Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Insect Sci ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387434

RESUMO

Gastrodia elata Blume, a valuable traditional Chinese medicine with significant clinical and nutritional importance, is a fungal heterotrophic orchid. We present the first report of the mitochondrial genome structure and characteristics of 3 Scarabaeidae pests affecting G. elata: Sophrops peronosporus Gu & Zhang, Anomala rufiventris Kollar & Redtenbacher, and Callistethus plagiicollis Fairmaire. Each mitogenome contained 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), and a control region, with no gene rearrangements observed. All 21 tRNAs, except trnS1 that lacks a dihydrouridine, had a stable cloverleaf secondary structure. Maximum likelihood and Bayesian inference analyses based on the 13 PCGs produced 2 topologically similar phylogenetic trees, both of with high nodal support. Larvae of these Scarabaeidae pests cause substantial damage by gnawing on the tubers and roots of G. elata, leading to reduced yield and compromised quality. These findings contribute to phylogenetic studies of Scarabaeidae, expand knowledge of G. elata pests, and offer valuable reference materials for their identification and control.


Assuntos
Asparagales , Besouros , Gastrodia , Genoma Mitocondrial , Orchidaceae , Animais , Besouros/genética , Gastrodia/química , Gastrodia/genética , Orchidaceae/genética , Asparagales/genética , Filogenia , Teorema de Bayes
2.
BMC Plant Biol ; 23(1): 269, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210501

RESUMO

BACKGROUND: The orchid genus Pholidota Lindl. ex Hook. is economically important as some species has long been used in traditional medicine. However, the systematic status of the genus and intergeneric relationships inferred from previous molecular studies are unclear due to insufficient sampling and lack of informative sites. So far, only limited genomic information has been available. The taxonomy of Pholidota remains unresolved and somewhat controversial. In this study, the complete chloroplast (cp.) genomes of thirteen Pholidota species were sequenced and analyzed to gain insight into the phylogeny of Pholidota and mutation patterns in their cp. genomes. RESULTS: All examined thirteen Pholidota cp. genomes exhibited typical quadripartite circular structures, with the size ranging from 158,786 to 159,781 bp. The annotation contained a total of 135 genes in each cp. genome, i.e., 89 protein-coding genes, 38 tRNA genes, and eight rRNA genes. The codon usage analysis indicated the preference of A/U-ending codons. Repeat sequence analysis identified 444 tandem repeats, 322 palindromic repeats and 189 dispersed repeats. A total of 525 SSRs, 13,834 SNPs and 8,630 InDels were detected. Six mutational hotspots were identified as potential molecular markers. These molecular markers and highly variable regions are expected to facilitate future genetic and genomic studies. Our phylogenetic analyses confirmed the polyphyletic status of the genus Pholidota, with species grouped into four main clades: Pholidota s.s. was resolved as the sister to a clade containing species of Coelogyne; the other two clades clustered together with species of Bulleyia and Panisea, respectively; species P. ventricosa was placed at the basal position, deviated from all other species. CONCLUSION: This is the first study to comprehensively examine the genetic variations and systematically analyze the phylogeny and evolution of Pholidota based on plastid genomic data. These findings contribute to a better understanding of plastid genome evolution of Pholidota and provide new insights into the phylogeny of Pholidota and its closely related genera within the subtribe Coelogyninae. Our research has laid the foundation for future studies on the evolutionary mechanisms and classification of this economically and medicinally important genus.


Assuntos
Genoma de Cloroplastos , Orchidaceae , Animais , Filogenia , Pangolins/genética , Genoma de Cloroplastos/genética , Orchidaceae/genética , Genômica , Repetições de Microssatélites
3.
J Exp Bot ; 74(8): 2556-2571, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36656734

RESUMO

The pollen grains of Phalaenopsis orchids are clumped tightly together, packed in pollen dispersal units called pollinia. In this study, the morphology, cytology, biochemistry, and sucrose transporters in pollinia of Phalaenopsis orchids were investigated. Histochemical detection was used to characterize the distribution of sugars and callose at the different development stages of pollinia. Ultra-performance liquid chromatography-high resolution-tandem mass spectrometry data indicated that P. aphrodite accumulated abundant saccharides such as sucrose, galactinol, myo-inositol, and glucose, and trace amounts of raffinose and trehalose in mature pollinia. We found that galactinol synthase (PAXXG304680) and trehalose-6-phosphate phosphatase (PAXXG016120) genes were preferentially expressed in mature pollinia. The P. aphrodite genome was identified as having 11 sucrose transporters (SUTs). Our qRT-PCR confirmed that two SUTs (PAXXG030250 and PAXXG195390) were preferentially expressed in the pollinia. Pollinia germinated in pollen germination media (PGM) supplemented with 10% sucrose showed increased callose production and enhanced pollinia germination, but there was no callose or germination in PGM without sucrose. We show that P. aphrodite accumulates high levels of sugars in mature pollinia, providing nutrients and enhanced SUT gene expression for pollinia germination and tube growth.


Assuntos
Orchidaceae , Açúcares , Açúcares/metabolismo , Sacarose/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Pólen/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
4.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203355

RESUMO

Angraecum, commonly known as Darwin's orchid, is the largest genus of Angraecinae (Orchidaceae). This genus exhibits a high morphological diversity, making it as a good candidate for macroevolutionary studies. In this study, four complete plastomes of Angraecum were firstly reported and the potential variability hotspots were explored. The plastomes possessed the typical quadripartite structure and ranged from 150,743 to 151,818 base pair (bp), with a guanine-cytosine (GC) content of 36.6-36.9%. The plastomes all contained 120 genes, consisting of 74 protein-coding genes (CDS), 38 transfer RNA (tRNA) genes and 8 ribosomal RNA (rRNA) genes; all ndh genes were pseudogenized or lost. A total of 30 to 46 long repeats and 55 to 63 SSRs were identified. Relative synonymous codon usage (RSCU) analysis indicated a high degree of conservation in codon usage bias. The Ka/Ks ratios of most genes were lower than 1, indicating that they have undergone purifying selection. Based on the ranking of Pi (nucleotide diversity) values, five regions (trnSGCU-trnGGCC, ycf1-trnNGGU, trnNGUU-rpl32, psaC-ndhE and trnSGCU-trnGGCC) and five protein-coding genes (rpl32, rps16, psbK, rps8, and ycf1) were identified. The consistent and robust phylogenetic relationships of Angraecum were established based on a total of 40 plastomes from the Epidendroideae subfamily. The genus Angraecum was strongly supported as a monophyletic group and sister to Aeridinae. Our study provides an ideal system for investigating molecular identification, plastome evolution and DNA barcoding for Angraecum.


Assuntos
Orchidaceae , Orchidaceae/genética , Filogenia , Uso do Códon , Nucleotídeos , Fototerapia
5.
PLoS One ; 17(12): e0278551, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36472967

RESUMO

Anoectochilus emeiensis K. Y. Lang, together with other Anoectochilus species, has long been used as the main source of many traditional Chinese medicines. Owing to the shortcomings of molecular markers, the study of the genetic diversity and medicinal component synthesis mechanism of the endemic Anoectochilus species has been delayed. In this study, I carried out a transcriptome analysis of A. emeiensis. A total of 78,381 unigenes were assembled from 64.2 million reads, and 47,541 (60.65%) unigenes were matched to known proteins in the public databases. Then, 9284 expressed sequence tag-derived simple sequence repeats (EST-SSRs) were identified, and the frequency of SSRs in the A. emeiensis transcriptome was 9.88%. Trinucleotide repeats (3699, 39.84%) were the most common type, followed by dinucleotide (3251, 35.02%) and mononucleotide (1750, 18.85%) repeats. Based on the SSR sequence, 6683 primer pairs were successfully designed, 40 primer pairs were randomly selected, and 10 primer pairs were identified as polymorphic loci from 186 individuals of A. emeiensis. The EST-SSR markers examined in this study will be informative for future population genetic studies of A. emeiensis.


Assuntos
Orchidaceae , Humanos , Orchidaceae/genética , Medicina Tradicional Chinesa , Projetos de Pesquisa , Perfilação da Expressão Gênica
6.
Commun Biol ; 5(1): 1294, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434059

RESUMO

Cremastra appendiculata (D. Don) Makino is a rare terrestrial orchid with a high market value as an ornamental and Chinese traditional medicinal herb with a wide range of pharmacological properties. The pseudobulbs of C. appendiculata are one of the primary sources of the famous traditional Chinese medicine "Shancigu", which has been clinically used for treating many diseases, especially, as the main component to treat gout. The lack of genetic research and genome data restricts the modern development and clinical use of C. appendiculata. Here, we report a 2.3 Gb chromosome-level genome of C. appendiculata. We identify a series of candidates of 35 candidate genes responsible for colchicine biosynthesis, among which O-methyltransferase (OMT) gene exhibits an important role in colchicine biosynthesis. Co-expression analysis reveal purple and green-yellow module have close relationships with pseudobulb parts and comprise most of the colchicine pathway genes. Overall, our genome data and the candidate genes reported here set the foundation to decipher the colchicine biosynthesis pathways in medicinal plants.


Assuntos
Orchidaceae , Plantas Medicinais , Plantas Medicinais/genética , Vias Biossintéticas/genética , Colchicina/farmacologia , Orchidaceae/genética , Medicina Tradicional Chinesa
7.
Sci Rep ; 12(1): 19765, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396718

RESUMO

Understanding how environmental factors shape patterns of genetic and phenotypic variations in a species is necessary for conservation and plant breeding. However, these factors have not yet been completely understood in tuberous orchid species used to make 'Salep', an important ingredient in traditional medicine and beverages in middle eastern countries and India. In many areas, increasing demand has pushed species to the brink of extinction. In this study, 198 genotypes from 18 populations of the endangered species Orchis mascula L. spanning a large-scale climatic gradient in northern Iran were used to investigate patterns of genetic diversity and plant functional traits. Populations were sampled from three land cover types (woodland, shrubland, and pastureland/grassland). Plant height, stem length, number of flowers, bulb fresh and dry weight, glucomannan, and starch concentrations showed high variation among populations and were significantly related to land cover type. In general, genetic diversity was high, particularly in those from eastern Hyrcanian; additionally, populations showed a high level of genetic differentiation (G'st = 0.35) with low gene flow (Nm = 0.46). The majority of genetic differentiation occurred within populations (49%) and land cover types (20%). The population structural analysis using the AFLP marker data in K = 4 showed a high geographical affinity for 198 O. mascula genotypes, with some genotypes having mixed ancestry. Temperature and precipitation were found to shape genetic and phenotypic variation profoundly. Significant isolation by the environment was observed, confirming the strong effect of environmental variables on phenotypic and genetic variation. Marker-trait association studies based on MLM1 and MLM2 models revealed significant associations of P-TGG + M-CTT-33 and E-AGG + M-CGT-22 markers with plant height and glucomannan content. Overall, a combination of large-scale climatic variables and land cover types significantly shaped genetic diversity and functional trait variation in O. mascula populations.


Assuntos
Variação Genética , Orchidaceae , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Melhoramento Vegetal , Orchidaceae/genética , Fenótipo
8.
Sci Rep ; 12(1): 11699, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810208

RESUMO

Dactylorhiza hatagirea (D. Don) Soo is medicinally important herb, which is widely used in ayurveda, unani, and folk/traditional medicine system to cure diseases. Due to its immense ethno-botanical properties, the trade of D. hatagirea is estimated to be USD 1 billion/year in India. Unfortunately, due to overexploitation of the herb from the wild, has resulted in dwindling of its populations in their natural habitats, which has led to its critically endangered status. Molecular genetic studies are still scarce in D. hatagirea, therefore, in current study, genetic diversity and population structure analysis was carried out of 10 populations (48 individuals) collected from three cold desert regions (2527 m-3533 m amsl) of Himachal Pradesh. Mean observed heterozygosity (Ho) and expected heterozygosity (He) was recorded 0.185 and 0.158. The maximum values for Fst (fixation index) and Nm (gene flow) were recorded 0.945 at locus KSSR14 and 1.547 at locus KSSR 4 respectively. Mean genetic differentiation (Fst) coefficient was estimated to 0.542. Overall, low levels of genetic diversity was recorded in the populations of D. hatagirea, might be due to habitat specificity (alpine meadows ecosystem; humid laden undulating habitat), restricted distribution and high anthropogenic activities. However, two populations viz., Bathad and Rangrik were recorded with high diversity and largest number of private alleles, stipulates that these populations might have high evolutionary significance and response to selection. Dendrogram analysis revealed that the populations of D. hatagirea were clustered into four major clusters, which was supported by Bayesian based STRUCTURE predictions. Clustering pattern of majority individuals of different populations revealed consistency with their geographic origin. Outcomes of current study reveals the status of genetic diversity and population structure of endangered D. hatagirea, which can be futuristically utilised for appropriate planning of conservation strategies.


Assuntos
Ecossistema , Orchidaceae , Teorema de Bayes , Fluxo Gênico , Variação Genética , Genética Populacional , Humanos , Repetições de Microssatélites/genética , Orchidaceae/genética
9.
Plant J ; 111(5): 1340-1353, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35785503

RESUMO

Bletilla striata, commonly known as baiji, is a species used in traditional Chinese medicine; it is highly regarded for its medicinal applications and therefore has high economic value. Here, we report a high-quality haplotype-resolved genome of B. striata, haplotype A (2.37 Gb, with a scaffold N50 of 146.39 Mb and a contig N50 of 1.65 Mb) and haplotype B (2.43 Gb, with a scaffold N50 of 150.22 Mb and a contig N50 of 1.66 Mb), assembled from high-fidelity (HiFi) reads and chromosome conformation capture (Hi-C) reads. We find evidence that B. striata has undergone two whole-genome duplication (WGD) events: an ancient WGD event shared by most monocots and a recent WGD event unique to all orchids. We also reconstructed the ancestral orchid karyotype (AOK) of 18 ancient chromosomes and the evolutionary trajectories of 16 modern B. striata chromosomes. Comparative genomic analysis suggests that the expanded gene families of B. striata might play important roles in secondary metabolite biosynthesis and environmental adaptation. By combining genomic and transcriptomic data, we identified the 10 core members from nine gene families that were probably involved in B. striata polysaccharide (BSP) biosynthesis. Based on virus-induced gene silencing (VIGS) and yeast two-hybrid experiments, we present an MYB transcription factor (TF), BsMYB2, that can regulate BSP biosynthesis by directly interacting with eight key BSP-related genes: sacA1, HK1, scrK1, scrK2, GPI1, manA1, GMPP1 and UGP2_1. Our study will enhance the understanding of orchid evolution and accelerate the molecular-assisted breeding of B. striata for improving traits of medicinal value.


Assuntos
Orchidaceae , Cromossomos , Genoma , Genômica , Haplótipos , Orchidaceae/genética
10.
PeerJ ; 10: e13362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722265

RESUMO

Plant species evolution is driven by many factors that have different roles in space and time. Using different field and laboratory methods, we studied reproductive patterns and their determinants in pure and mixed P. bifolia and P. chlorantha populations in different habitats. We also considered the probability of hybridisation between these two species and the role of intra-population processes in maintaining species integrity. Generally, we found a high level of reproductive success in both Platantherans. In both species, male (MRS) and female (FRS) reproductive success depended on floral display, and male reproductive success additionally on population structure. The flower traits were only weakly related to reproductive success. Moths' assemblages varied spatially and temporally, and their diversity and numbers were correlated with MRS in the year, when their abundance was markedly lower. Analysis of patterns of pollen transfer showed that pollen was transported up to 25 m (average 8.2 ± 4.83 m) and showed gene exchange between these two Platanthera species. The germination level of both species was significantly lower than seed viability, although P. bifolia seed germinated with higher frequency than P. chlorantha seeds. We noted differences in viability and germination of seeds developed as an effect of experimental interspecies crossings and those developed from natural pollination. The presence of intermediate ecotypes together with observations of spontaneous interspecies crosses in the field and viability of seeds produced in interspecies crossing suggest that both pre- and postzygotic reproductive barriers are not complete and do not prevent hybrid production.


Assuntos
Orchidaceae , Orchidaceae/genética , Reprodução/genética , Polinização , Pólen/genética , Flores/genética
11.
Plant Genome ; 15(2): e20210, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35475547

RESUMO

As one of the important species belonging to the Bletilla genus of Orchidaceae, Bletilla striata (Thunb.) Rchb. f., possesses both ornamental and medicinal values. Its dried tubers are used as a traditional Chinese medicine, and several secondary metabolites have been indicated to be the active ingredients. However, the molecular mechanisms related to the regulation of secondary metabolism have not been characterized in B. striata. In this study, integrated analysis of RNA sequencing (RNA-seq), small RNA sequencing (sRNA-seq), and degradome sequencing (degradome-seq) data from three organs (leaf, root, and tuber) of B. striata provided us with a comprehensive view of the microRNA (miRNA)-mediated regulatory network. Firstly, based on the RNA-seq data, the organ-specific expression patterns of the protein-coding genes, especially for those related to secondary metabolism, were investigated. Secondly, 342 conserved miRNA candidates were identified from B. striata. These miRNAs were assigned to 88 families, some of which were selected for expression pattern analysis. Additionally, 31 hairpin-structured precursors encoding 23 novel miRNAs were uncovered from the transcriptome assembly. Thirdly, based on the degradome signatures, 1,142 validated miRNA-target pairs (involving 167 conserved miRNAs and six novel miRNAs and 51 target genes) were included in the regulatory network. Organ-specific expression level comparison between the miRNAs and their targets revealed some interesting miRNA-target pairs. Fourthly, some valuable subnetworks were extracted for further functional studies. Additionally, some regulatory pathways were indicated to be monocot specific. Summarily, our results lay a solid basis for in-depth studies on the regulatory mechanisms underlying the production of the medicinal ingredients in B. striata.


RNA-, sRNA-, and degradome-seq were performed for three organs of B. striata. Organ-specific expression patterns of the protein-coding genes were analyzed. A total of 365 miRNAs were identified and subject to expression pattern analysis. A total of 1,142 miRNA-target pairs were validated for network construction. Some miRNA-mediated regulatory pathways were indicated to be monocot specific.


Assuntos
MicroRNAs , Orchidaceae , Plantas Medicinais , MicroRNAs/genética , Orchidaceae/genética , Orchidaceae/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , RNA de Plantas/genética , Transcriptoma
12.
BMC Plant Biol ; 22(1): 154, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351005

RESUMO

BACKGROUND: The Bletilla genus of Orchidaceae includes plants with great economic value, among which B. striata is the main traditional medicinal plant, and its pseudobulb, known as BaiJi, was first recorded in Shennong's Classic of Materia Medica. However, there has been little systemic evaluation of the germplasm quality of Bletilla plants in China. In order to comprehensive evaluate the Bletilla resources in China and screen out the candidate phenotypic traits determining yield and/or quality of Bletilla, the variation of phenotypic indicators (pseudobulb, leaf, stem, inflorescence, flower) and active ingredients contents (polysaccharide, total phenolics and militarine) in different populations of B. striata and B. ochracea were investigated through 4 years' common-garden experiment. RESULTS: There were abundant phenotypic variations and significant differences among different populations in the morphological phenotypes, pseudobulb weight and main active ingredient contents. AHBZ, HBLT and HBSN populations showed good prospects for industrial development, presenting higher quality in terms of yield and main active ingredient content. Pseudobulb yield, polysaccharide and total phenol content are positively correlated with phenotypic traits. Militarine content is negatively correlated with almost all indexes. Plant height, leaf width and stem diameter may be important indicators of potential excellent germplasms. CONCLUSIONS: Bletilla is not strictly geoauthentic medicinal plants. B. ochracea could be accepted as an alternative resource to B. striata. The best harvest period of Bletilla is the third year after cultivation. Plant height, leaf width and stem diameter may be important indicators of potential excellent germplasms. These results provide important information required for the efficient screening and utilization of Bletilla germplasm resources.


Assuntos
Orchidaceae , Plantas Medicinais , Flores , Orchidaceae/genética , Fenótipo , Folhas de Planta , Plantas Medicinais/genética
13.
Sci Rep ; 11(1): 23651, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880330

RESUMO

Growing popularity of herbal medicine has increased the demand of medicinal orchids in the global markets leading to their overharvesting from natural habitats for illegal trade. To stop such illegal trade, the correct identification of orchid species from their traded products is a foremost requirement. Different species of medicinal orchids are traded as their dried or fresh parts (tubers, pseudobulbs, stems), which look similar to each other making it almost impossible to identify them merely based on morphological observation. To overcome this problem, DNA barcoding could be an important method for accurate identification of medicinal orchids. Therefore, this research evaluated DNA barcoding of medicinal orchids in Asia where illegal trade of medicinal orchids has long existed. Based on genetic distance, similarity-based and tree-based methods with sampling nearly 7,000 sequences from five single barcodes (ITS, ITS2, matK, rbcL, trnH-psbA and their seven combinations), this study revealed that DNA barcoding is effective for identifying medicinal orchids. Among single locus, ITS performed the best barcode, whereas ITS + matK exhibited the most efficient barcode among multi-loci. A barcode library as a resource for identifying medicinal orchids has been established which contains about 7,000 sequences of 380 species (i.e. 90%) of medicinal orchids in Asia.


Assuntos
Código de Barras de DNA Taxonômico , DNA de Plantas/genética , Orchidaceae/genética , Plantas Medicinais/genética , Ásia , Análise de Sequência de DNA/métodos
14.
BMC Plant Biol ; 21(1): 504, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724893

RESUMO

BACKGROUND: Bletilla striata is one of the important species belonging to the Bletilla genus of Orchidaceae. Since its extracts have an astringent effect on human tissues, B. striata is widely used for hemostasis and healing. Recently, some other beneficial effects have also been uncovered, such as antioxidation, antiinflammation, antifibrotic, and immunomodulatory activities. As a key step towards a thorough understanding on the medicinal ingredient production in B. striata, deciphering the regulatory codes of the metabolic pathways becomes a major task. RESULTS: In this study, three organs (roots, tubers and leaves) of B. striata were analyzed by integrating transcriptome sequencing and untargeted metabolic profiling data. Five different metabolic pathways, involved in polysaccharide, sterol, flavonoid, terpenoid and alkaloid biosynthesis, were investigated respectively. For each pathway, the expression patterns of the enzyme-coding genes and the accumulation levels of the metabolic intermediates were presented in an organ-specific way. Furthermore, the relationships between enzyme activities and the levels of the related metabolites were partially inferred. Within the biosynthetic pathways of polysaccharides and flavonoids, long-range phytochemical transportation was proposed for certain metabolic intermediates and/or the enzymes. CONCLUSIONS: The data presented by this work could strengthen the molecular basis for further studies on breeding and medicinal uses of B. striata.


Assuntos
Redes e Vias Metabólicas/genética , Orchidaceae/química , Orchidaceae/genética , Orchidaceae/metabolismo , Extratos Vegetais/metabolismo , Folhas de Planta/química , Raízes de Plantas/química , Tubérculos/química , China , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Plantas Medicinais/química , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Transcriptoma
15.
Sci Rep ; 11(1): 21950, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34754039

RESUMO

Bletilla striata (Thunb.) Reichb.f. (BS) is a traditional Chinese medicine with numerous beneficial effects. In our previous study, Aspergillus flavus was isolated from B. striata. To explore the physiological and molecular mechanisms of Aspergillus flavus elicitor (1-G4) that promoted Bletilla striata growth, in this study, we performed the determination of growth indexes and transcriptomics and metabolomics analysis under 5% and 10% 1-G4 conditions. Results showed that 1-G4 elicitor could significantly promote the growth and development of B. striata. With the increasing concentration of 1-G4 elicitor, the contents of SA, ICAld, and ME-IAA significantly increased while the IP and ACC contents decreased dramatically. A total of 1657 DEGs (763 up-regulated and 894 down-regulated) between the control (CK) and 5% elicitor (CK vs G5) and 2415 DEGs (1208 up-regulated and 1207 down-regulated) between the control and 10% elicitor (CK vs G10) were identified. Further, we found that 22, 38, and 2 unigenes were involved in ME-IAA, IP, and ACC, respectively. It was indicated that these unigenes might be involved in B. striata growth. Overall, the current study laid a theoretical foundation for the effective utilization of endophytic fungi and the optimization of germplasm resources of B. striata.


Assuntos
Genes de Plantas , Medicina Tradicional Chinesa , Metaboloma , Orchidaceae/genética , Reguladores de Crescimento de Plantas/genética , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Transcriptoma
16.
Mol Biol Rep ; 48(3): 2123-2132, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33630208

RESUMO

Cymbidium geringii has high ornamental and economic importance. Its traits, including flower shape, size, and color, are highly sought by orchid breeders. Gaining insights into the molecular basis of C. geringi flower development would accelerate genetic improvement of other orchids. Methods and Results: Here, C. goeringii RNA was purified from normal and peloric mutant flowers, and cDNA libraries constructed for Illumina sequencing. We generated 329,156,782 clean reads, integrated them, and then assembled into 236,811 unigenes averaging 595 bp long. A total of 11,992 differentially expressed genes s, of which 6119 were upregulated and 5873 downregulated, were uncovered in peloric mutant flower buds relative to normal flower buds. Kyoto Encyclopedia of Genes and Genomes enrichment assessments posited that these differentially expressed genes are associated with "Photosynthesis", "Linoleic acid metabolism", as well as "Plant hormone signal transduction" cascades. The DEGs were designated to 12 remarkably enriched GO terms, and 16 cell wall associated GO terms. The expression level of 16 determined genes were verified using RT-qPCR. Conclusions: Our gene expression data may be used to study the regulatory mechanism of flower organ development in C. geringi.


Assuntos
Flores/crescimento & desenvolvimento , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/genética , Flores/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Anotação de Sequência Molecular , Orchidaceae/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA
17.
Plant Biol (Stuttg) ; 23(1): 130-139, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32959484

RESUMO

The Orchidaceae family presents one of the most extravagant pollination mechanisms: deception. While many studies on reproductive success have been performed on food-deception orchids, less have been performed on sexually deceptive orchids. Here, we focused on Ophrys balearica P. Delforge, an endemic orchid of the Balearic Islands, to study its reproductive ecology, the spatio-temporal variation of its reproductive success and the individual (floral display and geospatial position) and population parameters (patch size, shape and density) that affect its reproductive success. We performed hand-pollination experiments, along with the recording of floral display parameters and GPS position of over 1,100 individuals from seven populations in two consecutive years. We applied, for the first time, GIS tools to analyse the effects of individual's position within the population on the reproductive success. Reproductive success was measured both in male (removed pollinia) and female (fruit set) fitness. The results confirm that this species is pollinator-dependent and mostly allogamous, but also self-compatible. This species showed high values for the cumulative inbreeding depression index and high pollen limitation. Male fitness was almost equal to female fitness between years and populations, and reproductive success exhibited huge spatio-temporal variation. Although we did not find strong correlations between floral display and reproductive success, patches with low-plant density and individuals in the external portion of the population showed significantly higher plant fitness. These findings must be considered in conservation actions for endangered orchid species, especially considering that most orchids are strongly dependent on pollinators for their species' fitness.


Assuntos
Flores , Aptidão Genética , Orchidaceae/genética , Dispersão Vegetal , Fenótipo , Pólen , Polinização , Espanha , Análise Espacial
18.
Funct Plant Biol ; 47(10): 937-944, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32586414

RESUMO

The herbal orchid Bletilla striata (Thunb.) Rchb.f. has a long cultivation history and has been widely used in medicines and cosmetics. The fungal infection leaf blight (LB) seriously threatens B. striata cultivation. Here, we systemically collected wild B. striata accessions and isolated the accessions with strong resistance against LB. We carried out proteomic profiling analysis of LB-resistant and LB-susceptible accessions, and identified a large number of differentially expressed proteins with significant gene ontology enrichment for 'oxidoreductase activity.' Of the proteins identified in the reactive oxygen species signalling pathway, the protein abundance of the Cu-Zn superoxide dismutase BsSOD1 and its gene expression level were higher in LB-resistant accessions than in LB-susceptible lines. Transient expression of the dismutase fused with yellow fluorescent protein determined that its subcellular localisation is in the cytoplasm. Our study provides new insights into the molecular markers associated with fungal infection in B. striata.


Assuntos
Orchidaceae , Proteômica , Perfilação da Expressão Gênica , Orchidaceae/genética , Superóxido Dismutase/genética
19.
Int J Mol Sci ; 21(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183174

RESUMO

The plant nonexpressor of pathogenesis-related 1 (NPR1) and pathogenesis-associated 1 (PR1) genes play fundamental roles in plant immunity response, as well as abiotic-stress tolerance. Nevertheless, comprehensive identification and characterization of NPR1 and PR1 homologs has not been conducted to date in Cymbidium orchids, a valuable industrial crop cultivated as ornamental and medicinal plants worldwide. Herein, three NPR1-like (referred to as CsNPR1-1, CsNPR1-2, and CsNPR1-3) and two PR1-like (CsPR1-1 and CsPR1-2) genes were genome-widely identified from Cymbidium orchids. Sequence and phylogenetic analysis revealed that CsNPR1-1 and CsNPR1-2 were grouped closest to NPR1 homologs in Zea mays (sharing 81.98% identity) and Phalaenopsis (64.14%), while CsNPR1-3 was classified into a distinct group with Oryza sativa NPR 3 (57.72%). CsPR1-1 and CsPR1-2 were both grouped closest to Phalaenopsis PR1 and other monocot plants. Expression profiling showed that CsNPR1 and CsPR1 were highly expressed in stem/pseudobulb and/or flower. Salicylic acid (SA) and hydrogen peroxide (H2O2) significantly up-regulated expressions of CsNPR1-2, CsPR1-1 and CsPR1-2, while CsNPR1-3, CsPR1-1 and CsPR1-2 were significantly up-regulated by abscisic acid (ABA) or salinity (NaCl) stress. In vitro transcripts of entire Cymbidium mosaic virus (CymMV) genomic RNA were successfully transfected into Cymbidium protoplasts, and the CymMV infection up-regulated the expression of CsNPR1-2, CsPR1-1 and CsPR1-2. Additionally, these genes were transiently expressed in Cymbidium protoplasts for subcellular localization analysis, and the presence of SA led to the nuclear translocation of the CsNPR1-2 protein, and the transient expression of CsNPR1-2 greatly enhanced the expression of CsPR1-1 and CsPR1-2. Collectively, the CsNPR1-2-mediated signaling pathway is SA-dependent, and confers to the defense against CymMV infection in Cymbidium orchids.


Assuntos
Ácido Abscísico/farmacologia , Orchidaceae/genética , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Estresse Salino , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/farmacologia , Vírus do Mosaico/patogenicidade , Orchidaceae/efeitos dos fármacos , Orchidaceae/virologia , Proteínas de Plantas/metabolismo , Salicilatos/farmacologia , Homologia de Sequência , Transcriptoma
20.
Heredity (Edinb) ; 123(4): 458-469, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31391556

RESUMO

Multiple ecological and life-history traits shape the fine-scale spatial genetic structure (FSGS) of a given population. The occurrence in core versus peripheral populations, levels of outcrossing, pollen and seed dispersal, and hybridization are important biological properties that influence the kinship of individuals within populations. We examined spatial genetic structure within 15 populations of Epidendrum fulgens and E. puniceoluteum distributed along a linear gradient of Brazilian coastal vegetation, including both allopatric and sympatric populations where the two orchid species hybridize. We analyzed 581 mapped specimens using nine simple sequence repeat loci, aiming to investigate how geographic distribution and hybridization shape within-population FSGS. A significant increase in FSGS was found towards peripheral populations, compared to core populations. Analysis of short-distance and long-distance components of FSGS identified biparental inbreeding and higher levels of FSGS at peripheral populations, when compared to core populations. In contrast, the relatively high density of reproductive adults in core populations potentially leads to highly overlapping seed and pollen movement, decreasing FSGS. Hybridization was an important factor shaping within-population spatial genetic structure at sympatric sites, decreasing the FSGS observed in parental species. Our results indicate that different ecological forces act in concert to create a gradient of FSGS along species distribution ranges, shaped by extensive levels of intraspecific and interspecific gene exchange.


Assuntos
Ecossistema , Estruturas Genéticas , Genética Populacional , Orchidaceae/genética , Brasil/epidemiologia , Endogamia , Repetições de Microssatélites , Pólen/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA