Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pflugers Arch ; 473(8): 1199-1211, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34075446

RESUMO

Obesogenic diets (ODs) can affect AMPK activation in several sites as the colon, liver, and hypothalamus. OD intake can impair the hypothalamic AMPK regulation of energy homeostasis. Despite consuming ODs, not all subjects have the propensity to develop or progress to obesity. The obesity propensity is more associated with energy intake than expenditure dysregulations and may have a link with AMPK activity. While the effects of ODs are studied widely, few evaluate the short-term effects of terminating OD intake. Withdrawing from OD (WTD) is thought to improve or reverse the damages caused by the intake. Therefore, here we applied an OD intake and WTD protocol aiming to evaluate AMPK protein content and phosphorylation in the colon, liver, and hypothalamus and their relationship with obesity propensity. To this end, male Wistar rats (60 days) received control or high-sugar/high-fat (HSHF) OD for 30 days. Half of the animals were OD-withdrawn and fed the control diet for 48 h. After intake, we found a reduction in AMPK phosphorylation in the hypothalamus and colon, and after WTD, we found an increase in its hepatic and hypothalamic phosphorylation. The decrease in colon pAMPK/AMPK could be linked with hypothalamic pAMPK/AMPK after HSHF intake, while the increase in hepatic pAMPK/AMPK could have prevented the increase in hypothalamic pAMPK/AMPK. In the obesity-prone rats, we found higher levels of hypothalamic and colon pAMPK/AMPK despite the higher body mass gain. Our results highlight the relevance in multi-organ investigations and animal phenotype evaluation when studying the energy metabolism regulations.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Eixo Encéfalo-Intestino , Colo/enzimologia , Hipotálamo/enzimologia , Fígado/enzimologia , Obesidade/enzimologia , Animais , Dieta Hiperlipídica/efeitos adversos , Açúcares da Dieta/efeitos adversos , Masculino , Obesidade/etiologia , Ratos Wistar
2.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916292

RESUMO

Methanolic leaf extracts of four Lauraceae species endemic to Laurisilva forest (Apollonias barbujana, Laurus novocanariensis, Ocotea foetens and Persea indica) were investigated for the first time for their potential to inhibit key enzymes linked to type-2 diabetes (α-amylase, α-glucosidase, aldose reductase) and obesity (pancreatic lipase), and protein glycation. Lauraceae extracts revealed significant inhibitory activities in all assays, altough with different ability between species. In general, P. indica showed the most promissing results. In the protein glycation assay, all analysed extracts displayed a stronger effect than a reference compound: aminoguanidine (AMG). The in vitro anti-diabetic, anti-obesity and anti-glycation activities of analysed extracts showed correlation with their flavonols and flavan-3-ols (in particular, proanthocyanins) contents. These Lauraceae species have the capacity to assist in adjuvant therapy of type-2 diabetes and associated complications, through modulation of the activity of key metabolic enzymes and prevention of advanced glycation end-products (AGEs) formation.


Assuntos
Biomarcadores , Diabetes Mellitus Tipo 2/metabolismo , Glicoproteínas/metabolismo , Hipoglicemiantes/farmacologia , Lauraceae/química , Obesidade/metabolismo , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Aldeído Redutase/antagonistas & inibidores , Aldeído Redutase/química , Animais , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/etiologia , Florestas , Glicosilação , Hipoglicemiantes/química , Redes e Vias Metabólicas , Estrutura Molecular , Obesidade/enzimologia , Obesidade/etiologia , Fenóis/química , Extratos Vegetais/química , Ratos
3.
Diabetes Metab Syndr ; 15(2): 589-594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33714133

RESUMO

BACKGROUND & AIMS: Previous studies have reported the beneficial roles of the activation of calmodulin-dependent protein kinase (CaMK)II to many cellular functions associated with human health. This review aims at discussing its activation by exercise as well as its roles in the regulation of unsaturated, saturated, omega 3 fatty acids, and lipid metabolism. METHODS: A wide literature search was conducted using online database such as 'PubMed', 'Google Scholar', 'Researcher', 'Scopus' and the website of World Health Organization (WHO) as well as Control Disease and Prevention (CDC). The criteria for the search were mainly lipid and fatty acid metabolism, diabetes, and metabolic syndrome (MetS). A total of ninety-seven articles were included in the review. RESULTS: Calmodulin-dependent protein kinase activation by exercise is helpful in controlling membrane lipids related with type 2 diabetes and obesity. CaMKII regulates many health beneficial cellular functions in individuals who exercise compared with those who do not exercise. Regulation of lipid metabolism and fatty acids are crucial in the improvement of metabolic syndrome. CONCLUSIONS: Approaches that involve CaMKII could be a new avenue for designing novel and effective therapeutic modalities in the treatment or better management of metabolic diseases such as type 2 diabetes and obesity.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Exercício Físico/fisiologia , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Músculo Esquelético/enzimologia , Animais , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/terapia , Humanos , Síndrome Metabólica/enzimologia , Síndrome Metabólica/terapia , Obesidade/enzimologia , Obesidade/terapia
4.
Mol Cell ; 81(3): 629-637.e5, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33400924

RESUMO

As a master regulator of metabolism, AMP-activated protein kinase (AMPK) is activated upon energy and glucose shortage but suppressed upon overnutrition. Exaggerated negative regulation of AMPK signaling by nutrient overload plays a crucial role in metabolic diseases. However, the mechanism underlying the negative regulation is poorly understood. Here, we demonstrate that high glucose represses AMPK signaling via MG53 (also called TRIM72) E3-ubiquitin-ligase-mediated AMPKα degradation and deactivation. Specifically, high-glucose-stimulated reactive oxygen species (ROS) signals AKT to phosphorylate AMPKα at S485/491, which facilitates the recruitment of MG53 and the subsequent ubiquitination and degradation of AMPKα. In addition, high glucose deactivates AMPK by ROS-dependent suppression of phosphorylation of AMPKα at T172. These findings not only delineate the mechanism underlying the impairment of AMPK signaling in overnutrition-related diseases but also highlight the significance of keeping the yin-yang balance of AMPK signaling in the maintenance of metabolic homeostasis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus/enzimologia , Glucose/farmacologia , Proteínas de Membrana/metabolismo , Músculo Esquelético/efeitos dos fármacos , Obesidade/enzimologia , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/genética , Animais , Glicemia/metabolismo , Diabetes Mellitus/sangue , Diabetes Mellitus/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Macaca mulatta , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Músculo Esquelético/enzimologia , Obesidade/sangue , Obesidade/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Ubiquitinação
5.
Life Sci ; 258: 118204, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763296

RESUMO

AIMS: Liver kinase B1 (LKB1) is a serine/threonine kinase. Although many biological functions of LKB1 have been identified, the role of hypothalamic LKB1 in the regulation of central energy metabolism and susceptibility to obesity is unknown. Therefore, we constructed POMC neuron-specific LKB1 knockout mice (PomcLkb1 KO) and studied it at the physiological, morphological, and molecular biology levels. MAIN METHODS: Eight-week-old male PomcLkb1 KO mice and their littermates were fed a standard chow fat diet (CFD) or a high-fat diet (HFD) for 3 months. Body weight and food intake were monitored. Dual-energy X-ray absorptiometry was used to measure the fat mass and lean mass. Glucose and insulin tolerance tests and serum biochemical markers were evaluated in the experimental mice. In addition, the levels of peripheral lipogenesis genes and central energy metabolism were measured. KEY FINDINGS: PomcLkb1 KO mice did not exhibit impairments under normal physiological conditions. After HFD intervention, the metabolic phenotype of the PomcLkb1 KO mice changed, manifesting as increased food intake and an enhanced obesity phenotype. More seriously, PomcLkb1 KO mice showed increased leptin resistance, worsened hypothalamic inflammation and reduced POMC neuronal expression. SIGNIFICANCE: We provide evidence that LKB1 in POMC neurons plays a significant role in regulating energy homeostasis. LKB1 in POMC neurons emerges as a target for therapeutic intervention against HFD-induced obesity and metabolic diseases.


Assuntos
Deleção de Genes , Neurônios/enzimologia , Obesidade/enzimologia , Pró-Opiomelanocortina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Tecido Adiposo/patologia , Animais , Dieta Hiperlipídica , Epididimo/patologia , Comportamento Alimentar , Regulação da Expressão Gênica , Glucose/metabolismo , Hipotálamo/patologia , Inflamação/patologia , Leptina/metabolismo , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Obesidade/sangue , Obesidade/patologia , Pró-Opiomelanocortina/genética , Aumento de Peso
6.
Proc Natl Acad Sci U S A ; 117(5): 2462-2472, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953260

RESUMO

Preadipocytes can give rise to either white adipocytes or beige adipocytes. Owing to their distinct abilities in nutrient storage and energy expenditure, strategies that specifically promote "beiging" of adipocytes hold great promise for counterbalancing obesity and metabolic diseases. Yet, factors dictating the differentiation fate of adipocyte progenitors remain to be elucidated. We found that stearoyl-coenzyme A desaturase 1 (Scd1)-deficient mice, which resist metabolic stress, possess augmentation in beige adipocytes under basal conditions. Deletion of Scd1 in mature adipocytes expressing Fabp4 or Ucp1 did not affect thermogenesis in mice. Rather, Scd1 deficiency shifted the differentiation fate of preadipocytes from white adipogenesis to beige adipogenesis. Such effects are dependent on succinate accumulation in adipocyte progenitors, which fuels mitochondrial complex II activity. Suppression of mitochondrial complex II by Atpenin A5 or oxaloacetic acid reverted the differentiation potential of Scd1-deficient preadipocytes to white adipocytes. Furthermore, supplementation of succinate was found to increase beige adipocyte differentiation both in vitro and in vivo. Our data reveal an unappreciated role of Scd1 in determining the cell fate of adipocyte progenitors through succinate-dependent regulation of mitochondrial complex II.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Gorduras/metabolismo , Obesidade/enzimologia , Estearoil-CoA Dessaturase/genética , Ácido Succínico/metabolismo , Adipócitos Bege/citologia , Adipócitos Bege/metabolismo , Adipogenia , Animais , Metabolismo Energético , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Estearoil-CoA Dessaturase/metabolismo , Termogênese
7.
Front Endocrinol (Lausanne) ; 11: 622581, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33633690

RESUMO

Rho-kinase 1 (ROCK1) has been implicated in diverse metabolic functions throughout the body, with promising evidence identifying ROCK1 as a therapeutic target in diabetes and obesity. Considering these metabolic roles, several pharmacological inhibitors have been developed to elucidate the mechanisms underlying ROCK1 function. Y27632 and fasudil are two common ROCK1 inhibitors; however, they have varying non-specific selectivity to inhibit other AGC kinase subfamily members and whole-body pharmacological approaches lack tissue-specific insight. As a result, interpretation of studies with these inhibitors is difficult, and alternative approaches are needed to elucidate ROCK1's tissue specific metabolic functions. Fortunately, recent technological advances utilizing molecular carriers or genetic manipulation have facilitated discovery of ROCK1's tissue-specific mechanisms of action. In this article, we review the tissue-specific roles of ROCK1 in the regulation of energy balance and substrate utilization. We highlight prominent metabolic roles in liver, adipose, and skeletal muscle, in which ROCK1 regulates energy expenditure, glucose uptake, and lipid metabolism via inhibition of AMPK2α and paradoxical modulation of insulin signaling. Compared to ROCK1's roles in peripheral tissues, we also describe contradictory functions of ROCK1 in the hypothalamus to increase energy expenditure and decrease food intake via leptin signaling. Furthermore, dysregulated ROCK1 activity in either of these tissues results in metabolic disease phenotypes. Overall, tissue-specific approaches have made great strides in deciphering the many critical metabolic functions of ROCK1 and, ultimately, may facilitate the development of novel treatments for metabolic disorders.


Assuntos
Tecido Adiposo/enzimologia , Hipotálamo/enzimologia , Fígado/enzimologia , Doenças Metabólicas/enzimologia , Músculo Esquelético/enzimologia , Quinases Associadas a rho/metabolismo , Tecido Adiposo/patologia , Animais , Metabolismo Energético/fisiologia , Humanos , Hipotálamo/patologia , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Fígado/patologia , Doenças Metabólicas/patologia , Músculo Esquelético/patologia , Obesidade/enzimologia , Obesidade/patologia
8.
Cardiovasc Res ; 116(10): 1767-1778, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31800011

RESUMO

AIMS: Physical activity is one of the most potent strategies to prevent endothelial dysfunction. Recent evidence suggests vaso-protective properties of hydrogen peroxide (H2O2) produced by main endothelial NADPH oxidase isoform 4 (Nox4) in the vasculature. Therefore, we hypothesized that Nox4 connects physical activity with vaso-protective effects. METHODS AND RESULTS: Analysis of the endothelial function using Mulvany Myograph showed endothelial dysfunction in wild-type (WT) as well as in C57BL/6J/ Nox4-/- (Nox4-/-) mice after 20 weeks on high-fat diet (HFD). Access to running wheels during the HFD prevented endothelial dysfunction in WT but not in Nox4-/- mice. Mechanistically, exercise led to an increased H2O2 release in the aorta of WT mice with increased phosphorylation of eNOS pathway member AKT serine/threonine kinase 1 (AKT1). Both H2O2 release and phosphorylation of AKT1 were diminished in aortas of Nox4-/- mice. Deletion of Nox4 also resulted in lower intracellular calcium release proven by reduced phenylephrine-mediated contraction, whilst potassium-induced contraction was not affected. H2O2 scavenger catalase reduced phenylephrine-induced contraction in WT mice. Supplementing H2O2 increased phenylephrine-induced contraction in Nox4-/- mice. Exercise-induced peroxisome proliferative-activated receptor gamma, coactivator 1 alpha (Ppargc1a), as key regulator of mitochondria biogenesis in WT but not Nox4-/- mice. Furthermore, exercise-induced citrate synthase activity and mitochondria mass were reduced in the absence of Nox4. Thus, Nox4-/- mice became less active and ran less compared with WT mice. CONCLUSIONS: Nox4 derived H2O2 plays a key role in exercise-induced adaptations of eNOS and Ppargc1a pathway and intracellular calcium release. Hence, loss of Nox4 diminished physical activity performance and vascular protective effects of exercise.


Assuntos
Endotélio Vascular/enzimologia , Peróxido de Hidrogênio/metabolismo , NADPH Oxidase 4/metabolismo , Obesidade/terapia , Condicionamento Físico Animal , Doenças Vasculares/prevenção & controle , Vasoconstrição , Animais , Modelos Animais de Doenças , Endotélio Vascular/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/enzimologia , Mitocôndrias/patologia , NADPH Oxidase 4/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/enzimologia , Obesidade/genética , Obesidade/fisiopatologia , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Corrida , Transdução de Sinais , Doenças Vasculares/enzimologia , Doenças Vasculares/genética , Doenças Vasculares/fisiopatologia
9.
Nutrients ; 11(10)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618980

RESUMO

Gynostemma pentaphyllum is widely used in Asia as a herbal medicine to treat type 2 diabetes, dyslipidemia, and inflammation. Here, we investigated the anti-obesity effect and underlying mechanism of G. pentaphyllum extract (GPE) enriched in gypenoside L, gypenoside LI, and ginsenoside Rg3 and obtained using a novel extraction method. Five-week-old male C57BL/6N mice were fed a control diet (CD), high-fat diet (HFD), HFD + 100 mg/kg body weight (BW)/day GPE (GPE 100), HFD + 300 mg/kg BW/day GPE (GPE 300), or HFD + 30 mg/kg BW/day Orlistat (Orlistat 30) for 8 weeks. The HFD-fed mice showed significant increases in body weight, fat mass, white adipose tissue, and adipocyte hypertrophy compared to the CD group; but GPE inhibited those increases. GPE reduced serum levels of triglyceride, total cholesterol, and LDL-cholesterol, without affecting HDL-cholesterol. GPE significantly increased AMPK activation and suppressed adipogenesis by decreasing the mRNA expression of CCAAT/enhancer binding protein-α (C/EBPα), peroxisome proliferator-activated receptor-γ (PPARγ), sterol regulatory element-binding protein-1c (SREBP1c), PPARγ coactivator-1α, fatty acid synthase (FAS), adipocyte protein 2 (AP2), and sirtuin 1 (SIRT1) and by increasing that of carnitine palmitoyltransferase (CPT1) and hormone- sensitive lipase (HSL). This study demonstrated the ameliorative effect of GPE on obesity and elucidated the underlying molecular mechanism.


Assuntos
Adipogenia/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica , Gynostemma/química , Obesidade/prevenção & controle , Extratos Vegetais/farmacologia , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/fisiopatologia , Adiposidade/efeitos dos fármacos , Animais , Fármacos Antiobesidade/isolamento & purificação , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Modelos Animais de Doenças , Lipídeos/sangue , Masculino , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/enzimologia , Obesidade/fisiopatologia , Oxirredução , Extratos Vegetais/isolamento & purificação , Transdução de Sinais , Regulação para Cima , Aumento de Peso/efeitos dos fármacos
10.
Nutrients ; 11(9)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443565

RESUMO

Obesity is a global health threat. Herein, we evaluated the underlying mechanism of anti-obese features of bitter orange (Citrus aurantium Linné, CA). Eight-week-administration of CA in high fat diet-induced obese C57BL/6 mice resulted in a significant decrease of body weight, adipose tissue weight and serum cholesterol. In further in vitro studies, we observed decreased lipid droplets in CA-treated 3T3-L1 adipocytes. Suppressed peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha indicated CA-inhibited adipogenesis. Moreover, CA-treated primary cultured brown adipocytes displayed increased differentiation associated with elevation of thermogenic factors including uncoupling protein 1 and PPARγ coactivator 1 alpha as well. The effects of CA in both adipocytes were abolished in AMP-activated protein kinase alpha (AMPKα)-suppressed environments, suggesting the anti-adipogenic and pro-thermogenic actions of CA were dependent on AMPKα pathway. In conclusion, our results suggest CA as a potential anti-obese agent which regulates adipogenesis and thermogenesis via AMPKα.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Citrus , Dieta Hiperlipídica , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Termogênese/efeitos dos fármacos , Células 3T3-L1 , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/enzimologia , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/enzimologia , Tecido Adiposo/enzimologia , Tecido Adiposo/fisiopatologia , Animais , Fármacos Antiobesidade/isolamento & purificação , Citrus/química , Modelos Animais de Doenças , Ativação Enzimática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/enzimologia , Obesidade/fisiopatologia , Extratos Vegetais/isolamento & purificação , Transdução de Sinais
11.
Nutrients ; 11(7)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340540

RESUMO

Selenium, an essential trace element known mainly for its antioxidant properties, is critical for proper brain function and regulation of energy metabolism. Whole-body knockout of the selenium recycling enzyme, selenocysteine lyase (Scly), increases susceptibility to metabolic syndrome and diet-induced obesity in mice. Scly knockout mice also have decreased selenoprotein expression levels in the hypothalamus, a key regulator of energy homeostasis. This study investigated the role of selenium in whole-body metabolism regulation using a mouse model with hypothalamic knockout of Scly. Agouti-related peptide (Agrp) promoter-driven Scly knockout resulted in reduced weight gain and adiposity while on a high-fat diet (HFD). Scly-Agrp knockout mice had reduced Agrp expression in the hypothalamus, as measured by Western blot and immunohistochemistry (IHC). IHC also revealed that while control mice developed HFD-induced leptin resistance in the arcuate nucleus, Scly-Agrp knockout mice maintained leptin sensitivity. Brown adipose tissue from Scly-Agrp knockout mice had reduced lipid deposition and increased expression of the thermogenic marker uncoupled protein-1. This study sheds light on the important role of selenium utilization in energy homeostasis, provides new information on the interplay between the central nervous system and whole-body metabolism, and may help identify key targets of interest for therapeutic treatment of metabolic disorders.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Dieta Hiperlipídica , Hipotálamo/enzimologia , Leptina/metabolismo , Liases/deficiência , Neurônios/metabolismo , Obesidade/prevenção & controle , Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Marrom/fisiopatologia , Adiposidade , Animais , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Hipotálamo/fisiopatologia , Liases/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/enzimologia , Obesidade/genética , Obesidade/fisiopatologia , Transdução de Sinais , Proteína Desacopladora 1/metabolismo , Aumento de Peso
12.
Diabetes Obes Metab ; 21(10): 2228-2239, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144422

RESUMO

AIMS: Enteropeptidase is a serine protease localized on the duodenal brush border that catalyzes the conversion of inactive trypsinogen into active trypsin, thereby regulating protein breakdown in the gut. We evaluated the effects of SCO-792, a novel enteropeptidase inhibitor, in mice. MATERIALS AND METHODS: In vivo inhibition of enteropeptidase was evaluated via an oral protein challenge. Pharmacological effects were evaluated in normal mice, in diet-induced obese (DIO) mice and in obese and diabetic ob/ob mice. RESULTS: A single oral administration of SCO-792 inhibited plasma branched-chain amino acids (BCAAs) in an oral protein challenge test in mice, indicating in vivo inhibition of enteropeptidase. Repeated treatment with SCO-792 induced reduction in food intake and decrease in body weight in DIO and ob/ob mice. Plasma FGF21 levels were increased in SCO-792-treated DIO mice, an observation that was probably independent of reduction in food intake. Hyperglycaemia was markedly improved in SCO-792-treated ob/ob mice. A hyperinsulinaemic-euglycaemic clamp study revealed improved muscle insulin sensitivity in SCO-792-treated ob/ob mice. SCO-792 also improved plasma and liver lipid profiles and decreased plasma alanine transaminase, suggesting a potential treatment for liver diseases. Dietary supplementation with essential amino acids attenuated the effect of SCO-792 on reduction in food intake and decrease in body weight in normal mice, suggesting a pivotal role for enteropeptidase in these biological phenomena. CONCLUSIONS: SCO-792 inhibited enteropeptidase in vivo, reduced food intake, decreased body weight, increased insulin sensitivity, improved glucose and lipid control, and ameliorated liver parameters in mouse models with obesity and/or diabetes. SCO-792 may exhibit similar effects in patients.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Enteropeptidase/antagonistas & inibidores , Obesidade/tratamento farmacológico , Inibidores de Serina Proteinase/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacologia , Benzofuranos/farmacologia , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/enzimologia , Obesidade/metabolismo
13.
J Bone Miner Res ; 34(6): 1068-1073, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30790351

RESUMO

Normal vitamin D homeostasis is critical for optimal health; nevertheless, vitamin D deficiency is a worldwide public health problem. Vitamin D insufficiency is most commonly due to inadequate cutaneous synthesis of cholecalciferol and/or insufficient intake of vitamin D, but can also arise as a consequence of pathological states such as obesity. Serum concentrations of 25(OH)D (calcidiol) are low in obesity, and fail to increase appropriately after vitamin D supplementation. Although sequestration of vitamin D in adipose tissues or dilution of ingested or cutaneously synthesized vitamin D in the large fat mass of obese patients has been proposed to explain these findings, here we investigate the alternative mechanism that reduced capacity to convert parent vitamin D to 25(OH)D due to decreased expression of CYP2R1, the principal hepatic vitamin D 25-hydroxylase. To test this hypothesis, we isolated livers from female mice of 6 to 24 weeks of age, weaned onto either a normal chow diet or a high-fat diet, and determined the abundance of Cyp2r1 mRNA using digital droplet-quantitative PCR. We observed a significant (p < 0.001) decrease in Cyp2r1 mRNA in the liver of high-fat diet-fed mice relative to lean-chow-fed female mice. Moreover, there was a significant (p < 0.01) relationship between levels of Cyp2r1 mRNA and serum 25(OH)D concentrations as well as between Cyp2R1 mRNA and the ratio of circulating 25(OH)D3 to cholecalciferol (p < 0.0001). Using linear regression we determined a curve with 25(OH)D3/cholecalciferol versus normalized Cyp2R1 mRNA abundance with an R2 value of 0.85. Finally, we performed ex vivo activity assays of isolated livers and found that obese mice generated significantly less 25(OH)D3 than lean mice (p < 0.05). Our findings indicate that expression of CYP2R1 is reduced in obesity and accounts in part for the decreased circulating 25(OH)D. © 2019 American Society for Bone and Mineral Research.


Assuntos
Colestanotriol 26-Mono-Oxigenase/metabolismo , Fígado/enzimologia , Obesidade/sangue , Obesidade/patologia , Vitamina D/análogos & derivados , Animais , Peso Corporal/efeitos dos fármacos , Calcifediol/farmacologia , Colecalciferol/sangue , Colestanotriol 26-Mono-Oxigenase/genética , Dieta Hiperlipídica , Feminino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Magreza/sangue , Vitamina D/sangue
14.
Arch Physiol Biochem ; 125(5): 423-429, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29898610

RESUMO

Objective: To evaluate the effect of the administration of phytoestrogens on obesity, type 2 diabetes, and liver-kidney toxicity. Methods: Phytoestrogens (phyto(E2)) were administrated to high fructose-fat diet (HFFD). Results: This study showed that administration of phyto(E2) to HFFD-mice inhibited lipase activity by 34%, decreased body weight by 20% and modulated lipid profile, showed a decrease in total-cholesterol (TC) and LDL-cholesterol (LDL-C) rates in the plasma by 59% and 42%, respectively, and increased the HDL-cholesterol (HDL-C) level by 31%. In addition, the administration of phytoestrogens to HFFD-mice exerts an inhibitory effect on α-amylase activity and decreased glucose level by 28% and increase in liver glycogen level by 33%; and ameliorate oral glucose tolerance test. Conclusions: This study demonstrate that phyto(E2) has both a promising potential with regards to the inhibition of intestinal lipase and α-amylase activities, and a valuable hypoglycemic and hypolipidemic function.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Dieta Hiperlipídica/efeitos adversos , Frutose/efeitos adversos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Obesidade/enzimologia , Fitoestrógenos/farmacologia , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glicogênio/metabolismo , Rim/enzimologia , Rim/metabolismo , Rim/fisiopatologia , Lipase/antagonistas & inibidores , Lipídeos/sangue , Fígado/enzimologia , Fígado/metabolismo , Fígado/fisiopatologia , Masculino , Camundongos
15.
Food Chem Toxicol ; 123: 443-452, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30408537

RESUMO

Rubus grandifolius Lowe (wild blackberries) is an endemic species from Madeira Archipelago (Portugal) used in folk medicine for alleviating diabetic complications. In this work, R. grandifolius methanolic extracts were analysed for in vitro inhibitory effect on digestive enzymes linked to type-2 diabetes, as well as aldose reductase activity and protein glycation. The phenolic composition, antioxidant and cytotoxic activities were also determined. Methanolic extracts exhibited strong inhibition of glucosidases (α- and ß), but were less potent for α-amylase and pancreatic lipase when compared to current pharmaceutical drugs. The total phenolic content determined by HPLC-DAD varied between 92.96 - 97.47 and 118.01-137.41 mg g-1 of dry extract for berries and leaves, respectively. Fifty polyphenols were quantified, anthocyanins and ellagitannins being the main compounds. Cyanidin-3-glucoside was identified as one of the main hypoglycaemic and hypolipidemic agents in all extracts. R. grandifolius also prevented glycation of bovine-serum albumin (BSA) and showed strong radical scavenging activity against tested free radicals. At low concentration, the extracts were not cytotoxic against Caco-2 cells. Based on the results of this study, wild blackberry extracts demonstrated a potential beneficial effect on the control/management of type-2 diabetes mellitus, validating their use in folk medicine.


Assuntos
Fármacos Antiobesidade/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Rubus/química , Fármacos Antiobesidade/química , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Avaliação Pré-Clínica de Medicamentos , Flavonoides/química , Flavonoides/farmacologia , Frutas/química , Humanos , Hipoglicemiantes/química , Obesidade/enzimologia , Obesidade/metabolismo , Extratos Vegetais/química , Polifenóis/química , Polifenóis/farmacologia , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo
16.
Prog Lipid Res ; 73: 28-45, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472260

RESUMO

12/15-lipoxygenase (12/15-LOX) is an enzyme, which oxidizes polyunsaturated fatty acids, particularly omega-6 and -3 fatty acids, to generate a number of bioactive lipid metabolites. A large number of studies have revealed the importance of 12/15-LOX role in oxidative and inflammatory responses. The in vitro studies have demonstrated the ability of 12/15-LOX metabolites in the expression of various genes and production of cytokine related to inflammation and resolution of inflammation. The studies with the use of knockout and transgenic animals for 12/15-LOX have further shown its involvement in the pathogenesis of a variety of human diseases, including cardiovascular, renal, neurological and metabolic disorders. This review summarizes our current knowledge on the role of 12/15-LOX in inflammation and various human diseases.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Inflamação/enzimologia , Animais , Animais Geneticamente Modificados , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Complicações do Diabetes/enzimologia , Complicações do Diabetes/patologia , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Humanos , Inflamação/patologia , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/patologia , Obesidade/enzimologia , Obesidade/patologia , Doenças Vasculares/enzimologia , Doenças Vasculares/patologia
17.
Food Funct ; 9(12): 6165-6178, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30431036

RESUMO

The prevalence of metabolic syndrome components, such as obesity, glucose intolerance and hepatic steatosis, is rapidly increasing and becoming a major issue of public health. The present work was designed to determine the effects of Spirulina platensis (Sp) algae and silicon-enriched Sp on major metabolic syndrome components in obesogenic diet-fed rats. Forty male Wistar rats were divided into 4 groups. Ten rats were fed a control diet and 30 rats were fed a high fat (HF) diet. The HF groups were divided into three groups and supplemented with placebo or Sp or Si-enriched Sp for 12 weeks. Dietary intake and body weight were recorded. Oral glucose tolerance test and surrogate metabolic syndrome (insulin, leptin, adiponectin and lipids), mitochondrial function (enzymatic activity of respiratory chain complexes and ß-hydroxyacyl-CoA dehydrogenase), NADPH oxidase activity and several long-established oxidative stress markers were measured in the blood and liver. The HF diet induced obesity, glucose intolerance, hepatic steatosis and huge metabolic alterations, associated with higher NADPH oxidase activity and lower hepatic sulfhydryl group and glutathione contents. Otherwise, the Sp and Sp + Si supplements showed some interesting effects on rat characteristics and particularly on blood and hepatic metabolic parameters. Indeed, the intake of Sp or Sp + Si mainly improved glucose tolerance and decreased the enzymatic activity of hepatic NADPH oxidase. Overall, Si supplementation of spirulina does not appear to have more beneficial effects than spirulina alone. Other experiments with different species of rats/mice, different diets or different durations of diet intake should be undertaken to confirm or invalidate these results.


Assuntos
Glucose/metabolismo , Fígado/enzimologia , NADPH Oxidases/metabolismo , Obesidade/dietoterapia , Silício/metabolismo , Spirulina/metabolismo , Animais , Teste de Tolerância a Glucose , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , NADPH Oxidases/genética , Obesidade/enzimologia , Obesidade/genética , Obesidade/metabolismo , Ratos , Ratos Wistar , Silício/análise , Spirulina/química
18.
Cell Rep ; 25(4): 934-946.e5, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30355499

RESUMO

Obesity-associated metabolic alterations are closely linked to low-grade inflammation in peripheral organs, in which macrophages play a central role. Using genetic labeling of myeloid lineage cells, we show that hypothalamic macrophages normally reside in the perivascular area and circumventricular organ median eminence. Chronic consumption of a high-fat diet (HFD) induces expansion of the monocyte-derived macrophage pool in the hypothalamic arcuate nucleus (ARC), which is significantly attributed to enhanced proliferation of macrophages. Notably, inducible nitric oxide synthase (iNOS) is robustly activated in ARC macrophages of HFD-fed obese mice. Hypothalamic macrophage iNOS inhibition completely abrogates macrophage accumulation and activation, proinflammatory cytokine overproduction, reactive astrogliosis, blood-brain-barrier permeability, and lipid accumulation in the ARC of obese mice. Moreover, central iNOS inhibition improves obesity-induced alterations in systemic glucose metabolism without affecting adiposity. Our findings suggest a critical role for hypothalamic macrophage-expressed iNOS in hypothalamic inflammation and abnormal glucose metabolism in cases of overnutrition-induced obesity.


Assuntos
Hipotálamo/patologia , Inflamação/enzimologia , Macrófagos/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Obesidade/enzimologia , Animais , Núcleo Arqueado do Hipotálamo/patologia , Barreira Hematoencefálica/patologia , Proliferação de Células , Dieta Hiperlipídica , Glucose/metabolismo , Inflamação/patologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Obesidade/patologia , Células RAW 264.7
19.
J Biochem Mol Toxicol ; 32(12): e22223, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30273962

RESUMO

Recently, antiobesity studies using the method of inhibiting enzymatic activity of obesity-related enzymes as targets have received considerable attention. The aims of the current study were to investigate whether p-hydroxybenzyl alcohol (HBA), identified from Cudrania tricuspidata fruits with antiobesity effects, inhibits the activity of digestive and obesity-related enzymes and acts as an inhibitor against four target enzymes in kinetic studies. In vitro enzyme assays showed HBA at the highest concentration significantly reduced the enzymatic activity of four targets: pancreatic lipase (IC50 = 2.34-3.70 µM), α-glycosidase (IC50 = 9.08 µM), phosphodiesterase IV (IC50 = 4.99 µM), and citrate synthase (IC50 = 2.07 µM) enzymes. Based on the results of kinetic assays, the types of inhibition were investigated. Our findings indicate that HBA could have antiobesity efficacy, and it deserves further study.


Assuntos
Fármacos Antiobesidade/farmacologia , Álcoois Benzílicos/farmacologia , Citrato (si)-Sintase/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Lipase/antagonistas & inibidores , Obesidade/enzimologia , alfa-Glucosidases/efeitos dos fármacos , Animais , Humanos , Concentração Inibidora 50 , Cinética , Moraceae/química , Extratos Vegetais/farmacologia , Suínos
20.
Nutrients ; 10(9)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200432

RESUMO

Lemon verbena (Lippia citriodora) has been used as a food spice, cosmetic, and in traditional medicine formulations to treat asthma and diabetes in South America and Southern Europe. Hibiscus flower (Hibiscus sabdariffa L.) is used in traditional Chinese medicine in the form of a tea to treat hypertension and inflammation. In the present study, we examined the synergistic effects of a formula of Metabolaid® (MetA), a combination of lemon verbena and hibiscus-flower extracts, on obesity and its complications in high-fat-diet (HFD)-induced obese mice. The results showed that MetA decreased body weight, white adipose tissue (WAT), and liver weight. Additionally, serum and hepatic lipid profiles, glucose levels, glucose tolerance, and cold-induced thermogenesis were significantly improved. Appetite-regulating hormones adiponectin and leptin were significantly increased and decreased, respectively, while the inflammatory-related factors tumor necrosis factor (TNF)-α and interleukin (IL)-6 were downregulated by MetA. Adipogenesis-activating gene expression was decreased, while increased thermogenesis-inducing genes were upregulated in the WAT, correlating with increased phosphorylation of AMPK and fatty-acid oxidation in the liver. Taken together, these results suggest that MetA decreased obesity and its complications in HFD mice. Therefore, this formula may be a candidate for the prevention and treatment of obesity and its complications.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica , Ativadores de Enzimas/farmacologia , Hibiscus , Lippia , Obesidade/prevenção & controle , Extratos Vegetais/farmacologia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/fisiopatologia , Adiposidade/efeitos dos fármacos , Animais , Fármacos Antiobesidade/isolamento & purificação , Biomarcadores/sangue , Modelos Animais de Doenças , Ativação Enzimática , Ativadores de Enzimas/isolamento & purificação , Flores , Hibiscus/química , Lippia/química , Masculino , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/enzimologia , Obesidade/fisiopatologia , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Transdução de Sinais/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Verbena/química , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA