Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FEBS Open Bio ; 11(4): 1054-1075, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33512058

RESUMO

DNA damage removal by nucleotide excision repair (NER) and replicative bypass via translesion synthesis (TLS) and template switch (TSw) are important in ensuring genome stability. In this study, we tested the applicability of an SV40 large T antigen-based replication system for the simultaneous examination of these damage tolerance processes. Using both Sanger and next-generation sequencing combined with lesion-specific qPCR and replication efficiency studies, we demonstrate that this system works well for studying NER and TLS, especially its one-polymerase branch, while it is less suited to investigations of homology-related repair processes, such as TSw. Cis-syn cyclobutane pyrimidine dimer photoproducts were replicated with equal efficiency to lesion-free plasmids in vitro, and the majority of TLS on this lesion could be inhibited by a peptide (PIR) specific for the polη-PCNA interaction interface. TLS on 6-4 pyrimidine-pyrimidone photoproduct proved to be inefficient and was slightly facilitated by PIR as well as by a recombinant ubiquitin-binding zinc finger domain of polη in HeLa extract, possibly by promoting polymerase exchange. Supplementation of the extract with recombinant PCNA variants indicated the dependence of TLS on PCNA ubiquitylation. In contrast to active TLS and NER, we found no evidence of successful TSw in cellular extracts. The established methods can promote in vitro investigations of replicative DNA damage bypass.


Assuntos
Antígenos Virais de Tumores/metabolismo , Dano ao DNA , Replicação do DNA , Linhagem Celular , Células Cultivadas , Reparo do DNA , Ordem dos Genes , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas In Vitro , Plasmídeos/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Transfecção , Raios Ultravioleta
2.
Biomed Res Int ; 2020: 3536761, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123569

RESUMO

Schisandra chinensis, which has a high development value, has long been used as medicine. Its mature fruits (called Wuweizi in Chinese) have long been used in the famous traditional Chinese medicine (TCM) recorded in the "Chinese Pharmacopoeia." Chloroplasts (CP) are the highly conserved primitive organelles in plants, which can serve as the foundation for plant classification and identification. This study introduced the structures of the CP genomes of three Schisandraceae species and analyzed their phylogenetic relationships. Comparative analyses on the three complete chloroplast genomes can provide us with useful knowledge to identify the three plants. In this study, approximately 5 g fresh leaves were harvested for chloroplast DNA isolation according to the improved extraction method. A total of three chloroplast DNAs were extracted. Afterwards, the chloroplast genomes were reconstructed using denovo combined with reference-guided assemblies. General characteristics of the chloroplast genome and genome comparison with three Schisandraceae species was analyzed by corresponding software. The total sizes of complete chloroplast genomes of S. chinensis, S. sphenanthera, and Kadsura coccinea were 146875 bp, 146842 bp, and 145399 bp, respectively. Altogether, 124 genes were annotated, including 82 protein-coding genes, 34 tRNAs, and 8 rRNAs of all 3 species. In SSR analysis, only S. chinensis was annotated to hexanucleotides. Moreover, comparative analysis of chloroplast Schisandraceae genome sequences revealed that the gene order and gene content were slightly different among Schisandraceae species. Finally, phylogenetic trees were reconstructed, based on the genome-wide SNPs of 38 species. The method can be used to identify and differentially analyze Schisandraceae plants and offer useful information for phylogenetics as well as further studies on traditional medicinal plants.


Assuntos
Cloroplastos/genética , Genoma de Cloroplastos/genética , Plantas Medicinais/genética , Schisandraceae/genética , DNA de Cloroplastos/genética , Ordem dos Genes/genética , Genômica/métodos , Filogenia , Polimorfismo de Nucleotídeo Único/genética
3.
J Immunol Res ; 2020: 2635230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33029537

RESUMO

This study was conducted to evaluate the effects of recombinant probiotic bacteria as a candidate for oral vaccine with the potential of treating allergy to Amaranthus retroflexus pollens. The main gene of this allergen, Ama r 2, was cloned into the food grade plasmid pNZ7025 and then was electrotransformed into the food grade Lactococcus lactis NZ1330. No expression was observed in the primary structure due to the distance between the ribosome binding site and the start codon. Therefore, the vector structure was corrected using the site-directed mutagenesis (SDM) technique. The cell extract of this strain was used for assessing the expression of the recombinant allergen in western blot analysis, and the existence of this protein with a molecular weight of 14.2 kDa was confirmed. To evaluate the efficacy of this strain in the treatment of allergies as an oral vaccine, probiotic ice cream was prepared. After the sensitization of mice, the treatment was performed by oral immunotherapy for 4 weeks, 4 to 5 times per week. 20 µl of functional ice cream with 1012 CFU/ml of r-L. lactis NZ1330 significantly reduced the serum IgE level. The levels of IFN-γ and TGF-ß cytokines increased in the 20 µl ice cream treatment group as well as 40 µg/ml pure allergen compared with the PBS-treated group, and IL-4 cytokine levels decreased compared with the PBS-treated group. Overall, 20 µl ice cream with 1012 CFU/ml of the recombinant bacteria resulted in the best performance in terms of improving allergies to Th1 and Treg responses.


Assuntos
Dessensibilização Imunológica/métodos , Hipersensibilidade/imunologia , Hipersensibilidade/terapia , Sorvetes , Lactococcus lactis/imunologia , Probióticos/administração & dosagem , Alérgenos/genética , Alérgenos/imunologia , Animais , Anticorpos/imunologia , Antígenos de Plantas/genética , Antígenos de Plantas/imunologia , Biomarcadores , Clonagem Molecular , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Ordem dos Genes , Hipersensibilidade/metabolismo , Imunização , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Lactococcus lactis/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Plasmídeos/genética , Pólen/genética , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Rinite Alérgica Sazonal/terapia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
4.
Plant Cell Environ ; 43(11): 2699-2711, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32816352

RESUMO

Abscisic acid (ABA) signaling is a vital plant signaling pathway for plant responses to stress conditions. ABA treatment can alter global gene expression patterns and cause significant phenotypic changes. We investigated the responses to ABA treatment during flowering in Arabidopsis thaliana. Dipping the flowers of CARK3 T-DNA mutants in ABA solution, led to less reduction of pollen fertility than in the wild type plants (Col-0). We demonstrated that PMEIL, a gene located downstream of CARK3, directly affects pollen fertility. Due to the close arrangement of CARK3 and PMEIL, CARK3 expression represses transcription of PMEIL in an ABA-dependent manner through transcriptional interference. Our study uncovers a molecular mechanism underlying ABA-mediated pollen sterility and provides an example of how transcriptional interference caused by close arrangement of genes may mediate stress responses during plant reproduction.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Reguladores de Crescimento de Plantas/fisiologia , Infertilidade das Plantas/genética , Pólen/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Ordem dos Genes/genética , Ordem dos Genes/fisiologia , Germinação , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Infertilidade das Plantas/fisiologia , Pólen/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia
5.
Biomed Res Int ; 2020: 6490164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685515

RESUMO

Rheum species present a significant economic value. Traditional Chinese medicine rhubarb is an important medicinal material in China. It has a long history of use, with a record of use as early as two thousand years ago. Here, we determined the complete chloroplast genome sequences of Rheum nobile and Rheum acuminatum and comprehensively compared them to two other available Rheum cp genomes at the genome scale. The results revealed cp genomes ranging in size from 159,051 to 161,707 bp with a similar typical quadripartite and circular structure. The genome organization, gene numbers, gene order, and GC contents of these four Rheum cp genomes were similar to those of many angiosperm cp genomes. Repeats and microsatellites were detected in the R. nobile and R. acuminatum cp genomes. The Mauve alignment revealed that there were no rearrangements in the cp genomes of the four Rheum species. Thirteen mutational hotspots for genome divergence were identified, which could be utilized as potential markers for phylogenetic studies and the identification of Rheum species. The phylogenetic relationships of the four species showed that the members of Rheum cluster into a single clade, indicating their close relationships. Our study provides valuable information for the taxonomic, phylogenetic, and evolutionary analysis of Rheum.


Assuntos
Proteínas de Cloroplastos/genética , Genoma de Cloroplastos , Rheum/genética , Composição de Bases , Evolução Molecular , Ordem dos Genes , Repetições de Microssatélites , Fases de Leitura Aberta , Filogenia , Rheum/classificação , Rheum/metabolismo , Análise de Sequência de DNA/métodos , Especificidade da Espécie , Sequenciamento Completo do Genoma/métodos
6.
Hum Gene Ther ; 31(1-2): 70-79, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31650869

RESUMO

Cocaine addiction continues to impose major burdens on affected individuals and broader society but is highly resistant to medical treatment or psychotherapy. This study was undertaken with the goal of Food and Drug Administration (FDA) permission for a first-in-human clinical trial of a gene therapy for treatment-seeking cocaine users to become and remain abstinent. The approach was based on intravenous administration of AAV8-hCocH, an adeno-associated viral vector encoding a modified plasma enzyme that metabolizes cocaine into harmless by-products. To assess systemic safety, we conducted "Good Laboratory Practice" (GLP) studies in cocaine-experienced and cocaine-naive mice at doses of 5E12 and 5E13 vector genomes/kg. Results showed total lack of viral vector-related adverse effects in all tests performed. Instead, mice given one injection of AAV8-hCocH and regular daily injections of cocaine had far less tissue pathology than cocaine-injected mice with no vector treatment. Biodistribution analysis showed the vector located almost exclusively in the liver. These results indicate that a liver-directed AAV8-hCocH gene transfer at reasonable dosage is safe, well tolerated, and effective. Thus, gene transfer therapy emerges as a radically new approach to treat compulsive cocaine abuse. In fact, based on these positive findings, the FDA recently accepted our latest request for investigational new drug application (IND 18579).


Assuntos
Hidrolases de Éster Carboxílico/genética , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/genética , Proteínas Recombinantes/genética , Animais , Biomarcadores , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/terapia , Dependovirus/classificação , Suscetibilidade a Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Ordem dos Genes , Terapia Genética/métodos , Terapia Genética/normas , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Humanos , Masculino , Camundongos , Mutação , Distribuição Tecidual , Resultado do Tratamento
7.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383823

RESUMO

The basic region-leucine zipper (bZIP) transcription factors (TFs) form homodimers and heterodimers via the coil-coil region. The bZIP dimerization network influences gene expression across plant development and in response to a range of environmental stresses. The recent release of the most comprehensive potato reference genome was used to identify 80 StbZIP genes and to characterize their gene structure, phylogenetic relationships, and gene expression profiles. The StbZIP genes have undergone 22 segmental and one tandem duplication events. Ka/Ks analysis suggested that most duplications experienced purifying selection. Amino acid sequence alignments and phylogenetic comparisons made with the Arabidopsis bZIP family were used to assign the StbZIP genes to functional groups based on the Arabidopsis orthologs. The patterns of introns and exons were conserved within the assigned functional groups which are supportive of the phylogeny and evidence of a common progenitor. Inspection of the leucine repeat heptads within the bZIP domains identified a pattern of attractive pairs favoring homodimerization, and repulsive pairs favoring heterodimerization. These patterns of attractive and repulsive heptads were similar within each functional group for Arabidopsis and S. tuberosum orthologs. High-throughput RNA-seq data indicated the most highly expressed and repressed genes that might play significant roles in tissue growth and development, abiotic stress response, and response to pathogens including Potato virus X. These data provide useful information for further functional analysis of the StbZIP gene family and their potential applications in crop improvement.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Família Multigênica , Solanum tuberosum/genética , Motivos de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Sítios de Ligação , Mapeamento Cromossômico , Sequência Conservada , Éxons , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ordem dos Genes , Genoma de Planta , Íntrons , Especificidade de Órgãos , Filogenia , Regiões Promotoras Genéticas , Solanum tuberosum/classificação , Solanum tuberosum/metabolismo , Estresse Fisiológico , Transcriptoma
8.
Int J Mol Sci ; 20(11)2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163646

RESUMO

The genus Cuscuta (Convolvulaceae) comprises well-known parasitic plants. Cuscuta species are scientifically valuable, as their life style causes extensive crop damage. Furthermore, dried seeds of C. chinensis are used as a Korean traditional herbal medicine. Despite the importance of Cuscuta species, it is difficult to distinguish these plants by the naked eye. Moreover, plastid sequence information available for Cuscuta species is limited. In this study, we distinguished between C. chinensis and C. japonica using morphological characterisation of reproductive organs and molecular characterisation of chloroplast genomes. The differences in morphological characteristics of reproductive organs such as style, stigma, infrastaminal scale, seed shape and testa ornamentation were useful for distinguishing between C. japonica and C. chinensis. Analysis of chloroplast genomes revealed drastic differences in chloroplast genome length and gene order between the two species. Although both species showed numerous gene losses and genomic rearrangements, chloroplast genomes showed highly similar structure within subgenera. Phylogenetic analysis of Cuscuta chloroplast genomes revealed paraphyletic groups within subgenera Monogynella and Grammica, which is consistent with the APG IV system of classification. Our results provide useful information for the taxonomic, phylogenetic and evolutionary analysis of Cuscuta and accurate identification of herbal medicine.


Assuntos
Cuscuta/fisiologia , Genoma de Cloroplastos , Genoma de Planta , Genômica , Fenótipo , Reprodução , Cuscuta/citologia , Cuscuta/ultraestrutura , Ordem dos Genes , Estudos de Associação Genética , Genômica/métodos , Filogenia
9.
Molecules ; 24(6)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875988

RESUMO

The genus Angelica (Apiaceae) comprises valuable herbal medicines. In this study, we determined the complete chloroplast (CP) genome sequence of A. polymorpha and compared it with that of Ligusticum officinale (GenBank accession no. NC039760). The CP genomes of A. polymorpha and L. officinale were 148,430 and 147,127 bp in length, respectively, with 37.6% GC content. Both CP genomes harbored 113 unique functional genes, including 79 protein-coding, four rRNA, and 30 tRNA genes. Comparative analysis of the two CP genomes revealed conserved genome structure, gene content, and gene order. However, highly variable regions, sufficient to distinguish between A. polymorpha and L. officinale, were identified in hypothetical chloroplast open reading frame1 (ycf1) and ycf2 genic regions. Nucleotide diversity (Pi) analysis indicated that ycf4⁻chloroplast envelope membrane protein (cemA) intergenic region was highly variable between the two species. Phylogenetic analysis revealed that A. polymorpha and L. officinale were well clustered at family Apiaceae. The ycf4-cemA intergenic region in A. polymorpha carried a 418 bp deletion compared with L. officinale. This region was used for the development of a novel indel marker, LYCE, which successfully discriminated between A. polymorpha and L. officinale accessions. Our results provide important taxonomic and phylogenetic information on herbal medicines and facilitate their authentication using the indel marker.


Assuntos
Angelica/classificação , Genoma de Cloroplastos , Ligusticum/classificação , Sequenciamento Completo do Genoma/métodos , Angelica/genética , Composição de Bases , Cloroplastos/genética , DNA Intergênico , Evolução Molecular , Ordem dos Genes , Tamanho do Genoma , Mutação INDEL , Ligusticum/genética , Fases de Leitura Aberta , Filogenia
10.
Int J Mol Sci ; 21(1)2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905791

RESUMO

The apparent lack of success in curing cancer that was evidenced in the last four decades of molecular medicine indicates the need for a global re-thinking both its nature and the biological approaches that we are taking in its solution. The reductionist, one gene/one protein method that has served us well until now, and that still dominates in biomedicine, requires complementation with a more systemic/holistic approach, to address the huge problem of cross-talk between more than 20,000 protein-coding genes, about 100,000 protein types, and the multiple layers of biological organization. In this perspective, the relationship between the chromatin network organization and gene expression regulation plays a fundamental role. The elucidation of such a relationship requires a non-linear thermodynamics approach to these biological systems. This change of perspective is a necessary step for developing successful 'tumour-reversion' therapeutic strategies.


Assuntos
Reprogramação Celular/genética , Cromatina/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Termodinâmica , Cromatina/química , Cromatina/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação da Expressão Gênica , Ordem dos Genes , Genoma , Humanos , Neoplasias/genética
11.
Hum Gene Ther ; 29(10): 1183-1201, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30160169

RESUMO

Genetically modified, autologous hematopoietic stem and progenitor cells (HSPCs) represent a new class of genetic medicine. Following this therapeutic paradigm, we are developing a product candidate, designated CD68-ET3-LV CD34+, for the treatment of the severe bleeding disorder, hemophilia A. The product consists of autologous CD34+ cells transduced with a human immunodeficiency virus 1-based, monocyte lineage-restricted, self-inactivating lentiviral vector (LV), termed CD68-ET3-LV, encoding a bioengineered coagulation factor VIII (fVIII) transgene, termed ET3, designed for enhanced expression. This vector was shown capable of high-titer manufacture under clinical scale and Good Manufacturing Practice. Biochemical and immunogenicity testing of recombinant ET3, as well as safety and efficacy testing of CD68-ET3-LV HSPCs, were utilized to demonstrate overall safety and efficacy in murine models. In the first model, administration of CD68-ET3-LV-transduced stem-cell antigen-1+ cells to hemophilia A mice resulted in sustained plasma fVIII production and hemostatic correction without signs of toxicity. Patient-derived, autologous mobilized peripheral blood (mPB) CD34+ cells are the clinical target cells for ex vivo transduction using CD68-ET3-LV, and the resulting genetically modified cells represent the investigational drug candidate. In the second model, CD68-ET3-LV gene transfer into mPB CD34+ cells isolated from normal human donors was utilized to obtain in vitro and in vivo pharmacology, pharmacokinetic, and toxicology assessment. CD68-ET3-LV demonstrated reproducible and efficient gene transfer into mPB CD34+ cells, with vector copy numbers in the range of 1 copy per diploid genome equivalent without affecting clonogenic potential. Differentiation of human CD34+ cells into monocytes was associated with increased fVIII production, supporting the designed function of the CD68 promoter. To assess in vivo pharmacodynamics, CD68-ET3-LV CD34+ cell product was administered to immunodeficient mice. Treated mice displayed sustained plasma fVIII levels and no signs of product related toxicity. Collectively, the findings of the current study support the preclinical safety and efficacy of CD68-ET3-LV CD34+.


Assuntos
Fator VIII/genética , Engenharia Genética , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Hemofilia A/genética , Hemofilia A/terapia , Lentivirus/genética , Animais , Coagulação Sanguínea , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Expressão Gênica , Ordem dos Genes , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutagênese Insercional , Suínos , Transdução Genética , Transgenes , Resultado do Tratamento , Integração Viral
12.
Int J Mol Sci ; 19(7)2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976857

RESUMO

Gentiana section Cruciata is widely distributed across Eurasia at high altitudes, and some species in this section are used as traditional Chinese medicine. Accurate identification of these species is important for their utilization and conservation. Due to similar morphological and chemical characteristics, correct discrimination of these species still remains problematic. Here, we sequenced three complete chloroplast (cp) genomes (G. dahurica, G. siphonantha and G. officinalis). We further compared them with the previously published plastomes from sect. Cruciata and developed highly polymorphic molecular markers for species authentication. The eight cp genomes shared the highly conserved structure and contained 112 unique genes arranged in the same order, including 78 protein-coding genes, 30 tRNAs, and 4 rRNAs. We analyzed the repeats and nucleotide substitutions in these plastomes and detected several highly variable regions. We found that four genes (accD, clpP, matK and ycf1) were subject to positive selection, and sixteen InDel-variable loci with high discriminatory powers were selected as candidate barcodes. Our phylogenetic analyses based on plastomes further confirmed the monophyly of sect. Cruciata and primarily elucidated the phylogeny of Gentianales. This study indicated that cp genomes can provide more integrated information for better elucidating the phylogenetic pattern and improving discriminatory power during species authentication.


Assuntos
Cloroplastos/genética , Genoma de Planta , Gentiana/classificação , Gentiana/genética , Rubiaceae/classificação , Rubiaceae/genética , Biblioteca Gênica , Ordem dos Genes , Loci Gênicos , Marcadores Genéticos , Mutação INDEL , Filogenia , Sequenciamento Completo do Genoma
13.
J Virol Methods ; 256: 17-23, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29481882

RESUMO

Acquired immunodeficiency syndrome (AIDS) is a serious worldwide disease caused by infection with the human immunodeficiency virus (HIV). C-C chemokine receptor 5 (CCR5) and C-X-C chemokine receptor 4 (CXCR4) are important coreceptors mediating HIV-1 cell entry. Many new anti-HIV drugs are currently in preclinical and clinical trials; however, drug development has proceeded slowly partly because of the lack of a high-throughput system to screen these drugs. Here, we describe the development of a novel dual-luciferase assay using a CCR5/CXCR4 promoter-driven firefly and Renilla luciferase vector (pGL4.10-RLUC-CCR5/CXCR4). Drugs were screened for the ability to regulate CCR5 and CXCR4 promoter activities. The CCR5 and CXCR4 promoters were inserted separately into the recombinant vector and transfected into the acute T lymphocyte leukemia cell line H9. Treatment of stable transfected cells with four traditional Chinese medicine compounds resulted in the dose-dependent inhibition of the CXCR4 and CCR5 promoter activities. The dual-luciferase reporter assay provides a rapid and direct method to screen anti-AIDS/HIV drugs.


Assuntos
Fármacos Anti-HIV/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Genes Reporter , Luciferases , Regiões Promotoras Genéticas , Receptores CCR5/genética , Receptores CXCR4/genética , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Ordem dos Genes , Vetores Genéticos/genética , Humanos , Luciferases/genética
14.
Leuk Res ; 65: 67-73, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29310020

RESUMO

The National Comprehensive Cancer Network (NCCN) defines the following types of acute myeloid leukemia (AML) as favorable-risk: acute promyelocytic leukemia with t(15;17) (APL); AML with core-binding factor (CBF) rearrangements, including t(8;21) and inv(16) or t(16;16) without mutations in KIT (CBF-KITwt); and AML with normal cytogenetics and mutations in NPM1 (NPM1mut); or biallelic mutations in CEBPA (CEBPAmut/mut), without FLT3-ITD. Although these AMLs are categorized as favorable risk by NCCN, clinical experience suggests that there are differences in clinical outcome amongst these cytogenetically and molecularly distinct leukemias. This study compared clinical and genotypic characteristics of 60 patients with favorable-risk AML, excluding APL, and demonstrated significant differences between them. Patients with NPM1mut AML were significantly older than those in the other groups. Targeted next-generation sequencing on DNA from peripheral blood or bone marrow revealed significantly more mutations in NPM1mut AML than the other favorable-risk diseases, especially in genes related to DNA splicing and methylation. CEBPAmut/mut AMLs exhibited more mutations in transcription-related genes. Patients with NPM1mut AML and CEBPAmut/mut AML show significantly reduced overall survival in comparison with CBF-KITwt AML. These findings emphasize that favorable-risk AML patients have divergent outcomes and that differences in clinical and genotypic characteristics should be considered in their evaluation and management.


Assuntos
Genótipo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Adulto , Fatores Etários , Idoso , Proteínas Estimuladoras de Ligação a CCAAT/genética , Fatores de Ligação ao Core/genética , Feminino , Ordem dos Genes , Humanos , Estimativa de Kaplan-Meier , Cariotipagem , Leucemia Mieloide Aguda/classificação , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Nucleares/genética , Nucleofosmina , Prognóstico , Proteínas Proto-Oncogênicas c-kit/genética , Estudos Retrospectivos , Medição de Risco , Resultado do Tratamento
15.
Sci Rep ; 7(1): 16612, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192255

RESUMO

Neoceratitis asiatica (Becker) (Diptera: Tephritidae) is one of the most important fruit pestsof wolfberry which is a traditional Chinese medicinal herb. We characterized the complete mitochondrial genome of N. asiatica and described its organization in this study. This mitogenome had a total length of 15,481 bp, consisting of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a non-coding region (A + T-rich control region). The overall base composition of N. asiatica in descending order was 40.6% A, 8.5% G, 38.4% T and 12.6% C. The phylogenetic relationships shows that Ceratitis capitata and N. asiatica may be sister taxa. This is the first report of the complete mitochondrial genome of a member of the Neoceratitis Genus and the complete mitochondrial genome sequence may provide useful information for phylogenetic analysis and studies between the genera Ceratitis and Neoceratitis.


Assuntos
Genoma Mitocondrial , Tephritidae/classificação , Tephritidae/genética , Animais , Composição de Bases , Biologia Computacional/métodos , Ordem dos Genes , Genômica/métodos , Conformação de Ácido Nucleico , Filogenia , RNA de Transferência/química , RNA de Transferência/genética , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
16.
Stem Cell Reports ; 9(4): 1221-1233, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28966121

RESUMO

Lowering total tau levels is an attractive therapeutic strategy for Alzheimer's disease and other tauopathies. High-throughput screening in neurons derived from human induced pluripotent stem cells (iPSCs) is a powerful tool to identify tau-targeted therapeutics. However, such screens have been hampered by heterogeneous neuronal production, high cost and low yield, and multi-step differentiation procedures. We engineered an isogenic iPSC line that harbors an inducible neurogenin 2 transgene, a transcription factor that rapidly converts iPSCs to neurons, integrated at the AAVS1 locus. Using a simplified two-step protocol, we differentiated these iPSCs into cortical glutamatergic neurons with minimal well-to-well variability. We developed a robust high-content screening assay to identify tau-lowering compounds in LOPAC and identified adrenergic receptors agonists as a class of compounds that reduce endogenous human tau. These techniques enable the use of human neurons for high-throughput screening of drugs to treat neurodegenerative disease.


Assuntos
Diferenciação Celular , Descoberta de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas tau/genética , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Glutamina/metabolismo , Humanos , Potenciais da Membrana , Neurônios/citologia , Proteínas tau/metabolismo
17.
Int J Mol Sci ; 18(9)2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28837061

RESUMO

The family Aristolochiaceae, comprising about 600 species of eight genera, is a unique plant family containing aristolochic acids (AAs). The complete chloroplast genome sequences of Aristolochia debilis and Aristolochia contorta are reported here. The results show that the complete chloroplast genomes of A. debilis and A. contorta comprise circular 159,793 and 160,576 bp-long molecules, respectively and have typical quadripartite structures. The GC contents of both species were 38.3% each. A total of 131 genes were identified in each genome including 85 protein-coding genes, 37 tRNA genes, eight rRNA genes and one pseudogene (ycf1). The simple-sequence repeat sequences mainly comprise A/T mononucletide repeats. Phylogenetic analyses using maximum parsimony (MP) revealed that A. debilis and A. contorta had a close phylogenetic relationship with species of the family Piperaceae, as well as Laurales and Magnoliales. The data obtained in this study will be beneficial for further investigations on A. debilis and A. contorta from the aspect of evolution, and chloroplast genetic engineering.


Assuntos
Aristolochia/classificação , Aristolochia/genética , Genoma de Cloroplastos , Genômica , Filogenia , Composição de Bases , Códon , Ordem dos Genes , Genes de Plantas , Genoma de Planta , Genômica/métodos , Fases de Leitura Aberta , Plantas Medicinais/classificação , Plantas Medicinais/genética , Sequências Repetitivas de Ácido Nucleico
18.
Molecules ; 22(8)2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28800082

RESUMO

The complete chloroplast genome of Artemisia annua (Asteraceae), the primary source of artemisinin, was sequenced and analyzed. The A. annua cp genome is 150,995 bp, and harbors a pair of inverted repeat regions (IRa and IRb), of 24,850 bp each that separate large (LSC, 82,988 bp) and small (SSC, 18,267 bp) single-copy regions. Our annotation revealed that the A. annua cp genome contains 113 genes and 18 duplicated genes. The gene order in the SSC region of A. annua is inverted; this fact is consistent with the sequences of chloroplast genomes from three other Artemisia species. Fifteen (15) forward and seventeen (17) inverted repeats were detected in the genome. The existence of rich SSR loci in the genome suggests opportunities for future population genetics work on this anti-malarial medicinal plant. In A. annua cpDNA, the rps19 gene was found in the LSC region rather than the IR region, and the rps19 pseudogene was absent in the IR region. Sequence divergence analysis of five Asteraceae species indicated that the most highly divergent regions were found in the intergenic spacers, and that the differences between A. annua and A. fukudo were very slight. A phylogenetic analysis revealed a sister relationship between A. annua and A. fukudo. This study identified the unique characteristics of the A. annua cp genome. These results offer valuable information for future research on Artemisia species identification and for the selective breeding of A. annua with high pharmaceutical efficacy.


Assuntos
Artemisia annua/genética , Genoma de Cloroplastos , Plantas Medicinais/genética , DNA de Cloroplastos/genética , Evolução Molecular , Ordem dos Genes , Genes de Plantas , Humanos , Repetições de Microssatélites , Filogenia , Análise de Sequência de DNA
19.
J Gen Virol ; 98(6): 1526-1536, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28635588

RESUMO

The genome sequence of the constricta strain of Potato yellow dwarf virus (CYDV) was determined to be 12 792 nt long and organized into seven ORFs with the gene order 3'-N-X-P-Y-M-G-L-5', which encodes the nucleocapsid, phospho, movement, matrix, glyco, and RNA-dependent RNA polymerase proteins, respectively, except for X, which is of unknown function. Cloned ORFs for each gene, except L, were used to construct a protein interaction and localization map (PILM) for this virus, which shares greater than 80 % amino acid similarity in all ORFs except X and P with the sanguinolenta strain of this species (SYDV). Protein localization patterns and interactions unique to each viral strain were identified, resulting in strain-specific PILMs. Localization of CYDV and SYDV proteins in virus-infected cells mapped subcellular loci likely to be sites of replication, morphogenesis and movement.


Assuntos
Variação Genética , Interações Hospedeiro-Patógeno , Rhabdoviridae/genética , Rhabdoviridae/fisiologia , Proteínas Virais/análise , Proteínas Virais/genética , Capsicum/virologia , Ordem dos Genes , Genoma Viral , Solanum lycopersicum/virologia , Microscopia Confocal , Fases de Leitura Aberta , Análise de Sequência de DNA , Solanum tuberosum/virologia , Nicotiana/virologia
20.
PLoS One ; 12(6): e0179055, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28617867

RESUMO

Common bermudagrass (Cynodon dactylon (L.) Pers.) belongs to the subfamily Chloridoideae of the Poaceae family, one of the most important plant families ecologically and economically. This grass has a long connection with human culture but its systematics is relatively understudied. In this study, we sequenced and investigated the chloroplast genome of common bermudagrass, which is 134,297 bp in length with two single copy regions (LSC: 79,732 bp; SSC: 12,521 bp) and a pair of inverted repeat (IR) regions (21,022 bp). The annotation contains a total of 128 predicted genes, including 82 protein-coding, 38 tRNA, and 8 rRNA genes. Additionally, our in silico analyses identified 10 sets of repeats longer than 20 bp and predicted the presence of 36 RNA editing sites. Overall, the chloroplast genome of common bermudagrass resembles those from other Poaceae lineages. Compared to most angiosperms, the accD gene and the introns of both clpP and rpoC1 genes are missing. Additionally, the ycf1, ycf2, ycf15, and ycf68 genes are pseudogenized and two genome rearrangements exist. Our phylogenetic analysis based on 47 chloroplast protein-coding genes supported the placement of common bermudagrass within Chloridoideae. Our phylogenetic character mapping based on the parsimony principle further indicated that the loss of the accD gene and clpP introns, the pseudogenization of four ycf genes, and the two rearrangements occurred only once after the most recent common ancestor of the Poaceae diverged from other monocots, which could explain the unusual long branch leading to the Poaceae when phylogeny is inferred based on chloroplast sequences.


Assuntos
Cloroplastos/genética , Cynodon/genética , Genoma de Cloroplastos , Poaceae/genética , Análise de Sequência de DNA/métodos , Mapeamento Cromossômico , Evolução Molecular , Ordem dos Genes , Tamanho do Genoma , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA