spinal cord (60%) and dorsal root ganglia (15%) as well as mineralocorticoid receptors, while corticosteroid plasma concentrations remained unchanged. Mineralocorticoid (83 ± 16 fmol/mg) but not glucocorticoid (104 ± 20 fmol/mg) membrane binding sites increased twofold in dorsal root ganglia concomitant with upregulated 11-betahydroxysteroid dehydrogenase type 2 (43%). Glucocorticoid and mineralocorticoid receptor expression in spinal microglia and astrocytes was small. Importantly, glucocorticoid receptor agonist dexamethasone or mineralocorticoid receptor antagonist canrenoate-K rapidly and dose-dependently attenuated nociceptive behavior. Isobolographic analysis of the combination of both drugs showed subadditive but not synergistic or additive effects. CONCLUSIONS: The enhanced mechanical sensitivity of inflamed hind paws accompanied with corticosteroid receptor upregulation in spinal and peripheral sensory neurons was attenuated immediately after glucocorticoid receptor agonist and mineralocorticoid receptor antagonist administration, suggesting acute nongenomic effects consistent with detected membrane-bound corticosteroid receptors.


Assuntos
Glucocorticoides/farmacologia , Nociceptores/metabolismo , Medição da Dor/métodos , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Analgésicos/farmacologia , Animais , Adjuvante de Freund/toxicidade , Membro Posterior/efeitos dos fármacos , Membro Posterior/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Nociceptores/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Mineralocorticoides/agonistas
13.
Curr Drug Targets ; 19(10): 1166-1176, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29149827

RESUMO

BACKGROUND: Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is the substance responsible of the irritation caused by the contact of chili peppers with the skin or mucous membranes. This protoalkaloid acts by stimulating the transient receptor potential cation channel subfamily V member 1 (TRPV1), which is mainly expressed by nociceptive fibers of peripheral sensory neurons, but is also present in the central nervous system, and in some non-neuronal cells. Following the initial, intense neuronal excitation, a brief refractory period occurs. However, repeated and massive exposures to capsaicin can impair nociceptive fiber function for weeks or months. During this lapse of time, disorders related to the hyperreactivity of peripheral nociceptors are abolished or greatly reduced. Capsaicin has been utilized to treat several diseases of upper airways. OBJECTIVE: The objective of this review was to report the latest findings on the use of Capsaicin in the treatment of upper airway diseases. RESULTS: Capsaicin effectiveness has been proved in non allergic rhinitis. Some studies suggest that this substance may be also effective in nasal polyposis and in the burning mouth syndrome. No clear evidence has been obtained about its use in allergic rhinitis. CONCLUSION: To date, the use of capsaicin to treat upper airway diseases is still limited in clinical practice. This may originate by the lack of strong, conclusive evidences of its effectiveness, by the variety of therapeutic schemes used in literature, and finally by the unpleasant effects of the exposure to capsaicin, which are only partly relieved by the pretreatment with local anesthetics.


Assuntos
Síndrome da Ardência Bucal/tratamento farmacológico , Capsaicina/uso terapêutico , Pólipos Nasais/tratamento farmacológico , Sistema Respiratório/efeitos dos fármacos , Rinite/tratamento farmacológico , Fármacos do Sistema Sensorial/uso terapêutico , Animais , Síndrome da Ardência Bucal/metabolismo , Síndrome da Ardência Bucal/fisiopatologia , Capsaicina/efeitos adversos , Humanos , Pólipos Nasais/metabolismo , Pólipos Nasais/fisiopatologia , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Sistema Respiratório/metabolismo , Sistema Respiratório/fisiopatologia , Rinite/metabolismo , Rinite/fisiopatologia , Rinite Alérgica/tratamento farmacológico , Rinite Alérgica/metabolismo , Rinite Alérgica/fisiopatologia , Fármacos do Sistema Sensorial/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/metabolismo
14.
Neuropharmacology ; 125: 231-242, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28760650

RESUMO

Grip strength deficit is a measure of pain-induced functional disability in rheumatic disease. We tested whether this parameter and tactile allodynia, the standard pain measure in preclinical studies, show parallels in their response to analgesics and basic mechanisms. Mice with periarticular injections of complete Freund's adjuvant (CFA) in the ankles showed periarticular immune infiltration and synovial membrane alterations, together with pronounced grip strength deficits and tactile allodynia measured with von Frey hairs. However, inflammation-induced tactile allodynia lasted longer than grip strength alterations, and therefore did not drive the functional deficits. Oral administration of the opioid drugs oxycodone (1-8 mg/kg) and tramadol (10-80 mg/kg) induced a better recovery of grip strength than acetaminophen (40-320 mg/kg) or the nonsteroidal antiinflammatory drugs ibuprofen (10-80 mg/kg) or celecoxib (40-160 mg/kg); these results are consistent with their analgesic efficacy in humans. Functional impairment was generally a more sensitive indicator of drug-induced analgesia than tactile allodynia, as drug doses that attenuated grip strength deficits showed little or no effect on von Frey thresholds. Finally, ruthenium red (a nonselective TRP antagonist) or the in vivo ablation of TRPV1-expressing neurons with resiniferatoxin abolished tactile allodynia without altering grip strength deficits, indicating that the neurobiology of tactile allodynia and grip strength deficits differ. In conclusion, grip strength deficits are due to a distinct type of pain that reflects an important aspect of the human pain experience, and therefore merits further exploration in preclinical studies to improve the translation of new analgesics from bench to bedside.


Assuntos
Artrite/diagnóstico , Força da Mão , Hiperalgesia/diagnóstico , Força Muscular , Medição da Dor , Doenças Reumáticas/diagnóstico , Acetaminofen/farmacologia , Analgésicos/farmacologia , Animais , Artrite/tratamento farmacológico , Artrite/patologia , Artrite/fisiopatologia , Celecoxib/farmacologia , Modelos Animais de Doenças , Diterpenos/farmacologia , Feminino , Adjuvante de Freund , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Ibuprofeno/farmacologia , Inflamação/diagnóstico , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/fisiopatologia , Força Muscular/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Nociceptores/patologia , Oxicodona/farmacologia , Medição da Dor/métodos , Doenças Reumáticas/tratamento farmacológico , Doenças Reumáticas/patologia , Doenças Reumáticas/fisiopatologia , Rutênio Vermelho/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Tarso Animal , Tato , Tramadol/farmacologia
15.
Mar Drugs ; 15(6)2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28635651

RESUMO

Visceral pain is very common and represents a major unmet clinical need for which current pharmacological treatments are often insufficient. Tetrodotoxin (TTX) is a potent neurotoxin that exerts analgesic actions in both humans and rodents under different somatic pain conditions, but its effect has been unexplored in visceral pain. Therefore, we tested the effects of systemic TTX in viscero-specific mouse models of chemical stimulation of the colon (intracolonic instillation of capsaicin and mustard oil) and intraperitoneal cyclophosphamide-induced cystitis. The subcutaneous administration of TTX dose-dependently inhibited the number of pain-related behaviors in all evaluated pain models and reversed the referred mechanical hyperalgesia (examined by stimulation of the abdomen with von Frey filaments) induced by capsaicin and cyclophosphamide, but not that induced by mustard oil. Morphine inhibited both pain responses and the referred mechanical hyperalgesia in all tests. Conditional nociceptor­specific Nav1.7 knockout mice treated with TTX showed the same responses as littermate controls after the administration of the algogens. No motor incoordination after the administration of TTX was observed. These results suggest that blockade of TTX-sensitive sodium channels, but not Nav1.7 subtype alone, by systemic administration of TTX might be a potential therapeutic strategy for the treatment of visceral pain.


Assuntos
Medição da Dor/efeitos dos fármacos , Tetrodotoxina/farmacologia , Dor Visceral/tratamento farmacológico , Analgésicos/farmacologia , Animais , Capsaicina/farmacologia , Colo/efeitos dos fármacos , Colo/metabolismo , Cistite/tratamento farmacológico , Cistite/metabolismo , Modelos Animais de Doenças , Feminino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Morfina/farmacologia , Mostardeira , Nociceptores/metabolismo , Óleos de Plantas/farmacologia , Canais de Sódio/metabolismo , Dor Visceral/metabolismo
16.
Br J Pharmacol ; 174(17): 2897-2911, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28622417

RESUMO

BACKGROUND AND PURPOSE: The mechanism of the anti-migraine action of extracts of butterbur [Petasites hybridus (L.) Gaertn.] is unknown. Here, we investigated the ability of isopetasin, a major constituent of these extracts, to specifically target TRPA1 channel and to affect functional responses relevant to migraine. EXPERIMENTAL APPROACH: Single-cell calcium imaging and patch-clamp recordings in human and rodent TRPA1-expressing cells, neurogenic motor responses in rodent isolated urinary bladder, release of CGRP from mouse spinal cord in vitro and facial rubbing in mice and meningeal blood flow in rats were examined. KEY RESULTS: Isopetasin induced (i) calcium responses and currents in rat/mouse trigeminal ganglion (TG) neurons and in cells expressing the human TRPA1, (ii) substance P-mediated contractions of rat isolated urinary bladders and (iii) CGRP release from mouse dorsal spinal cord, responses that were selectively abolished by genetic deletion or pharmacological antagonism of TRPA1 channels. Pre-exposure to isopetasin produced marked desensitization of allyl isothiocyanate (AITC, TRPA1 channel agonist)- or capsaicin (TRPV1 channel agonist)-evoked currents in rat TG neurons, contractions of rat or mouse bladder and CGRP release from mouse central terminals of primary sensory neurons. Repeated intragastric administration of isopetasin attenuated mouse facial rubbing, evoked by local AITC or capsaicin, and dilation of rat meningeal arteries by acrolein or ethanol (TRPA1 and TRPV1 channel agonists respectively). CONCLUSION AND IMPLICATIONS: Activation of TRPA1 channels by isopetasin results in excitation of neuropeptide-containing nociceptors, followed by marked heterologous neuronal desensitization. Such atten uation in pain and neurogenic inflammation may account for the anti-migraine action of butterbur.


Assuntos
Petasites , Extratos Vegetais/química , Sesquiterpenos/farmacologia , Canal de Cátion TRPA1/fisiologia , Animais , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos de Enxaqueca/tratamento farmacológico , Nociceptores/metabolismo , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiologia
17.
Neurosci Lett ; 647: 14-19, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28323089

RESUMO

Although it is well known that migraine pain is enhanced by photic stimulation of the eye, the mechanisms underlying this response are not yet understood. Noxious stimulation to the dura is known to activate trigeminal spinal subnucleus caudalis and upper cervical spinal cord (Vc/C1) neurons, causing migraine pain. Intense photic stimulation to the eye is also known to activate certain Vc/C1 neurons, thus increasing migraine pain. In this study, we hypothesized that Vc/C1 neurons receiving noxious dural input would be further activated by intense photic stimulation, resulting in the enhancement of migraine pain. However, mechanisms underlying the interactions between dural and photic sensory information in Vc/C1 neurons is unknown. To evaluate the above hypothesis, we studied phosphorylated extracellular signal-regulated kinase (pERK) -immunoreactive (IR) cells in Vc/C1 in dural mustard oil (DMO)-administrated rats. The change in neuronal excitability of Vc/C1 nociceptive neurons receiving input from the dura in DMO rats was examined and tested if those neurons were modulated by intense flush light stimulation. There were many pERK-IR cells in the lateral portion of Vc/C1 after MO administration to the dura. Flashlight presentation to the eye in DMO rats caused an enhancement of ERK phosphorylation in Vc/C1 neurons and pERK-IR cells were significantly suppressed after intracisternal administration of MEK1 inhibitor PD98059. Dura-light sensitive (DL) neurons were recorded in the lateral portion of Vc/C1 and photic responses of DL neurons were significantly enhanced following dural MO administration. These findings indicate that DL Vc/C1 neurons in DMO rats intensified their responses to intense photic stimulation and that ERK phosphorylation in Vc/C1 neurons receiving noxious dural input increased with intense photic stimulation, suggesting that Vc/C1 nociceptive neurons are involved in the enhancement of dural nociception associated with intense light stimulation.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Luz , Transtornos de Enxaqueca/metabolismo , Neurônios/metabolismo , Medula Espinal/metabolismo , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Animais , Masculino , Transtornos de Enxaqueca/patologia , Mostardeira , Nociceptores/metabolismo , Fosforilação , Estimulação Luminosa , Óleos de Plantas/farmacologia , Ratos Sprague-Dawley , Medula Espinal/patologia , Medula Espinal/efeitos da radiação , Núcleo Inferior Caudal do Nervo Trigêmeo/patologia , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos da radiação
18.
J Physiol ; 595(8): 2661-2679, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28105664

RESUMO

KEY POINTS: Voltage-gated sodium channels play a fundamental role in determining neuronal excitability. Specifically, voltage-gated sodium channel subtype NaV 1.7 is required for sensing acute and inflammatory somatic pain in mice and humans but its significance in pain originating from the viscera is unknown. Using comparative behavioural models evoking somatic and visceral pain pathways, we identify the requirement for NaV 1.7 in regulating somatic (noxious heat pain threshold) but not in visceral pain signalling. These results enable us to better understand the mechanisms underlying the transduction of noxious stimuli from the viscera, suggest that the investigation of pain pathways should be undertaken in a modality-specific manner and help to direct drug discovery efforts towards novel visceral analgesics. ABSTRACT: Voltage-gated sodium channel NaV 1.7 is required for acute and inflammatory pain in mice and humans but its significance for visceral pain is unknown. Here we examine the role of NaV 1.7 in visceral pain processing and the development of referred hyperalgesia using a conditional nociceptor-specific NaV 1.7 knockout mouse (NaV 1.7Nav1.8 ) and selective small-molecule NaV 1.7 antagonist PF-5198007. NaV 1.7Nav1.8 mice showed normal nociceptive behaviours in response to intracolonic application of either capsaicin or mustard oil, stimuli known to evoke sustained nociceptor activity and sensitization following tissue damage, respectively. Normal responses following induction of cystitis by cyclophosphamide were also observed in both NaV 1.7Nav1.8 and littermate controls. Loss, or blockade, of NaV 1.7 did not affect afferent responses to noxious mechanical and chemical stimuli in nerve-gut preparations in mouse, or following antagonism of NaV 1.7 in resected human appendix stimulated by noxious distending pressures. However, expression analysis of voltage-gated sodium channel α subunits revealed NaV 1.7 mRNA transcripts in nearly all retrogradely labelled colonic neurons, suggesting redundancy in function. By contrast, using comparative somatic behavioural models we identify that genetic deletion of NaV 1.7 (in NaV 1.8-expressing neurons) regulates noxious heat pain threshold and that this can be recapitulated by the selective NaV 1.7 antagonist PF-5198007. Our data demonstrate that NaV 1.7 (in NaV 1.8-expressing neurons) contributes to defined pain pathways in a modality-dependent manner, modulating somatic noxious heat pain, but is not required for visceral pain processing, and advocate that pharmacological block of NaV 1.7 alone in the viscera may be insufficient in targeting chronic visceral pain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/deficiência , Nociceptores/metabolismo , Dor Visceral/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Capsaicina/toxicidade , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Mostardeira/toxicidade , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor Nociceptiva/induzido quimicamente , Dor Nociceptiva/genética , Dor Nociceptiva/metabolismo , Nociceptores/efeitos dos fármacos , Óleos de Plantas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Dor Visceral/induzido quimicamente , Dor Visceral/genética
19.
Molecules ; 21(7)2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27367653

RESUMO

In this review, we discuss the importance of capsaicin to the current understanding of neuronal modulation of pain and explore the mechanisms of capsaicin-induced pain. We will focus on the analgesic effects of capsaicin and its clinical applicability in treating pain. Furthermore, we will draw attention to the rationale for other clinical therapeutic uses and implications of capsaicin in diseases such as obesity, diabetes, cardiovascular conditions, cancer, airway diseases, itch, gastric, and urological disorders.


Assuntos
Capsaicina/farmacologia , Capsaicina/uso terapêutico , Dor/tratamento farmacológico , Analgésicos/química , Analgésicos/isolamento & purificação , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Capsaicina/química , Capsaicina/isolamento & purificação , Capsicum/química , Estudos Clínicos como Assunto , Composição de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Humanos , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Dor/etiologia , Dor/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA