Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Biomater Sci ; 12(9): 2292-2301, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38498328

RESUMO

Colorectal cancer (CRC) ranks among the most prevalent cancers globally, demanding innovative therapeutic strategies. Immunotherapy, a promising avenue, employs cancer vaccines to activate the immune system against tumors. However, conventional approaches fall short of eliciting robust responses within the gastrointestinal (GI) tract, where CRC originates. Harnessing the potential of all-trans retinoic acid (ATRA) and cytosine-phosphorothioate-guanine (CpG), we developed layered nanoparticles using a layer-by-layer assembly method to co-deliver these agents. ATRA, crucial for gut immunity, was efficiently encapsulated alongside CpG within these nanoparticles. Administering these ATRA@CpG-NPs, combined with ovalbumin peptide (OVA), effectively inhibited orthotopic CRC growth in mice. Our approach leveraged the inherent benefits of ATRA and CpG, demonstrating superior efficacy in activating dendritic cells, imprinting T cells with gut-homing receptors, and inhibiting tumor growth. This mucosal adjuvant presents a promising strategy for CRC immunotherapy, showcasing the potential for targeting gut-associated immune responses in combating colorectal malignancies.


Assuntos
Neoplasias Colorretais , Fosfatos de Dinucleosídeos , Nanopartículas , Tretinoína , Animais , Feminino , Humanos , Camundongos , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Imunoterapia/métodos , Nanopartículas em Multicamadas , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas/química , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/farmacologia , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Tretinoína/administração & dosagem , Tretinoína/farmacologia
2.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884745

RESUMO

Aptamers offer a great opportunity to develop innovative drug delivery systems that can deliver cargos specifically into targeted cells. In this study, a chimera consisting of two aptamers was developed to deliver doxorubicin into cancer cells and release the drug in cytoplasm in response to adenosine-5'-triphosphate (ATP) binding. The chimera was composed of the AS1411 anti-nucleolin aptamer for cancer cell targeting and the ATP aptamer for loading and triggering the release of doxorubicin in cells. The chimera was first produced by hybridizing the ATP aptamer with its complementary DNA sequence, which is linked with the AS1411 aptamer via a poly-thymine linker. Doxorubicin was then loaded inside the hybridized DNA region of the chimera. Our results show that the AS1411-ATP aptamer chimera was able to release loaded doxorubicin in cells in response to ATP. In addition, selective uptake of the chimera into cancer cells was demonstrated using flow cytometry. Furthermore, confocal laser scanning microscopy showed the successful delivery of the doxorubicin loaded in chimeras to the nuclei of targeted cells. Moreover, the doxorubicin-loaded chimeras effectively inhibited the growth of cancer cell lines and reduced the cytotoxic effect on the normal cells. Overall, the results of this study show that the AS1411-ATP aptamer chimera could be used as an innovative approach for the selective delivery of doxorubicin to cancer cells, which may improve the therapeutic potency and decrease the off-target cytotoxicity of doxorubicin.


Assuntos
Aptâmeros de Nucleotídeos , Doxorrubicina , Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Trifosfato de Adenosina/metabolismo , Aptâmeros de Nucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos/sangue , Aptâmeros de Nucleotídeos/genética , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Estabilidade de Medicamentos , Técnicas In Vitro , Células MCF-7 , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/sangue , Oligodesoxirribonucleotídeos/genética , Fosfoproteínas/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Nucleolina
3.
Curr Opin Allergy Clin Immunol ; 21(6): 569-575, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34387280

RESUMO

PURPOSE OF REVIEW: Molecular forms of allergen-specific immunotherapy (AIT) are continuously emerging to improve the efficacy of the treatment, to shorten the duration of protocols and to prevent any side effects. The present review covers the recent progress in the development of AIT based on nucleic acid encoding allergens or CpG oligodeoxynucleotides (CpG-ODN). RECENT FINDINGS: Therapeutic vaccinations with plasmid deoxyribonucleic acid (DNA) encoding major shrimp Met e 1 or insect For t 2 allergen were effective for the treatment of food or insect bite allergy in respective animal models. DNA expressing hypoallergenic shrimp tropomyosin activated Foxp3+ T regulatory (Treg) cells whereas DNA encoding For t 2 down-regulated the expression of pruritus-inducing IL-31. Co-administrations of major cat allergen Fel d 1 with high doses of CpG-ODN reduced Th2 airway inflammation through tolerance induction mediated by GATA3+ Foxp3hi Treg cells as well as early anti-inflammatory TNF/TNFR2 signaling cascade. Non-canonical CpG-ODN derived from Cryptococcus neoformans as well as methylated CpG sites present in the genomic DNA from Bifidobacterium infantis mediated Th1 or Treg cell differentiation respectively. SUMMARY: Recent studies on plasmid DNA encoding allergens evidenced their therapeutic potential for the treatment of food allergy and atopic dermatitis. Unmethylated or methylated CpG-ODNs were shown to activate dose-dependent Treg/Th1 responses. Large clinical trials need to be conducted to confirm these promising preclinical data. Moreover, tremendous success of messenger ribonucleic acid (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 must encourage as well the re-exploration of mRNA vaccine platform for innovative AIT.


Assuntos
Dessensibilização Imunológica/métodos , Hipersensibilidade Imediata/terapia , Oligodesoxirribonucleotídeos/administração & dosagem , Vacinas de DNA/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Alérgenos/administração & dosagem , Alérgenos/genética , Alérgenos/imunologia , Animais , Ensaios Clínicos como Assunto , Dessensibilização Imunológica/tendências , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipersensibilidade Imediata/imunologia , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/imunologia , Plasmídeos/administração & dosagem , Plasmídeos/genética , Plasmídeos/imunologia , Resultado do Tratamento , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de mRNA
4.
Mol Ther ; 29(2): 838-847, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33290725

RESUMO

We recently reported the antisense properties of a DNA/RNA heteroduplex oligonucleotide consisting of a phosphorothioate DNA-gapmer antisense oligonucleotide (ASO) strand and its complementary phosphodiester RNA/phosphorothioate 2'-O-methyl RNA strand. When α-tocopherol was conjugated with the complementary strand, the heteroduplex oligonucleotide silenced the target RNA more efficiently in vivo than did the parent single-stranded ASO. In this study, we designed a new type of the heteroduplex oligonucleotide, in which the RNA portion of the complementary strand was replaced with phosphodiester DNA, yielding an ASO/DNA double-stranded structure. The ASO/DNA heteroduplex oligonucleotide showed similar activity and liver accumulation as did the original ASO/RNA design. Structure-activity relationship studies of the complementary DNA showed that optimal increases in the potency and the accumulation were seen when the flanks of the phosphodiester DNA complement were protected using 2'-O-methyl RNA and phosphorothioate modifications. Furthermore, evaluation of the degradation kinetics of the complementary strands revealed that the DNA-complementary strand as well as the RNA strand were completely cleaved in vivo. Our results expand the repertoire of chemical modifications that can be used with the heteroduplex oligonucleotide technology, providing greater design flexibility for future therapeutic applications.


Assuntos
DNA/genética , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Oligodesoxirribonucleotídeos/genética , Células Cultivadas , DNA/administração & dosagem , Inativação Gênica , Oligodesoxirribonucleotídeos/administração & dosagem , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética
5.
Int J Nanomedicine ; 15: 9571-9586, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33293808

RESUMO

BACKGROUND: Previously, we demonstrated the therapeutic efficacy of a human papillomavirus (HPV) vaccine, including HPV16 E7 peptide and CpG oligodeoxynucleotides (CpG ODN), against small TC-1 grafted tumors. Here, we developed an HPV16 E7 peptide and CpG ODN vaccine delivered using liposomes modified with DC-targeting mannose, Lip E7/CpG, and determined its anti-tumor effects and influence on systemic immune responses and the tumor microenvironment (TME) in a mouse large TC-1 grafted tumor model. METHODS: L-alpha-phosphatidyl choline (SPC), cholesterol (CHOL), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol-2000)] (DSPE-PEG-2000), 1,2-dioleoyl-3-trimethylammonium-propane chloride salt (DOTAP) and Mannose-PEG-DSPE, loaded with HPV16 E7 peptide and CpG ODN, were used to construct the Lip E7/CpG vaccine. The anti-tumor effects and potential mechanism of Lip E7/CpG were assessed by assays of tumor growth inhibition, immune cells, in vivo cytotoxic T lymphocyte (CTL) responses and cytokines, chemokines, CD31, Ki67 and p53 expression in the TME. In addition, toxicity of Lip E7/CpG to major organs was evaluated. RESULTS: Lip E7/CpG had a diameter of 122.21±8.37 nm and remained stable at 4°C for 7 days. Co-delivery of HPV16 E7 peptide and CpG ODN by liposomes exerted potent anti-tumor effects in large (tumor volume ≥200mm3) TC-1 grafted tumor-bearing mice with inhibition rates of 80% and 78% relative to the control and Free E7/CpG groups, respectively. Vaccination significantly increased numbers of CD4+ and CD8+ T cells, and IFN-γ-producing cells in spleens and tumors and enhanced HPV-specific CTL responses, while reducing numbers of inhibitory cells including myeloid-derived suppressor cells and macrophages. Expression of cytokines and chemokines was altered and formation of tumor blood vessels was reduced in the Lip E7/CpG group, indicating possible modulation of the immunosuppressive TME to promote anti-tumor responses. Lip E7/CpG did not cause morphological changes in major organs. CONCLUSION: Lip E7/CpG induced anti-tumor effects by enhancing cellular immunity and improving tumor-associated immunosuppression. Mannose-modified liposomes are the promising vaccine delivery strategy for cancer immunotherapy.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas Anticâncer/administração & dosagem , Lipossomos/administração & dosagem , Oligodesoxirribonucleotídeos/administração & dosagem , Proteínas E7 de Papillomavirus/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Animais , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Imunoterapia/métodos , Lipossomos/química , Lipossomos/farmacologia , Manose/química , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/imunologia , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Int J Nanomedicine ; 15: 5927-5949, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848397

RESUMO

PURPOSE: A multi-functional nanoplatform with diagnostic imaging and targeted treatment functions has aroused much interest in the nanomedical research field and has been paid more attention in the field of tumor diagnosis and treatment. However, some existing nano-contrast agents have encountered difficulties in different aspects during clinical promotion, such as complicated preparation process and low specificity. Therefore, it is urgent to find a nanocomplex with good targeting effect, high biocompatibility and significant therapeutic effect for the integration of diagnosis and treatment and clinical transformation. MATERIALS AND METHODS: Nanoparticles (NPs) targeting breast cancer were synthesized by phacoemulsification which had liquid fluorocarbon perfluoropentane(PFP) in the core and were loaded with Iron(II) phthalocyanine (FePc) on the shell. The aptamer (APT) AS1411 was outside the shell used as a molecular probe. Basic characterization and targeting abilities of the NPs were tested, and their cytotoxicity and biological safety in vivo were evaluated through CCK-8 assay and blood bio-chemical analysis. The photoacoustic (PA) and ultrasound (US) imaging system were used to assess the effects of AS1411-PLGA@FePc@PFP (A-FP NPs) as dual modal contrast agent in vitro and in vivo. The effects of photothermal therapy (PTT) in vitro and in vivo were evaluated through MCF-7 cells and tumor-bearing nude mouse models. RESULTS: A-FP NPs, with good stability, great biocompatibility and low toxicity, were of 201.87 ± 1.60 nm in diameter, and have an active targeting effect on breast cancer cells and tissues. With the help of PA/US imaging, it was proved to be an excellent dual modal contrast agent for diagnosis and guidance of targeted therapy. Meanwhile, it can heat up under near-infrared (NIR) laser irradiation and has achieved obvious antitumor effect both in vitro and in vivo experiments. CONCLUSION: As a kind of nanomedicine, A-FP NPs can be used in the integration of diagnosis and treatment. The treatment effects and biocompatibility in vivo may provide new thoughts in the clinical transformation of nanomedicine and early diagnosis and treatment of breast cancer.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Indóis/química , Nanopartículas Multifuncionais/química , Oligodesoxirribonucleotídeos/farmacologia , Animais , Aptâmeros de Nucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Neoplasias da Mama/patologia , Meios de Contraste/química , Feminino , Fluorocarbonos/química , Humanos , Ferro/química , Isoindóis , Células MCF-7 , Camundongos Endogâmicos BALB C , Nanopartículas Multifuncionais/administração & dosagem , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/química , Fototerapia/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ultrassonografia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Int J Nanomedicine ; 15: 2685-2697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368049

RESUMO

BACKGROUND: Nanocarriers could deliver significantly higher amounts of antigen to antigen-presenting cells (APCs), which have great potential to stimulate humoral and cellular response in cancer immunotherapy. Thereafter, silica solid nanosphere (SiO2) was prepared, and a model antigen (ovalbumin, OVA) was covalently conjugated on the surface of SiO2 to form nanovaccine (OVA@SiO2). And the application of OVA@SiO2 for cancer immunotherapy was evaluated. MATERIALS AND METHODS: SiO2 solid nanosphere was prepared by the Stöber method, then successively aminated by aminopropyltriethoxysilane and activated with glutaraldehyde. OVA was covalently conjugated on the surface of activated SiO2 to obtain nanovaccine (OVA@SiO2). Dynamic light scattering, scanning electron microscope, and transmission electron microscope were conducted to identify the size distribution, zeta potential and morphology of OVA@SiO2. The OVA loading capacity was investigated by varying glutaraldehyde concentration. The biocompatibility of OVA@SiO2 to DC2.4 and RAW246.7 cells was evaluated by a Cell Counting Kit-8 assay. The uptake of OVA@SiO2 by DC2.4 and its internalization pathway were evaluated in the absence or presence of different inhibitors. The activation and maturation of bone marrow-derived DC cells by OVA@SiO2 were also investigated. Finally, the in vivo transport of OVA@SiO2 and its toxicity to organs were appraised. RESULTS: All results indicated the successful covalent conjugation of OVA on the surface of SiO2. The as-prepared OVA@SiO2 possessed high antigen loading capacity, which had good biocompatibility to APCs and major organs. Besides, OVA@SiO2 facilitated antigen uptake by DC2.4 cells and its cytosolic release. Noteworthily, OVA@SiO2 significantly promoted the maturation of dendritic cells and up-regulation of cytokine secretion by co-administration of adjuvant CpG-ODN. CONCLUSION: The as-prepared SiO2 shows promising potential for use as an antigen delivery carrier.


Assuntos
Antígenos/metabolismo , Vacinas Anticâncer/farmacologia , Imunoterapia/métodos , Nanosferas/química , Ovalbumina/química , Adjuvantes Imunológicos/administração & dosagem , Animais , Apresentação de Antígeno , Antígenos/administração & dosagem , Antígenos/química , Antígenos/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/química , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Nanosferas/administração & dosagem , Oligodesoxirribonucleotídeos/administração & dosagem , Ovalbumina/imunologia , Ovalbumina/farmacocinética , Células RAW 264.7 , Dióxido de Silício/química
8.
Fish Shellfish Immunol ; 100: 476-488, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32209398

RESUMO

Retinol-binding protein 4 (RBP4) is known as a highly conserved adipokine for immune activation. Aeromonas hydrophila (A. hydrophila) is the most common zoonotic pathogen in aquaculture, which causes serious economic losses to aquaculture, especially to bighead carp (Hypophthalmichthys nobilis, H. nobilis) and silver carp (Hypophthalmichthys molitrix, H. molitrix). Recent studies along with our previous findings have shown that synthetic oligodeoxynucleotides containing CpG motifs (CpG ODN) can play a good role in aquatic animals against infection. In order to clarify the relationship between CpG ODN and RBP4 under A. hydrophila infection, firstly, full-length RBP4 cDNAs from H. nobilis and H. molitrix were cloned. And characteristics of RBP4, including sequence and structure, tissue distribution and genetic evolution were analyzed. In addition, mRNA expression levels of RBP4, cytokine, toll-like receptors (TLRs), morbidity and survival rates of H. nobilis and H. molitrix were observed post CpG ODN immunization or following challenge. The results indicated that hn/hm_RBP4 (RBP4 genes obtained from H. nobilis and H. molitrix) had the highest homology with Megalobrama amblycephala. Distribution data showed that the expression level of hn_RBP4 mRNA was higher than that of hm_RBP4. After CpG ODN immunization followed by A.hydrophila challenge, significantly higher survival was observed in both carps, together with up-regulated RBP4 expression. Meanwhile, hn/hm_IL-1ß level was relatively flat (and decreased), hn/hm_IFN-γ, hn/hm_TLR4 and hn/hm_TLR9 levels increased significantly, but hn/hm_STRA6 showed no significant change, compared with control. Moreover, CpG ODN immunization could induce stronger immune protective responses (higher IFN-γ/gentle IL-1ß level and lower morbidity/higher survival rate) against A. hydrophila in H. nobilis, along with higher RBP4 level, when compared with that in H. molitrix. These results demonstrated that RBP4 was well involved in the immune protection of CpG ODN. Based on the results, we speculated that in the case of A. hydrophila infection, TLR9 signaling pathway was activated by CpG ODN. Subsequently, CpG ODN up-regulated RBP4, and RBP4 activated TLR4 signaling pathway. Then TLR4 and TLR9 synergistically improved the anti-infection responses. Our findings have good significance for improving resistance to pathogen infection in freshwater fish.


Assuntos
Carpas/genética , Carpas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Imunização/veterinária , Oligodesoxirribonucleotídeos/administração & dosagem , Proteínas Celulares de Ligação ao Retinol/genética , Aeromonas hydrophila/patogenicidade , Animais , Carpas/imunologia , DNA Complementar , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Oligodesoxirribonucleotídeos/imunologia , Proteínas Celulares de Ligação ao Retinol/química , Proteínas Celulares de Ligação ao Retinol/imunologia , Regulação para Cima
9.
Fish Shellfish Immunol ; 98: 312-317, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31968268

RESUMO

Inactivated vaccines are often applied with adjuvants in commercial fish farming. Although some mineral or non-mineral oil adjuvants show efficient improvement with inactivated vaccines, but sometimes bring side effects such as tissue adhesion and granulomatous lesion at the injection site. CpG ODN is a novel type of soluble adjuvant which has been proved to possess excellent advantages in fish vaccine development. In this study, we designed a tandem sequence of CpG ODN synthesized in plasmid pcDNA 3.1, and an inactivated Vibrio anguillarum vaccine developed in our previous work was chosen for determining the efficiency of the CpG-riched plasmids (pCpG) as an adjuvant. Results showed that pCpG we designed can offer higher immunoprotection with the vaccine. Interestingly, even below the minimum immune dosage of the vaccine, a high RPS of 84% was observed once the vaccine was administrated with the pCpG. Serum specific antibody titer, superoxide dismutase and total protein were enhanced and some immune genes related to both innate and adaptive immune response were upregulated, implying an effective auxiliary function of the pCpG. Totally, our study suggested that the pCpG is a potential and available adjuvant for turbot vaccine development.


Assuntos
Vacinas Bacterianas/imunologia , Doenças dos Peixes/prevenção & controle , Linguados/imunologia , Oligodesoxirribonucleotídeos/imunologia , Vibrioses/veterinária , Vibrio/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/síntese química , Animais , Vacinas Bacterianas/administração & dosagem , Doenças dos Peixes/microbiologia , Linguados/microbiologia , Regulação da Expressão Gênica/imunologia , Imunidade Humoral , Oligodesoxirribonucleotídeos/administração & dosagem , Plasmídeos/administração & dosagem , Plasmídeos/imunologia , Taxa de Sobrevida , Vacinação/veterinária , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vibrioses/microbiologia , Vibrioses/prevenção & controle
10.
Infect Immun ; 87(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936155

RESUMO

Plasmodium falciparum cell-traversal protein for ookinetes and sporozoites (PfCelTOS) is an advanced vaccine candidate that has a crucial role in the traversal of the malaria parasite in both mosquito and mammalian hosts. As recombinant purified proteins are normally poor immunogens, they require to be admixed with an adjuvant(s); therefore, the objective of the present study was to evaluate the capacity of different vaccine adjuvants, monophosphoryl lipid A (MPL), CpG, and Quillaja saponaria Molina fraction 21 (QS-21), alone or in combination (MCQ [MPL/CpG/QS-21]), to enhance the immunogenicity of Escherichia coli-expressed PfCelTOS in BALB/c mice. This goal was achieved by the assessment of anti-PfCelTOS IgG antibodies (level, titer, IgG isotype profile, avidity, and persistence) and extracellular Th1 cytokines using an enzyme-linked immunosorbent assay (ELISA) on postimmunized BALB/c mouse sera and PfCelTOS-stimulated splenocytes, respectively. Also, an assessment of the transmission-reducing activity (TRA) of anti-PfCelTOS obtained from different vaccine groups was carried out in female Anopheles stephensi mosquitoes by using a standard membrane feeding assay (SMFA). In comparison to PfCelTOS alone, administration of PfCelTOS with three distinct potent Th1 adjuvants in vaccine mouse groups showed enhancement and improvement of PfCelTOS immunogenicity that generated more bias toward a Th1 response with significantly enhanced titers and avidity of the anti-PfCelTOS responses that could impair ookinete development in A. stephensi However, immunization of mice with PfCelTOS with MCQ mixture adjuvants resulted in the highest levels of induction of antibody titers, avidity, and inhibitory antibodies in oocyst development (88%/26.7% reductions in intensity/prevalence) in A. stephensi It could be suggested that adjuvant combinations with different mechanisms stimulate better functional antibody responses than adjuvants individually against challenging diseases such as malaria.


Assuntos
Anticorpos Antiprotozoários/imunologia , Lipídeo A/análogos & derivados , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/imunologia , Oligodesoxirribonucleotídeos/administração & dosagem , Extratos Vegetais/administração & dosagem , Proteínas de Protozoários/administração & dosagem , Linfócitos T/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Humanos , Lipídeo A/administração & dosagem , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Quillaja/química
11.
J Control Release ; 300: 81-92, 2019 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-30826373

RESUMO

Metal-organic frameworks (MOFs) have high surface area, tunable pore size, and high loading capacity, making them promising for drug delivery. However, their synthesis requires organic solvents, high temperature and high pressure that are incompatible with biomacromolecules. Zeolitic imidazole frameworks (ZIF-8) which forms through coordination between zinc ions and 2-methylimidazole (MeIM) have emerged as an advanced functional material for drug delivery due to its unique features such as high loading and pH-sensitive degradation. In this study, we took advantage of a natural biomineralization process to create aluminum-containing nanoZIF-8 particles for antigen delivery. Without organic solvents or stabilizing agent, nanoparticles (ZANPs) were synthesized by a mild and facile method with aluminum, model antigen ovalbumin (OVA) and ZIF-8 integrated. A high antigen loading capacity (%) of 30.6% and a pH dependent antigen release were achieved. A Toll-like receptor 9 agonist cytosine-phosphate-guanine oligodeoxynucleotides (CpG) was adsorbed on the surface of ZANPs (hereafter CpG/ZANPs) to boost the immune response. After subcutaneous injection in vivo, CpG/ZANPs targeted lymph nodes (LNs), where their cargo was efficiently internalized by LN-resident antigen-presenting cells (APCs). ZANPs decomposition in lysosomes released antigen into the cytoplasm and enhanced cross-presentation. Moreover, CpG/ZANPs induced strong antigen-specific humoral and cytotoxic T lymphocyte responses that significantly inhibited the growth of EG7-OVA tumors while showing minimal cytotoxicity. We demonstrate that ZANPs may be a safe and effective vehicle for the development of cancer vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Cloreto de Alumínio/administração & dosagem , Antígenos/administração & dosagem , Estruturas Metalorgânicas/administração & dosagem , Nanopartículas/administração & dosagem , Oligodesoxirribonucleotídeos/administração & dosagem , Ovalbumina/administração & dosagem , Linfócitos T Citotóxicos/efeitos dos fármacos , Zeolitas/administração & dosagem , Animais , Linhagem Celular , Feminino , Imidazóis/administração & dosagem , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Linfonodos/imunologia , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Neoplasias/imunologia
12.
Arch Razi Inst ; 74(4): 357-364, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31939252

RESUMO

Un-methylated cytosine-phosphate-guanosine oligodeoxynucleotides (CpG-ODN) has been considered as a powerful vaccine adjuvant and recognition of CpG-ODN by chicken leukocytes promotes their ability to fight against infections. In our study, efficacy of different routes of CpG-ODN application as an adjuvant on immune responses (antibody titer together with leukogram) following vaccination against Newcastle disease (ND) has been evaluated in broiler chickens (Ross-308). The results indicated that routes of CpG-ODN administration influence immune responses and comparison effectiveness of CpG-OND delivery routes showed that group vaccinated by eye-drop application had the highest antibody titer than that of the group injected intramuscularly (im) and the difference was significant (p = 0.04) on day 35 of age. Antibody titer of the group treated with Clone 30 plus CpG-ODN via eye-drop route was higher than that of the group vaccinated with clone 30 alone on days 28 and 35 of age and the difference was significant (p = 0.04). Co-administration of both vaccine and CpG improved outcome of leukogram of the chickens on days 21 to 42 of age and among the treated groups, WBC of the group received both vaccine and CpG by eye-drop route significantly (p < 0.05) differed from that of the group vaccinated with clone 30 alone on days 28 and 35 but not on day 42 of age. Average final body weight of the control group did not significantly differ from those of the treated groups at end of the experiment. In conclusion, co-administration of ND vaccine plus CpG-ODN via eye-drop route improves immune responses.


Assuntos
Adjuvantes Imunológicos/farmacologia , Galinhas , Imunidade Humoral/efeitos dos fármacos , Doença de Newcastle/prevenção & controle , Oligodesoxirribonucleotídeos/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Citosina/administração & dosagem , Citosina/imunologia , Guanosina/administração & dosagem , Guanosina/imunologia , Vírus da Doença de Newcastle/efeitos dos fármacos , Oligodesoxirribonucleotídeos/administração & dosagem , Fosfatos/administração & dosagem , Fosfatos/imunologia , Vacinas Virais/administração & dosagem
13.
Biomaterials ; 175: 82-92, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29803106

RESUMO

Silica based nanoparticles have emerged as a promising vaccine delivery system for cancer immunotherapy, but their bio-degradability, adjuvanticity and the resultant antitumor activity remain to be largely improved. In this study, we report biodegradable glutathione-depletion dendritic mesoporous organosilica nanoparticles (GDMON) with a tetrasulfide-incorporated framework as a novel co-delivery platform in cancer immunotherapy. Functionalized GDMON are capable of co-delivering an antigen protein (ovalbumin) and a toll-like receptor 9 (TLR9) agonist into antigen presenting cells (APCs) and inducing endosome escape. Moreover, decreasing the intracellular glutathione (GSH) level through the -S-S-/GSH redox chemistry increases the ROS generation level both in vitro and in vivo, facilitating cytotoxic T lymphocyte (CTL) proliferation and reducing tumour growth in an aggressive B16-OVA melanoma tumour model. Our results have shown the potential of GDMON as a novel self-adjuvant and co-delivery nanocarrier for cancer vaccine.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Glutationa/metabolismo , Melanoma Experimental/terapia , Nanopartículas/química , Dióxido de Silício/química , Animais , Células Apresentadoras de Antígenos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Endossomos/fisiologia , Humanos , Imunoterapia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Oligodesoxirribonucleotídeos/administração & dosagem , Ovalbumina/administração & dosagem , Oxirredução , Polietilenoimina/química , Porosidade , Linfócitos T Citotóxicos/patologia , Receptor Toll-Like 9/agonistas
14.
Eur J Pharm Sci ; 119: 159-170, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660463

RESUMO

CpG oligodeoxynucleotides (CpG-ODN), a common immune stimulator and vaccine adjuvant, was reported to switch Tumor Associated Macrophages (TAMs) from M2 to M1 phenotype inducing anti-tumor responses. Liposomes are of the successfully applied carriers for CpG-ODN. The aim of present study was design and preparation of a liposomal formulation containing phosphodiester CpG-ODN, evaluation of its effect on macrophages responses, and subsequent antitumor responses in mice. Liposomal formulations containing phosphodiester CpG-ODN or non-CpG-ODN were prepared and characterized. MTT reduction assay in four different cell lines, uptake, arginase and iNOS activity evaluation in macrophage cell lines, biodistribution study and therapeutic anti-tumor effects of formulations in mice bearing C26 colon carcinoma or B16F0 melanoma were carried out. The size of liposomes containing CpG-ODN was ~200 nm with the encapsulation efficiency of 33%. The iNOS activity assay showed high nitric oxide (NO) level in M2 phenotype of macrophage cell lines treated by liposomes containing CpG-ODN. In mice which received liposomes containing CpG-ODN as a monotherapy, maximum tumor growth delay with remarkable survival improvement was observed compared to control groups. Biodistribution study showed the accumulation of liposomal formulation in tumor micro-environment. In conclusion, considerable anti-tumor responses observed by liposomes containing CpG-ODN was due to enhanced delivery of CpG-ODN to immune cells and subsequent initiation of anti-tumoral immune responses.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Macrófagos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Oligodesoxirribonucleotídeos/administração & dosagem , Adjuvantes Imunológicos/farmacocinética , Adjuvantes Imunológicos/uso terapêutico , Animais , Arginase/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Lipossomos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Óxido Nítrico/metabolismo , Oligodesoxirribonucleotídeos/farmacocinética , Oligodesoxirribonucleotídeos/uso terapêutico , Distribuição Tecidual
15.
Hum Vaccin Immunother ; 14(8): 1987-1994, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29601259

RESUMO

Sabin-based inactivated poliovirus vaccine(sIPV) is gradually replacing live-attenuated oral polio vaccine(OPV). Sabin-inactivated poliovirus vaccine(sIPV) has played a vital role in reducing economic burden of poliomyelitis and maintaining appropriate antibody levels in the population. However, due to its high cost and limited manufacturing capacity, sIPV cannot reach its full potential for global poliovirus eradication in developing countries. Therefore, to address this situation, we designed this study to evaluate the dose-sparing effects of AS03, CpG oligodeoxynucleotides (CpG-ODN) and polyinosinic:polycytidylic acid (PolyI:C) admixed with sIPV in rats. Our results showed that a combination of 1/4-dose sIPV adjuvanted with AS03 or AS03 with BW006 provides a seroconversion rate similar to that of full-dose sIPV without adjuvant and that, this rate is 5-fold higher than that of 1/4-dose sIPV without adjuvant after the first immunization. The combination of AS03 or AS03 with BW006 as an adjuvant effectively reduced sIPV dose by at least 4-fold and induced both humoral and cellular immune responses. Therefore, our study revealed that the combination of AS03 or AS03 with BW006 is a promising adjuvant for sIPV development.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Imunogenicidade da Vacina , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado/administração & dosagem , Vacina Antipólio Oral/administração & dosagem , Animais , Redução de Custos , Custos de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada/métodos , Feminino , Imunidade Celular/imunologia , Masculino , Modelos Animais , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Vacina Antipólio de Vírus Inativado/economia , Vacina Antipólio de Vírus Inativado/imunologia , Vacina Antipólio Oral/economia , Vacina Antipólio Oral/imunologia , Poli I-C/administração & dosagem , Poli I-C/imunologia , Ratos , Ratos Wistar , Soroconversão , Organismos Livres de Patógenos Específicos
16.
Vaccine ; 35(47): 6459-6467, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29029939

RESUMO

The development of cervical cancer is mainly caused by infection with high risk genotypes of human papillomavirus, particularly type 16 (HPV16), which accounts for more than 50% of cervical cancer. The two early viral oncogenes, E6 and E7, are continuously expressed in cervical cancer cells and are necessary to maintain the malignant cellular phenotype, thus providing ideal targets for immunotherapy of cervical cancer. In this study, a novel vaccine strategy was developed based on a rationally shuffled HPV16 E6/E7 fusion protein, the addition of Fms-like tyrosine kinase-3 ligand (Flt3L) or the N domain of calreticulin (NCRT), and the usage of a CpG adjuvant. Four recombinant proteins were constructed: m16E6E7 (mutant E6/E7 fusion protein), rm16E6E7 (rearranged mutant HPV16 E6/E7 fusion protein), Flt3L-RM16 (Flt3L fused to rm16E6E7), and NCRT-RM16 (NCRT fused to rm16E6E7). Our results suggest that Flt3L-RM16 was the most potent of these proteins in terms of inducing E6- and E7-specific CD8+ T cell responses. Additionally, Flt3L-RM16 significantly induced regression of established E6/E7-expressing TC-1 tumors. Higher doses of Flt3L-RM16 trended toward higher levels of antitumor activity, but these differences did not reach statistical significance. In summary, this study found that Flt3L-RM16 fusion protein is a promising therapeutic vaccine for immunotherapy of HPV16-associated cervical cancer.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , Proteínas de Membrana/administração & dosagem , Proteínas Oncogênicas Virais/imunologia , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/terapia , Vacinas contra Papillomavirus/imunologia , Proteínas Repressoras/imunologia , Animais , Calreticulina/administração & dosagem , Feminino , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/administração & dosagem , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Repressoras/genética , Resultado do Tratamento , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
17.
Microbiol Immunol ; 61(6): 195-205, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28463465

RESUMO

To develop safe vaccines for inducing mucosal immunity to major pulmonary bacterial infections, appropriate vaccine antigens (Ags), delivery systems and nontoxic molecular adjuvants must be considered. Such vaccine constructs can induce Ag-specific immune responses that protect against mucosal infections. In particular, it has been shown that simply mixing the adjuvant with the bacterial Ag is a relatively easy means of constructing adjuvant-based mucosal vaccine preparations; the resulting vaccines can elicit protective immunity. DNA-based nasal adjuvants targeting mucosal DCs have been studied in order to induce Ag-specific mucosal and systemic immune responses that provide essential protection against microbial pathogens that invade mucosal surfaces. In this review, initially a plasmid encoding the cDNA of Flt3 ligand (pFL), a molecule that is a growth factor for DCs, as an effective adjuvant for mucosal immunity to pneumococcal infections, is introduced. Next, the potential of adding unmethylated CpG oligodeoxynucleotide and pFL together with a pneumococcal Ag to induce protection from pneumococcal infections is discussed. Pneumococcal surface protein A has been used as vaccine for restoring mucosal immunity in older persons. Further, our nasal pFL adjuvant system with phosphorylcholine-keyhole limpet hemocyanin (PC-KLH) has also been used in pneumococcal vaccine development to induce complete protection from nasal carriage by Streptococcus pneumoniae. Finally, the possibility that anti-PC antibodies induced by nasal delivery of pFL plus PC-KLH may play a protective role in prevention of atherogenesis and thus block subsequent development of cardiovascular disease is discussed.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Células Dendríticas/imunologia , Imunidade nas Mucosas/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Vacinas de DNA/imunologia , Administração Intranasal , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/imunologia , DNA Complementar/imunologia , Hemocianinas/administração & dosagem , Hemocianinas/imunologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Fosforilcolina/administração & dosagem , Fosforilcolina/imunologia , Vacinas Pneumocócicas/administração & dosagem , Vacinas de DNA/administração & dosagem
18.
Vaccine ; 35(6): 916-922, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28089548

RESUMO

Diarrheal infectious diseases represent a major cause of global morbidity and mortality. There is an urgent need for vaccines against diarrheal pathogens, especially parasites. Modern subunit vaccines rely on combining a highly purified antigen with an adjuvant to increase their efficacy. In the present study, we evaluated the ability of a nanoliposome adjuvant system to trigger a strong mucosal immune response to the Entamoeba histolytica Gal/GalNAc lectin LecA antigen. CBA/J mice were immunized with alum, emulsion or liposome based formulations containing synthetic TLR agonists. A liposome formulation containing TLR4 and TLR7/8 agonists was selected based on its ability to generate intestinal IgA, plasma IgG2a/IgG1, IFN-γ and IL-17A. Immunization with a mucosal prime followed by a parenteral boost generated a high mucosal IgA response that inhibited adherence of parasites to mammalian cells. Inclusion of the immune potentiator all-trans retinoic acid in the regimen further improved the mucosal IgA response. Immunization protected from infection with up to 55% efficacy. Our results show that a nanoliposome delivery system containing TLR agonists is a promising prospect for the development of vaccines against enteric pathogens, especially when a multifaceted immune response is desired.


Assuntos
Anticorpos Antiprotozoários/biossíntese , Entamoeba histolytica/efeitos dos fármacos , Entamebíase/prevenção & controle , Imunidade nas Mucosas/efeitos dos fármacos , Lipossomos/imunologia , Vacinas Protozoárias/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Compostos de Alúmen/administração & dosagem , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Entamoeba histolytica/crescimento & desenvolvimento , Entamoeba histolytica/imunologia , Entamebíase/imunologia , Entamebíase/parasitologia , Imunização , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-17/biossíntese , Interleucina-17/imunologia , Lectinas/química , Lectinas/imunologia , Lipopolissacarídeos/administração & dosagem , Lipossomos/administração & dosagem , Lipossomos/química , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos CBA , Oligodesoxirribonucleotídeos/administração & dosagem , Polissorbatos/administração & dosagem , Vacinas Protozoárias/química , Vacinas Protozoárias/imunologia , RNA/administração & dosagem , Esqualeno/administração & dosagem , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/imunologia , Tretinoína/administração & dosagem , Vacinas de Subunidades Antigênicas
19.
Vaccine ; 35(5): 821-830, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28063707

RESUMO

Vaccines are administered to healthy humans, including infants, so the safety and efficacy must be very high. Therefore, evaluating vaccine safety in preclinical and clinical studies, according to World Health Organization guidelines, is crucial for vaccine development and clinical use. A change in the route of administration is considered to alter a vaccine's immunogenicity. Several adjuvants have also been developed and approved for use in vaccines. However, the addition of adjuvants to vaccines may cause unwanted immune responses, including facial nerve paralysis and narcolepsy. Therefore, a more accurate and comprehensive strategy must be used to develope next-generation vaccines for ensuring vaccine safety. Previously, we have developed a system with which to evaluate vaccine safety in rats using a systematic vaccinological approach and 20 marker genes. In this study, we developed a safety evaluation system for nasally administered influenza vaccines and adjuvanted influenza vaccines using these marker genes. Expression of these genes increased dose-dependent manner when mice were intranasally administered the toxicity reference vaccine. When the adjuvant CpG K3 or a CpG-K3-combined influenza vaccine was administered intranasally, marker gene expression increased in a CpG-K3-dose-dependent way. A histopathological analysis indicated that marker gene expression correlated with vaccine- or adjuvant-induced phenotypic changes in the lung and nasal mucosa. We believe that the marker genes expression analyses will be useful in preclinical testing, adjuvant development, and selecting the appropriate dose of adjuvant in nasal administration vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antivirais/biossíntese , Vacinas contra Influenza/administração & dosagem , Oligodesoxirribonucleotídeos/administração & dosagem , Infecções por Orthomyxoviridae/prevenção & controle , Administração Intranasal , Animais , Biomarcadores/metabolismo , Citocinas/genética , Citocinas/imunologia , Relação Dose-Resposta Imunológica , Avaliação Pré-Clínica de Medicamentos , Feminino , Expressão Gênica , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Vacinas de Produtos Inativados
20.
Clin Cancer Res ; 23(3): 717-725, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27521445

RESUMO

PURPOSE: Treatments with cancer vaccines may be delivered as combination therapies for better efficacy. Addition of intravesical immunostimulation with bacteria promotes vaccine-specific T cells in the bladder and tumor-regression in murine bladder cancer models. Here, we determined whether an adjuvanted cancer vaccine can be safely administered with concomitant standard intravesical Bacillus-Calmette-Guérin (BCG) therapy and how vaccine-specific immune responses may be modulated in patients with non-muscle-invasive bladder cancer (NMIBC). EXPERIMENTAL DESIGN: In a nonrandomized phase I open-label exploratory study, 24 NMIBC patients, apportioned in three groups, received 5 injections of a subunit cancer vaccine (recMAGE-A3 protein+AS15) alone or in two combinations of intravesical BCG-instillations. Safety profiles were compared between the three treatment groups, considering single vaccine injections or BCG instillations and concomitant interventions. Immune responses in blood and urine were compared between treatment groups and upon BCG instillations. RESULTS: The mild adverse events (AE) experienced by all the patients were similar to AE previously reported for this vaccine and standard BCG treatment. AEs were not increased by the double interventions, suggesting that BCG did not exacerbate the AE caused by the MAGE-A3 vaccine and vice-versa. All patients seroconverted after MAGE-A3 vaccination. In half of the patients, vaccine-specific T cells were induced in blood, irrespective of BCG treatment. Interestingly, such T cells were only detected in urine upon BCG-induced T-cell infiltration. CONCLUSIONS: Cancer vaccines, including strong adjuvants, can be safely combined with intravesical BCG therapy. The increase of vaccine-specific T cells in the bladder upon BCG provides proof-of-principle evidence that cancer vaccines with local immunostimulation may be beneficial. Clin Cancer Res; 23(3); 717-25. ©2016 AACR.


Assuntos
Antígenos de Neoplasias/imunologia , Vacina BCG/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Carcinoma de Células de Transição/terapia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Proteínas de Neoplasias/imunologia , Neoplasias da Bexiga Urinária/terapia , Adjuvantes Imunológicos/administração & dosagem , Administração Intravesical , Vacina BCG/administração & dosagem , Vacina BCG/efeitos adversos , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/efeitos adversos , Carcinoma de Células de Transição/imunologia , Carcinoma de Células de Transição/patologia , Carcinoma de Células de Transição/cirurgia , Terapia Combinada , Cistectomia/métodos , Citocinas/urina , Relação Dose-Resposta Imunológica , Humanos , Esquemas de Imunização , Injeções Intramusculares , Lipídeo A/administração & dosagem , Lipídeo A/análogos & derivados , Oligodesoxirribonucleotídeos/administração & dosagem , Extratos Vegetais/administração & dosagem , Quillaja , Proteínas Recombinantes/imunologia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA