Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiologyopen ; 10(5): e1237, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34713610

RESUMO

Vibrio alginolyticus and Vibrio (Aliivibrio) fischeri are Gram-negative bacteria found globally in marine environments. During the past decade, studies have shown that certain Gram-negative bacteria, including Vibrio species (cholerae, parahaemolyticus, and vulnificus) are capable of using exogenous polyunsaturated fatty acids (PUFAs) to modify the phospholipids of their membrane. Moreover, exposure to exogenous PUFAs has been shown to affect certain phenotypes that are important factors of virulence. The purpose of this study was to investigate whether V. alginolyticus and V. fischeri are capable of responding to exogenous PUFAs by remodeling their membrane phospholipids and/or altering behaviors associated with virulence. Thin-layer chromatography (TLC) analyses and ultra-performance liquid chromatography-electrospray ionization mass spectrometry (UPLC/ESI-MS) confirmed incorporation of all PUFAs into membrane phosphatidylglycerol and phosphatidylethanolamine. Several growth phenotypes were identified when individual fatty acids were supplied in minimal media and as sole carbon sources. Interestingly, several PUFAs acids inhibited growth of V. fischeri. Significant alterations to membrane permeability were observed depending on fatty acid supplemented. Strikingly, arachidonic acid (20:4) reduced membrane permeability by approximately 35% in both V. alginolyticus and V. fischeri. Biofilm assays indicated that fatty acid influence was dependent on media composition and temperature. All fatty acids caused decreased swimming motility in V. alginolyticus, while only linoleic acid (18:2) significantly increased swimming motility in V. fischeri. In summary, exogenous fatty acids cause a variety of changes in V. alginolyticus and V. fischeri, thus adding these bacteria to a growing list of Gram-negatives that exhibit versatility in fatty acid utilization and highlighting the potential for environmental PUFAs to influence phenotypes associated with planktonic, beneficial, and pathogenic associations.


Assuntos
Aliivibrio fischeri/fisiologia , Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceróis/metabolismo , Vibrio alginolyticus/fisiologia , Organismos Aquáticos/fisiologia , Biofilmes , Fenótipo , Vibrioses/microbiologia , Virulência/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876740

RESUMO

Humanity depends on biodiversity for health, well-being, and a stable environment. As biodiversity change accelerates, we are still discovering the full range of consequences for human health and well-being. Here, we test the hypothesis-derived from biodiversity-ecosystem functioning theory-that species richness and ecological functional diversity allow seafood diets to fulfill multiple nutritional requirements, a condition necessary for human health. We analyzed a newly synthesized dataset of 7,245 observations of nutrient and contaminant concentrations in 801 aquatic animal taxa and found that species with different ecological traits have distinct and complementary micronutrient profiles but little difference in protein content. The same complementarity mechanisms that generate positive biodiversity effects on ecosystem functioning in terrestrial ecosystems also operate in seafood assemblages, allowing more diverse diets to yield increased nutritional benefits independent of total biomass consumed. Notably, nutritional metrics that capture multiple micronutrients and fatty acids essential for human well-being depend more strongly on biodiversity than common ecological measures of function such as productivity, typically reported for grasslands and forests. Furthermore, we found that increasing species richness did not increase the amount of protein in seafood diets and also increased concentrations of toxic metal contaminants in the diet. Seafood-derived micronutrients and fatty acids are important for human health and are a pillar of global food and nutrition security. By drawing upon biodiversity-ecosystem functioning theory, we demonstrate that ecological concepts of biodiversity can deepen our understanding of nature's benefits to people and unite sustainability goals for biodiversity and human well-being.


Assuntos
Organismos Aquáticos/fisiologia , Biodiversidade , Alimentos Marinhos/normas , Humanos , Modelos Estatísticos , Valor Nutritivo
3.
PLoS One ; 15(12): e0242331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33296368

RESUMO

The Toarcian Oceanic Anoxic Event (TOAE; Early Jurassic, ca. 182 Ma ago) represents one of the major environmental disturbances of the Mesozoic and is associated with global warming, widespread anoxia, and a severe perturbation of the global carbon cycle. Warming-related dysoxia-anoxia has long been considered the main cause of elevated marine extinction rates, although extinctions have been recorded also in environments without evidence for deoxygenation. We addressed the role of warming and disturbance of the carbon cycle in an oxygenated habitat in the Iberian Basin, Spain, by correlating high resolution quantitative faunal occurrences of early Toarcian benthic marine invertebrates with geochemical proxy data (δ18O and δ13C). We find that temperature, as derived from the δ18O record of shells, is significantly correlated with taxonomic and functional diversity and ecological composition, whereas we find no evidence to link carbon cycle variations to the faunal patterns. The local faunal assemblages before and after the TOAE are taxonomically and ecologically distinct. Most ecological change occurred at the onset of the TOAE, synchronous with an increase in water temperatures, and involved declines in multiple diversity metrics, abundance, and biomass. The TOAE interval experienced a complete turnover of brachiopods and a predominance of opportunistic species, which underscores the generality of this pattern recorded elsewhere in the western Tethys Ocean. Ecological instability during the TOAE is indicated by distinct fluctuations in diversity and in the relative abundance of individual modes of life. Local recovery to ecologically stable and diverse post-TOAE faunal assemblages occurred rapidly at the end of the TOAE, synchronous with decreasing water temperatures. Because oxygen-depleted conditions prevailed in many other regions during the TOAE, this study demonstrates that multiple mechanisms can be operating simultaneously with different relative contributions in different parts of the ocean.


Assuntos
Distribuição Animal , Organismos Aquáticos/fisiologia , Extinção Biológica , Aquecimento Global/história , Invertebrados/fisiologia , Animais , Ciclo do Carbono , Fósseis , Geografia , Sedimentos Geológicos , História Antiga , Temperatura Alta/efeitos adversos , Oceanos e Mares , Espanha
4.
Aquat Toxicol ; 229: 105654, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33161306

RESUMO

Understanding how aquatic organisms respond to complex chemical mixtures remains one of the foremost challenges in modern ecotoxicology. Although oil spills are typically high-profile disasters that release hundreds or thousands of chemicals into the environment, there is growing evidence for a common adverse outcome pathway (AOP) for the vulnerable embryos and larvae of fish species that spawn in oiled habitats. Molecular initiating events involve the disruption of excitation-contraction coupling in individual cardiomyocytes, which then dysregulate the form and function of the embryonic heart. Phenanthrenes and other three-ring (tricyclic) polycyclic aromatic hydrocarbons (PAHs) are key drivers for this developmental cardiotoxicity and are also relatively enriched in land-based urban runoff. Similar to oil spills, stormwater discharged from roadways and other high-traffic impervious surfaces contains myriad contaminants, many of which are uncharacterized in terms of their chemical identity and toxicity to aquatic organisms. Nevertheless, given the exceptional sensitivity of the developing heart to tricyclic PAHs and the ubiquitous presence of these compounds in road runoff, cardiotoxicity may also be a dominant aspect of the stormwater-induced injury phenotype in fish early life stages. Here we assessed the effects of traffic-related runoff on the embryos and early larvae of Pacific herring (Clupea pallasii), a marine forage fish that spawns along the coastline of western North America. We used the well-characterized central features of the oil toxicity AOP for herring embryos as benchmarks for a detailed analysis of embryolarval cardiotoxicity across a dilution gradient ranging from 12 to 50% stormwater diluted in clean seawater. These injury indicators included measures of circulatory function, ventricular area, heart chamber looping, and the contractility of both the atrium and the ventricle. We also determined tissue concentrations of phenanthrenes and other PAHs in herring embryos. We find that tricyclic PAHs are readily bioavailable during cardiogenesis, and that stormwater-induced toxicity is in many respects indistinguishable from canonical crude oil toxicity. Given the chemical complexity of urban runoff, non-tricyclic PAH-mediated mechanisms of developmental toxicity in fish remain likely. However, from the standpoint of managing wild herring populations, our results suggest that stormwater-driven threats to individual survival (both near-term and delayed mortality) can be understood from decades of past research on crude oil toxicity. Moreover, Pacific herring embryos are promising sentinels for water quality monitoring in nearshore marine habitats, as in situand sensitive indicators of both toxic runoff and the effectiveness of pollution reduction efforts such as green stormwater infrastructure.


Assuntos
Organismos Aquáticos/fisiologia , Peixes/embriologia , Coração/embriologia , Petróleo/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Embrião não Mamífero/diagnóstico por imagem , Embrião não Mamífero/efeitos dos fármacos , Feminino , Peixes/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Larva/efeitos dos fármacos , Masculino , Peso Molecular , América do Norte , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Água/química , Poluentes Químicos da Água/toxicidade
5.
PLoS One ; 15(9): e0235588, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32946457

RESUMO

Data on the historical change of the Transbaikalian malacofauna in the Neopleistocene and Holocene is presented. Aquatic mollusc shells from archaeological excavations of the ancient settlements dating from the Neolithic period to Medieval and also from a drill hole of the Neopleistocene alluvial deposits were collected. In total eight species of bivalve molluscs from the families Margaritiferidae, Unionidae, Lymnocardiidae, Glycymerididae [marine], and two gastropod species from families Viviparidae and Planorbidae were identified. These species were aged using radiocarbon dating. It was found that the species ranged in age from more than 50.000 to 2.080-1.210 years BP. Five species inhabited the Transbaikal region which are locally extirpated today. Their disjunctive ranges in the past included southern Europe and Western and Eastern Siberia to Transbaikalia and in the east to Far East and Primorye Territory of Russia. A remarkable finding is that of the bivalve genus Monodacna, which was found very far from its native range, the Ponto-Caspian region. The time of existence and extirpation of the thermophilic species of genera Monodacna, Planorbis, Lanceolaria and Amuropaludina corresponds to cycles of the warming and cooling in Pleistocene and Holocene according to regional climate chronological scales. These species can be used as palaeoclimate indicators. Change of the regional malacofaunal species composition is connected with the natural climatochron cycles in the Pleistocene and Holocene resulting in evidence for succession. In the course of this succession, these stenothermal species became extirpated on a regional level, decreasing their global ranges.


Assuntos
Distribuição Animal , Organismos Aquáticos/fisiologia , Biodiversidade , Ecologia/métodos , Moluscos/fisiologia , Exoesqueleto/química , Animais , Organismos Aquáticos/química , Organismos Aquáticos/classificação , Arqueologia , Europa (Continente) , Ásia Oriental , Fósseis , Água Doce , Geografia , História Antiga , Moluscos/química , Moluscos/classificação , Datação Radiométrica , Sibéria
6.
Elife ; 82019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31648677

RESUMO

The natural world is more complex, and also more fragile, than it appears.


Assuntos
Organismos Aquáticos/fisiologia , Comportamento Animal , Cifozoários/fisiologia , Animais , Aquecimento Global , Estações do Ano , Temperatura
7.
Sci Total Environ ; 692: 1291-1303, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31539961

RESUMO

Pesticides are important contributors to the global freshwater biodiversity crisis. Among pesticides, neonicotinoids are the best-selling class of agricultural insecticides and are suspected to represent significant risks to freshwater and terrestrial ecosystems worldwide. Despite growing recognition that neonicotinoid impacts may be modified by the presence of additional stressors, there is limited information about their interactions with other agricultural stressors in freshwater ecosystems. We conducted an outdoor pond-mesocosm experiment to investigate the individual and interactive effects of nutrients, fine sediment, and imidacloprid (a neonicotinoid insecticide) inputs on freshwater community structure (density, diversity, and composition of zooplankton and benthic invertebrates) and ecosystem functioning (ecosystem metabolism, primary production, and organic matter decomposition). We hypothesized antagonistic nutrient-imidacloprid, and synergistic sediment-imidacloprid interactions, affecting aquatic invertebrate communities. The three stressors had significant individual and interactive effects on pond ecosystems. The insecticide neutralized the positive effects of nutrient additions on benthic invertebrate richness and mitigated the negative effects of sediment on zooplankton communities (antagonistic interactions). Moreover, we observed compensatory responses of tolerant benthic invertebrates, which resulted in reversal interactions between sediment and imidacloprid. Furthermore, our observations suggest that imidacloprid has the potential to increase net ecosystem production at environmentally relevant concentrations. Our findings support the hypothesis that the impacts of imidacloprid may be modified by other agricultural stressors. This has important implications on a global scale, given the widespread use of these pesticides in intensive agricultural landscapes and the growing body of literature suggesting that traditional pesticide assessment frameworks, based on laboratory toxicity tests alone, may be insufficient to adequately predict effects to complex freshwater ecosystems.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Poluentes Químicos da Água/toxicidade , Agricultura , Animais , Biodiversidade , Monitoramento Ambiental , Água Doce , Inseticidas/análise , Invertebrados/fisiologia , Neonicotinoides/análise , Nitrogênio , Fósforo , Poluentes Químicos da Água/análise , Zooplâncton
8.
Environ Pollut ; 253: 474-487, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31330340

RESUMO

Anthropogenic activities including coastal industries, urbanization, extensive agriculture and aquaculture as well as their cumulative impacts represent major sources of perturbation of marine coastal systems. Macrobenthic communities are useful ecological indicators for monitoring the health status of marine environments (or polluted environments). The present study reports, for the first time, the response of benthic macrofauna sampled during two years survey (2015-2016) to multiple anthropogenic pressures on the coastal zone south of Sfax (Tunisia). A total of 12 stations were monitored seasonally at locations downstream from the main potential sources of disturbance. 106 macrobenthos taxa, belonging to six animal phyla and 70 families, were identified with a dominance of polychaetes (42%), crustaceans (35%) and molluscs (18%). We used an ANOVA test and cluster analysis to identify spatial gradient linked to environmental and anthropogenic factors, including depth, sedimentary texture and anthropogenic activities (i.e. phosphogypsum discharges).The macrofauna present lowest species number and abundance on stations undergoing anthropogenic inputs, which are extremely polluted by heavy metals (Cd, Cu, F and N) and excess of organic matter. Univariate parameters reveal a general trend of increasing species diversity with increasing distance from the pollution source. The polluted stations are strongly dominated by carnivores, and selective deposit feeders, and more closely linked to the availability of trophic resources than to anthropogenic constraints. The seasonal changes in macrobenthic abundance, diversity indices and community structure are mainly linked to the biological cycle (e.g. recruitment events) of the dominant species. Biotic indices (AMBI and BO2A) classified the coastal zone south of Sfax as moderate and good ecological status. This study suggests that initiating a long-term monitoring programme would improve our understanding of the temporal changes of macrobenthic communities of this ecosystem, contributing to the assessment of effective management and conservation measures in this disturbed area.


Assuntos
Organismos Aquáticos/fisiologia , Monitoramento Ambiental , Invertebrados/fisiologia , Poluição da Água/análise , Animais , Aquicultura , Sulfato de Cálcio , Crustáceos , Ecologia , Ecossistema , Poluentes Ambientais , Mar Mediterrâneo , Metais Pesados/análise , Moluscos , Fósforo , Tunísia
9.
Ecotoxicol Environ Saf ; 182: 109354, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31272025

RESUMO

Selenium (Se) is a contaminant of concern in many aquatic ecosystems due to its narrow range between essentiality and toxicity in oviparous (yolk-bearing) vertebrates. The objective of the present study was to determine the effects of Se, experimentally added to in situ limnocorrals as selenite, on invertebrate communities and fathead minnow (Pimephales promelas) at environmentally realistic Se concentrations. Nine limnocorrals were deployed in a mesotrophic lake at the International Institute for Sustainable Development - Experimental Lakes Area in Ontario, Canada in May 2017. From June 1 to August 17, 2017, selenite was added to six enclosures to attain mean measured aqueous Se concentrations of 1.0 ±â€¯0.10 or 8.9 ±â€¯2.7 µg/L Se (in triplicate) and three limnocorrals were untreated controls (background mean aqueous Se = 0.12 ±â€¯0.03 µg/L). Benthic macroinvertebrates were collected throughout and at the end of the exposure period using artificial substrates to determine density, dry biomass, diversity, and taxa richness at the family level. Reproductively mature female fathead minnows (added on d 33 of the study) were collected throughout and at the end of the exposure period. After 77 d, Chironomidae and Gammaridae densities and biomass were significantly lower in the 8.9 µg/L Se treatment relative to the 1.0 µg/L Se treatment and the control. Invertebrate diversity (measured as Shannon's and Simpson's indices) significantly declined in the 1.0 µg/L and 8.9 µg/L Se treatments relative to the control (0.12 µg/L Se group). Fulton's condition factor for fathead minnow was significantly less in the 8.9 µg/L treatment compared to 0.12 and 1.0 µg/L Se experimental groups. The results of this study indicated that exposure to relatively low aqueous selenite concentrations can negatively affect invertebrate density and biomass, as well as fish condition. More research is necessary to characterize the risk of selenite exposure to aquatic invertebrates under realistic field conditions, and future risk assessments may need to consider reduced food availability as a factor that may impair the health of higher trophic level organisms in areas with elevated selenite.


Assuntos
Ecossistema , Selênio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/fisiologia , Chironomidae , Cyprinidae/fisiologia , Feminino , Invertebrados/fisiologia , Lagos , Ontário , Reprodução/efeitos dos fármacos , Ácido Selenioso/toxicidade
10.
Geobiology ; 17(2): 161-171, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30417524

RESUMO

The riverine supply of the globally limiting nutrient, phosphorus, to the ocean accounts for only a few percent of nutrient supply to photosynthetic organisms in surface waters. Recycling of marine organic matter by heterotrophic organisms provides almost all of the phosphorus that drives net primary production in the modern ocean. In the low-oxygen environments of the Proterozoic, the lack of free oxygen would have limited rates of oxic respiration, slowing the recycling of nutrients and thus limiting global rates of photosynthesis. A series of steady-state mass balance calculations suggest that the rate of net primary production in the ocean was no more than 10% of its modern value during the Proterozoic eon, and possibly less than 1%. The supply of nutrients in such a world would be dominated by river input, rather than recycling within the water column, leading to a small marine biosphere found primarily within estuarine environments.


Assuntos
Organismos Aquáticos/fisiologia , Biota/fisiologia , Estuários , Fósforo/química , Fotossíntese , Água do Mar/química , Oxigênio/química , Rios/química
11.
PLoS One ; 13(9): e0204116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30235261

RESUMO

Human induced eutrophication has strongly altered aquatic ecosystems. With increasing eutrophication, plant nutrient concentrations increase, making them more attractive as food for herbivores. However, most aquatic consumers are omnivorous. Ecological stoichiometry theory predicts that animals prefer to consume food which has a similar nutrient (N and P) composition or C:nutrient ratio compared to their own bodies, hence omnivorous animals may prefer to eat animal prey instead of plants. We asked whether aquatic omnivores would shift their diet towards more plant consumption when plants are more nutritious and their stoichiometry becomes more similar to the stoichiometry of the omnivore. We hypothesized that: (1) the omnivore increases plant consumption as the plant C:nutrient ratio decreases when there is only plant material available; (2) the omnivore generally prefers animal food over plant material; (3) the omnivore will increase its relative plant consumption as the plant C:nutrient ratio decreases, in the presence of animal food. As a model system, we used the pond snail Lymnaea stagnalis (omnivorous consumer), the aquatic plant Potamogeton lucens (plant food to the consumer, cultured at different nutrient regimes to obtain different plant C:nutrient ratios), and the crustacean Gammarus pulex (animal food to the consumer, using freshly dead individuals). When there was only plant material available, the consumers increased their relative consumption rate with decreasing plant C:nutrient ratio from no measurable amount to about 102 mg g-1 day-1. When plant material was offered simultaneously with animal food, even though the omnivores always preferred animal food over plant material, the omnivores still increased their relative intake of plant material as plant C:nutrient ratio decreased, from virtually nothing at the highest to on average 16% of their diet at the lowest plant C:nutrient ratio, with a maximum of 28%. Therefore, we conclude that as nutrient loading increases in aquatic ecosystems, plant-eating omnivorous animals may shift their trophic position towards increased plant consumption and alter the food web structure. As a result, we may observe increased top-down control on aquatic plants.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Comportamento Alimentar , Plantas , Animais , Carbono/análise , Comportamento de Escolha , Elementos Químicos , Nitrogênio/análise , Fósforo/análise
12.
Sci Total Environ ; 637-638: 577-587, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29754091

RESUMO

Multiple stressors affect stream ecosystems worldwide and their interactions are of particular concern, with gaps existing in understanding stressor impacts on stream communities. Addressing these knowledge gaps will aid in targeting and designing of appropriate mitigation measures. In this study, the agricultural stressors fine sediment (ambient, low, medium, high), phosphorus (ambient, enriched) and nitrogen (ambient, enriched) were manipulated simultaneously in 64 streamside mesocosms to determine their individual and combined effects on the macroinvertebrate community (benthos and drift). Stressor levels were chosen to reflect those typically observed in European agricultural streams. A 21-day colonisation period was followed by a 14-day manipulative period. Results indicate that added sediment had the most pervasive effects, significantly reducing total macroinvertebrate abundance, total EPT abundance and abundances of three common EPT taxa. The greatest effect was at high sediment cover (90%), with decreasing negative impacts at medium (50%) and low (30%) covers. Added sediment also led to higher drift propensities for nine of the twelve drift variables. The effects of nitrogen and phosphorus were relatively weak compared to sediment. Several complex and unpredictable 2-way or 3-way interactions among stressors were observed. While sediment addition generally reduced total abundance at high levels, this decrease was amplified by P enrichment at low sediment, whereas the opposite effect occurred at medium sediment and little effect at high sediment. These results have direct implications for water management as they highlight the importance of managing sediment inputs while also considering the complex interactions which can occur between sediment and nutrient stressors.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Invertebrados/fisiologia , Nitrogênio/análise , Fósforo/análise , Poluentes da Água/análise , Animais , Monitoramento Ambiental , Sedimentos Geológicos , Rios/química
13.
Aquat Toxicol ; 200: 197-205, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29775927

RESUMO

The release of cyanobacterial toxins during algal bloom has adverse effects on aquatic plants and animals. This study aimed to understand the toxic effects and mechanism of microcystin-LR (MC-LR) on the seedling growth and physiological responses of Iris pseudacorus L. (calamus). After a one-month exposure experiment, the growth and development of the calamus leaves were significantly inhibited, and this inhibitory effect was verified to be concentration dependent. Furthermore, the cell membrane system was damaged, and the photosynthesis was also adversely affected by MC-LR. The relative conductivity of the leaves increased from 10.96% to 97.51%, and the total chlorophyll content decreased from 0.89 mg/g to 0.09 mg/g. Notably, the behavior of the roots in the presence of MC-LR was different from that of the leaves. The seedlings needed to absorb more nutrients to maintain the normal growth at low-toxin concentrations, but the high concentration of (over 250 µg/L) MC-LR exceeded the tolerance of plants and inhibited the growth of roots. In addition, MC-LR led to an excessive accumulation of H2O2, and the seedlings enhanced the activities of catalase, peroxidase, and superoxide dismutase to resist oxidative stress. The presence of MC-LR also affected the capacity of the plants to absorb nitrogen and phosphorus. The removal efficiency of NO3--N, the main source of nitrogen, was 63.53% in the presence of 100 µg/L MC-LR. As a result, the pH increased, and the growth of plants was indirectly inhibited. Therefore, the presence of MC-LR could affect the purification efficiency of calamus in eutrophic water. This study provides theoretical support for the selection of plants in the eutrophic water.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/fisiologia , Gênero Iris/crescimento & desenvolvimento , Gênero Iris/fisiologia , Microcistinas/toxicidade , Animais , Antioxidantes/metabolismo , Organismos Aquáticos/efeitos dos fármacos , Biomassa , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Gênero Iris/efeitos dos fármacos , Toxinas Marinhas , Nitrogênio/isolamento & purificação , Nitrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fósforo/isolamento & purificação , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade
14.
Environ Pollut ; 239: 359-366, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29674214

RESUMO

Uranium mining is an environmental concern because of runoff and the potential for toxic effects on the biota. To investigate uranium toxicity to freshwater invertebrates, we conducted a 96-h acute toxicity test to determine lethal concentrations (testing concentrations up to 262 mg L-1) for three stream invertebrates: a shredder caddisfly, Schizopelex festiva Rambur (Trichoptera, Sericostomatidae); a detritivorous isopod, Proasellus sp. (Isopoda, Asellidae); and a scraper gastropod, Theodoxus fluviatilis (Gastropoda, Neritidae). Next, we ran a chronic-toxicity test with the most tolerant species (S. festiva) to assess if uranium concentrations found in some local streams (up to 25 µg L-1) affect feeding, growth and respiration rates. Finally, we investigated whether S. festiva takes up uranium from the water and/or from ingested food. In the acute test, S. festiva survived in all uranium concentrations tested. LC50-96-h for Proasellus sp and T. fluviatilis were 142 mg L-1 and 24 mg L-1, respectively. Specimens of S. festiva exposed to 25 µg L-1 had 47% reduced growth compared with specimens under control conditions (21.5 ±â€¯2.9 vs. 40.6 ±â€¯4.9 µg of mass increase animal-1·day-1). Respiration rates (0.40 ±â€¯0.03 µg O2·h-1·mg animal-1) and consumption rates (0.54 ±â€¯0.05 µg µg animal-1·day-1; means ±â€¯SE) did not differ between treatments. Under laboratory conditions S. festiva accumulated uranium from both the water and the ingested food. Our results indicate that uranium can be less toxic than other metals or metalloids produced by mining activities. However, even at the low concentrations observed in streams affected by abandoned mines, uranium can impair physiological processes, is bioaccumulated, and is potentially transferred through food webs.


Assuntos
Organismos Aquáticos/fisiologia , Invertebrados/fisiologia , Testes de Toxicidade Crônica , Urânio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Bioensaio , Cadeia Alimentar , Água Doce , Insetos , Invertebrados/efeitos dos fármacos , Isópodes , Mineração , Urânio/análise , Poluentes Químicos da Água/análise
15.
Sci Rep ; 7(1): 12529, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970506

RESUMO

River systems have critical roles in the natural water environment and the transportation of nutrients. Anthropogenic activities, including wastewater discharge and river damming, raise adverse impacts on ecosystem and continuum of rivers. An increasing amount of attention has been paid to riverine bacterioplankton as they make vital contributions to biogeochemical nutrient cycle. A comprehensive study was conducted on the bacterioplankton community along the Yarlung Tsangpo River, which is the longest plateau river in China and is suffering from various anthropogenic impacts. The results indicated that nutrient variations corresponded to anthropogenic activities, and silica, nitrogen and phosphorus were retained by the dam. River damming influenced the biomass and diversity of the bacterioplankton, but significant alterations in the community structure were not observed between upstream and downstream of the dam. Moreover, the spatial distribution of the bacterioplankton community changed gradually along the river, and the dominant bacterioplankton in the upstream, midstream and downstream portions of the river were Firmicutes, Bacteroidetes and Proteobacteria, respectively. Soluble reactive phosphorus, elevation, ammonium nitrogen, velocity and turbidity were the main environmental factors that shape the bacterioplankton community. Our study offers the first insights into the variation of a bacterioplankton community of a large river in plateau region.


Assuntos
Organismos Aquáticos/fisiologia , Biodiversidade , Ecossistema , Plâncton/fisiologia , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/metabolismo , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/metabolismo , Bacteroidetes/fisiologia , China , Monitoramento Ambiental , Atividades Humanas , Humanos , Fósforo/toxicidade , Plâncton/metabolismo , Rios , Tibet , Águas Residuárias/toxicidade , Poluentes Químicos da Água/efeitos adversos
16.
Environ Monit Assess ; 189(11): 542, 2017 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-28986725

RESUMO

A survey of arsenic and phosphorus in Pampean streams of Buenos Aires province was performed. Nitrates and ammonia were also determined. Stream water was sampled as well as stream sediment and filamentous algae. Results show that 32 streams exceeded the arsenic recommended guidelines for human consumption of 10 µg L-1 and six exceeded recommended values for aquatic organisms' protection of 50 µg L-1. The average concentration found was 36.54 µg L-1 and areas with more concentration of As are located in the southern region of the province, in streams that are tributaries of the Atlantic Ocean. Other regions with high As concentration are the Matanza River tributaries and the Arrecifes River tributaries. No differences of As concentration was found between stream sediments. Also, no seasonal pattern of As concentration was observed in one stream sampled during a year, but a positive correlation between As and the conductivity (p = 0.0002) and pH (p = 0.01) of the streams was found. Also, As bioaccumulation was detected for all the algae sampled, but no correlation between As accumulated and As in the stream water was found. Ammonia levels exceeded recommended guidelines for human consumption in the Argentinean law in 30 streams. The characterization performed in this study provides relevant information on the distribution of arsenic and its origin and mobility.


Assuntos
Organismos Aquáticos/fisiologia , Arsênio/análise , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Argentina , Oceano Atlântico , Biota , Humanos , Nitratos , Fósforo/análise , Rios/química
17.
Water Environ Res ; 89(10): 1676-1703, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28954680

RESUMO

This review covers research papers and scientific literature published in the year 2016 on the effects of anthropogenic pollutants on freshwater organisms. In the first, the review begins with two broad sections thate are mainly focused on research reviews and broad field studies and surveys. This is followed by reviews of research categorized in sections to reflect the pollutant class. These sections include wastewater, stormwater and non-point source pollution, nutrients, sediment cap materials and suspended clays, botanical extracts, surfactants, metals, persistent organic pollutants, pharmaceuticals, endocrine disruptors, pesticides, petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs), ionic liquids, and nanomaterials. The final section of the review highlights the research published on describing innovations in the field of freshwater pollution research.


Assuntos
Organismos Aquáticos/fisiologia , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Água Doce , Sedimentos Geológicos , Praguicidas , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água/análise
18.
Arch Environ Contam Toxicol ; 73(1): 40-46, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28695259

RESUMO

Photoenhanced toxicity is a distinct mechanism of petroleum toxicity that is mediated by the interaction of solar radiation with specific polycyclic aromatic compounds in oil. Phototoxicity is observed as a twofold to greater than 1000-fold increase in chemical toxicity to aquatic organisms that also have been exposed to light sources containing sufficient quantity and quality of ultraviolet radiation (UV). When tested under natural sunlight or laboratory sources of UV, fresh, and weathered middle distillates, crudes and heavy oils can exhibit photoenhanced toxicity. These same products do not exhibit phototoxicity in standard test protocols because of low UV irradiance in laboratory lighting. Fresh, estuarine, and marine waters have been shown to have sufficient solar radiation exposure to elicit photoenhanced toxicity, and a diversity of aquatic invertebrate and fish species can exhibit photoenhanced toxicity when exposed to combinations of oil and UV. Risks of photoenhanced toxicity will be greatest to early life stages of aquatic organisms that are translucent to UV and that inhabit the photic zone of the water column and intertidal areas exposed to oil.


Assuntos
Peixes/fisiologia , Invertebrados/fisiologia , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/fisiologia , Processos Fotoquímicos , Luz Solar , Testes de Toxicidade , Raios Ultravioleta , Tempo (Meteorologia)
19.
Mar Pollut Bull ; 124(1): 21-32, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28688520

RESUMO

The aim of the present study was to evaluate the hazard from shipwrecks on communities by a holistic approach taking into account different effects on biological communities. Multibeam and Remotely Operated Vehicles surveys recorded ecological assessment of fish and benthic species on three shipwrecks flooded during the Second World War on Maërl beds habitats in the strait of Sicily. Pollution levels of a wide range of chemicals of ecotoxicological concern were also measured in sediments and in fish species from different trophic levels. Statistical analysis evidenced significant differences among pollutant levels between both sediments and fish collected in shipwreck sites and controls. Concerning fish, significant effects due to the vessel's cargo type and flooding position are recorded. In spite of that, our results underline that shipwrecks are also a hotspots of biodiversity and a habitat for preservation strategies in marine ecosystems that need to be monitored.


Assuntos
Biodiversidade , Peixes/fisiologia , Sedimentos Geológicos/análise , Navios , Poluição Química da Água/análise , Acidentes , Animais , Organismos Aquáticos/fisiologia , Ecossistema , Itália , Mar Mediterrâneo , Análise Multivariada
20.
J Biol Chem ; 292(31): 13056-13067, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28592491

RESUMO

Polysaccharide degradation by marine microbes represents one of the largest and most rapid heterotrophic transformations of organic matter in the environment. Microbes employ systems of complementary carbohydrate-specific enzymes to deconstruct algal or plant polysaccharides (glycans) into monosaccharides. Because of the high diversity of glycan substrates, the functions of these enzymes are often difficult to establish. One solution to this problem may lie within naturally occurring microdiversity; varying numbers of enzymes, due to gene loss, duplication, or transfer, among closely related environmental microbes create metabolic differences akin to those generated by knock-out strains engineered in the laboratory used to establish the functions of unknown genes. Inspired by this natural fine-scale microbial diversity, we show here that it can be used to develop hypotheses guiding biochemical experiments for establishing the role of these enzymes in nature. In this work, we investigated alginate degradation among closely related strains of the marine bacterium Vibrio splendidus One strain, V. splendidus 13B01, exhibited high extracellular alginate lyase activity compared with other V. splendidus strains. To identify the enzymes responsible for this high extracellular activity, we compared V. splendidus 13B01 with the previously characterized V. splendidus 12B01, which has low extracellular activity and lacks two alginate lyase genes present in V. splendidus 13B01. Using a combination of genomics, proteomics, biochemical, and functional screening, we identified a polysaccharide lyase family 7 enzyme that is unique to V. splendidus 13B01, secreted, and responsible for the rapid digestion of extracellular alginate. These results demonstrate the value of querying the enzymatic repertoires of closely related microbes to rapidly pinpoint key proteins with beneficial functions.


Assuntos
Alginatos/metabolismo , Organismos Aquáticos/fisiologia , Proteínas de Bactérias/metabolismo , Polissacarídeo-Liases/metabolismo , Vibrio/fisiologia , Alginatos/química , Organismos Aquáticos/enzimologia , Organismos Aquáticos/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biomarcadores/metabolismo , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Genômica/métodos , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Estrutura Molecular , Peso Molecular , Filogenia , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Proteômica/métodos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Especificidade por Substrato , Vibrio/enzimologia , Vibrio/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA