Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biomolecules ; 11(7)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208902

RESUMO

The vasculature of stem-cell-derived liver organoids can be engineered using methods that recapitulate embryonic liver development. Hepatic organoids with a vascular network offer great application prospects for drug screening, disease modeling, and therapeutics. However, the application of stem cell-derived organoids is hindered by insufficient vascularization and maturation. Here, we review different theories about the origin of hepatic cells and the morphogenesis of hepatic vessels to provide potential approaches for organoid generation. We also review the main protocols for generating vascularized liver organoids from stem cells and consider their potential and limitations in the generation of vascularized liver organoids.


Assuntos
Fígado/patologia , Organoides/irrigação sanguínea , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Engenharia Genética/métodos , Hepatócitos/patologia , Humanos , Fígado/crescimento & desenvolvimento , Organogênese/fisiologia , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Células-Tronco/metabolismo
2.
J Nutr Biochem ; 97: 108803, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34147602

RESUMO

With its unique cellular plasticity, the small intestinal mucosa exhibits efficient adaptability upon feeding. However, little is known about the effect of high-fat diet (HFD) feeding on this adaption and its underlying mechanism. Herein, we demonstrated that the cell proliferation ability, mitochondrial morphology, and global transcriptomic profile of the small intestine exhibited a prominent discrepancy between the fasted and refed state in mice, which were markedly attenuated by long-term HFD feeding. The retinol (Vitamin A, VA) metabolism pathway was dramatically affected by HFD feeding in the small intestine. Both VA and its active metabolite retinoic acid (RA), with the administration of lipid micelles, promoted the expression of genes involved in lipid absorption and suppressed the expression of genes involved in the cell proliferation of intestinal organoids. Via chip-qPCR and RT-qPCR, genes involved in lipid metabolism and cell proliferation were target genes of RARα/RXRα in small intestinal organoids treated with RA and lipid micelles. The role of VA in the in vivo attenuation of intestinal adaptability, in response to HFD, was evaluated. Mice were fed a normal chow diet, HFD, or HFD diet supplemented with additional 1.5-fold VA for 12 weeks. VA supplementation in HFD accelerated the attenuation of intestinal adaptability upon feeding induced by HFD, promoted lipid absorption gene expression, and increased body weight and serum cholesterol levels. In conclusion, the discrepancy of the small intestine between the fasted and refed state was dramatically attenuated by HFD feeding, in which VA and RA might play important roles.


Assuntos
Adaptação Fisiológica , Dieta Hiperlipídica , Suplementos Nutricionais , Mucosa Intestinal/fisiologia , Intestino Delgado/fisiologia , Tretinoína/farmacologia , Vitamina A/administração & dosagem , Animais , Proliferação de Células/genética , Ingestão de Alimentos , Microbioma Gastrointestinal , Intestino Delgado/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Organoides/crescimento & desenvolvimento , Transcriptoma , Tretinoína/metabolismo , Vitamina A/metabolismo , Vitamina A/farmacologia , Vitaminas/administração & dosagem , Vitaminas/metabolismo , Vitaminas/farmacologia
3.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430111

RESUMO

Articular cartilage experiences mechanical constraints leading to chondral defects that inevitably evolve into osteoarthritis (OA), because cartilage has poor intrinsic repair capacity. Although OA is an incurable degenerative disease, several dietary supplements may help improve OA outcomes. In this study, we investigated the effects of Dielen® hydrolyzed fish collagens from skin (Promerim®30 and Promerim®60) and cartilage (Promerim®40) to analyze the phenotype and metabolism of equine articular chondrocytes (eACs) cultured as organoids. Here, our findings demonstrated the absence of cytotoxicity and the beneficial effect of Promerim® hydrolysates on eAC metabolic activity under physioxia; further, Promerim®30 also delayed eAC senescence. To assess the effect of Promerim® in a cartilage-like tissue, eACs were cultured as organoids under hypoxia with or without BMP-2 and/or IL-1ß. In some instances, alone or in the presence of IL-1ß, Promerim®30 and Promerim®40 increased protein synthesis of collagen types I and II, while decreasing transcript levels of proteases involved in OA pathogenesis, namely Htra1, and the metalloproteinases Mmp1-3, Adamts5, and Cox2. Both Promerim® hydrolysates also decreased Htra1 protein amounts, particularly in inflammatory conditions. The effect of Promerim® was enhanced under inflammatory conditions, possibly due to a decrease in the synthesis of inflammation-associated molecules. Finally, Promerim® favored in vitro repair in a scratch wound assay through an increase in cell proliferation or migration. Altogether, these data show that Promerim®30 and 40 hold promise as dietary supplements to relieve OA symptoms in patients and to delay OA progression.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Colágeno/biossíntese , Organoides/efeitos dos fármacos , Osteoartrite/tratamento farmacológico , Animais , Cartilagem Articular/crescimento & desenvolvimento , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Cavalos , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/patologia , Organoides/crescimento & desenvolvimento , Pele/química
4.
Cell Death Differ ; 28(1): 24-34, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33318601

RESUMO

While inner ear disorders are common, our ability to intervene and recover their sensory function is limited. In vitro models of the inner ear, like the organoid system, could aid in identifying new regenerative drugs and gene therapies. Here, we provide a perspective on the status of in vitro inner ear models and guidance on how to improve their applicability in translational research. We highlight the generation of inner ear cell types from pluripotent stem cells as a particularly promising focus of research. Several exciting recent studies have shown how the developmental signaling cues of embryonic and fetal development can be mimicked to differentiate stem cells into "inner ear organoids" containing otic progenitor cells, hair cells, and neurons. However, current differentiation protocols and our knowledge of embryonic and fetal inner ear development in general, have a bias toward the sensory epithelia of the inner ear. We propose that a more holistic view is needed to better model the inner ear in vitro. Moving forward, attention should be made to the broader diversity of neuroglial and mesenchymal cell types of the inner ear, and how they interact in space or time during development. With improved control of epithelial, neuroglial, and mesenchymal cell fate specification, inner ear organoids would have the ability to truly recapitulate neurosensory function and dysfunction. We conclude by discussing how single-cell atlases of the developing inner ear and technical innovations will be critical tools to advance inner ear organoid platforms for future pre-clinical applications.


Assuntos
Diferenciação Celular/fisiologia , Orelha Interna/citologia , Modelos Biológicos , Organoides/citologia , Animais , Técnicas de Cultura de Células , Células Cultivadas , Orelha Interna/crescimento & desenvolvimento , Epitélio/fisiologia , Células Ciliadas Auditivas Internas/citologia , Humanos , Organoides/crescimento & desenvolvimento , Células-Tronco Pluripotentes/citologia
5.
Cancer Lett ; 500: 87-97, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33309780

RESUMO

A physiologically relevant glioma tumor model is important to the study of disease progression and screening drug candidates. However, current preclinical glioma models lack the brain microenvironment, and the established tumor cell lines do not represent glioma biology and cannot be used to evaluate the therapeutic effect. Here, we reported a real-time integrated system by generating 3D ex vivo cerebral organoids and in vivo xenograft tumors based on glioma patient-derived tissues and cells. Our system faithfully recapitulated the histological features, response to chemotherapy drugs, and clinical progression of their corresponding parental tumors. Additionally, our model successfully identified a case from a grade II astrocytoma patient with typical grade IV GBM features in both organoids and xenograft models, which mimicked the disease progression of this patient. Further genomic and transcriptomic characterization was associated with individual clinical features. We have demonstrated the "GBM-&Normal-like" signature to predict prognosis. In conclusion, we developed an integrated system of parallel models from patient-derived glioma cerebral organoids and xenografts for understanding the glioma biology and prediction of response to chemotherapy drugs, which might lead to a new strategy for personalized treatment for this deadly disease.


Assuntos
Técnicas de Cultura de Células/métodos , Glioma/tratamento farmacológico , Organoides/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Feminino , Glioma/genética , Glioma/patologia , Xenoenxertos , Humanos , Masculino , Camundongos , Organoides/crescimento & desenvolvimento , Organoides/patologia , Prognóstico , Modelos de Riscos Proporcionais , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Biol Rep ; 47(9): 6621-6633, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32803508

RESUMO

Purple coneflower (Echinacea purpurea (L.) Moench) is a widely used medicinal and ornamental plant. In the present study, the callus embryogenesis was examined using benzyl adenine (BA) at three levels (3, 4, 5 mg L-1), 1-Naphthalene acetic acid (NAA) at three levels (0.1, 0.2 and 0.5 mg L-1) with or without activated charcoal (1 g L-1), coconut milk (50 ml L-1) and casein hydrolysate (50 mg L-1) in the MS (Murashige and Skoog 1962) medium. The embryogenesis indirectly occurred with the production of callus. The calli were observed in three forms: undifferentiated, embryogenic and organogenic. The embryogenic calli were dark green and coherent with a faster growth rate. The highest embryogenesis (100%) and embryonic regeneration (plantlet production) were obtained in the combined BA + NAA treatments with the activated charcoal, coconut milk and casein hydrolysate. However, the combined treatments of growth regulators failed to produce somatic embryos without the use of coconut milk and casein hydrolysate. The maximum amount of protein, peroxidase and catalase activity of embryogenic calli (2.02, 1.79 and 6.62ΔOD/Min/mg.protein, respectively), and highest percentage of acclimatization success (29.3% of plants) were obtained in the combined treatment of 5 mg L-1 BA + 0.5 mg L-1 NAA + activated charcoal + coconut milk + casein hydrolysate. The highest amount of chlorophyll content (33.3 SPAD value) and growth characteristics of acclimatized plantlets were observed in the media containing 3 mg L-1 BA + 0.1 and 0.2 mg L-1 NAA + 1 g. L-1 combined activated charcoal, coconut milk, casein hydrolysate. The histological studies confirmed the somatic embryogenesis in purple coneflower. Generally, it was found that the somatic embryogenesis of E. purpurea occurs at high levels of BA and low levels of NAA with the addition of coconut milk and casein hydrolysate.


Assuntos
Antioxidantes/farmacologia , Echinacea/química , Echinacea/embriologia , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/efeitos dos fármacos , Técnicas de Embriogênese Somática de Plantas/métodos , Adenina/análogos & derivados , Adenina/farmacologia , Caseínas/farmacologia , Carvão Vegetal/farmacologia , Cocos/química , Meios de Cultura , Echinacea/enzimologia , Ácidos Naftalenoacéticos/farmacologia , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/embriologia , Organoides/crescimento & desenvolvimento , Brotos de Planta/embriologia , Brotos de Planta/crescimento & desenvolvimento , Plantas Medicinais/química
7.
Nat Biomed Eng ; 4(9): 863-874, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32514094

RESUMO

Stem-cell-derived epithelial organoids are routinely used for the biological and biomedical modelling of tissues. However, the complexity, lack of standardization and quality control of stem cell culture in solid extracellular matrices hampers the routine use of the organoids at the industrial scale. Here, we report the fabrication of microengineered cell culture devices and scalable and automated methods for suspension culture and real-time analysis of thousands of individual gastrointestinal organoids trapped in microcavity arrays within a polymer-hydrogel substrate. The absence of a solid matrix substantially reduces organoid heterogeneity, which we show for mouse and human gastrointestinal organoids. We use the devices to screen for anticancer drug candidates with patient-derived colorectal cancer organoids, and apply high-content image-based phenotypic analyses to reveal insights into mechanisms of drug action. The scalable organoid-culture technology should facilitate the use of organoids in drug development and diagnostics.


Assuntos
Técnicas de Cultura de Células/métodos , Organoides/citologia , Células-Tronco/citologia , Animais , Agregação Celular , Células Cultivadas , Dimetilpolisiloxanos/química , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Hidrogéis/química , Intestinos/citologia , Camundongos , Organogênese , Organoides/efeitos dos fármacos , Organoides/crescimento & desenvolvimento
8.
Int J Cancer ; 147(5): 1405-1418, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31989583

RESUMO

Progress in rectal cancer therapy has been hindered by the lack of effective disease-specific preclinical models that account for the unique molecular profile and biology of rectal cancer. Thus, we developed complementary patient-derived xenograft (PDX) and subsequent in vitro tumor organoid (PDTO) platforms established from preneoadjuvant therapy rectal cancer specimens to advance personalized care for rectal cancer patients. Multiple endoscopic samples were obtained from 26 Stages 2 and 3 rectal cancer patients prior to receiving 5FU/RT and implanted subcutaneously into NSG mice to generate 15 subcutaneous PDXs. Second passaged xenografts demonstrated 100% correlation with the corresponding human cancer histology with maintained mutational profiles. Individual rectal cancer PDXs reproduced the 5FU/RT response observed in the corresponding human cancers. Similarly, rectal cancer PDTOs reproduced significant heterogeneity in cellular morphology and architecture. PDTO in vitro 5FU/RT treatment response replicated the clinical 5FU/RT neoadjuvant therapy pathologic response observed in the corresponding patient tumors (p < 0.05). The addition of cetuximab to the 5FU/RT regiment was significantly more sensitive in the rectal cancer PDX and PDTOs with wild-type KRAS compared to mutated KRAS (p < 0.05). Considering the close relationship between the patient's cancer and the corresponding PDX/PDTO, rectal cancer patient-derived research platforms represent powerful translational research resources as population-based tools for biomarker discovery and experimental therapy testing. In addition, our findings suggest that cetuximab may enhance RT effectiveness by improved patient selection based on mutational profile in addition to KRAS or by developing a protocol using PDTOs to identify sensitive patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Modelos Biológicos , Medicina de Precisão/métodos , Neoplasias Retais/tratamento farmacológico , Animais , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Xenoenxertos/efeitos dos fármacos , Xenoenxertos/crescimento & desenvolvimento , Xenoenxertos/patologia , Humanos , Camundongos , Mutação , Terapia Neoadjuvante , Organoides/efeitos dos fármacos , Organoides/crescimento & desenvolvimento , Organoides/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Retais/patologia , Neoplasias Retais/radioterapia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Biochem Biophys Res Commun ; 508(2): 430-439, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30503340

RESUMO

An organoid is a complex, multi-cell three-dimensional (3D) structure that contains tissue-specific cells. Epithelial stem cells, which are marked by leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), have the potential for self-renewal and expansion as organoids. However, in the case of intestinal organoids from Lgr5-EGFP-IRES-CreERT2 transgenic mice, in vitro expansion of the Lgr5 expression is limited in a culture condition supplemented with essential proteins, such as epidermal growth factor (E), noggin (N), and R-spondin 1 (R). In this study, we hypothesized that self-renewal of Lgr5+ stem cells in a 3D culture system can be stimulated by defined compounds (CHIR99021, Valproic acid, Y-27632, and A83-01). Our results demonstrated that dissociated single cells from organoids were organized into a 3D structure in the four compounds containing the ENR culture medium in a 3D and two-dimensional (2D) culture system. Moreover, the Lgr5 expression level of organoids from the ENR- and compound-containing media increased. Furthermore, the conversion of cultured Lgr5+ stem cells from 2D to 3D was confirmed. Therefore, defined compounds promote the expansion of Lgr5+ stem cells in organoids.


Assuntos
Organoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Amidas/farmacologia , Animais , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Autorrenovação Celular/fisiologia , Meios de Cultura Livres de Soro , Flavonoides/farmacologia , Expressão Gênica/efeitos dos fármacos , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Transgênicos , Organoides/citologia , Organoides/crescimento & desenvolvimento , Pirazóis/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Tiossemicarbazonas/farmacologia , Ácido Valproico/farmacologia
10.
J Cell Physiol ; 234(6): 8352-8380, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30443904

RESUMO

Before a lead compound goes through a clinical trial, preclinical studies utilize two-dimensional (2D) in vitro models and animal models to study the pharmacodynamics and pharmacokinetics of that lead compound. However, these current preclinical studies may not accurately represent the efficacy and safety of a lead compound in humans, as there has been a high failure rate of drugs that enter clinical trials. All of these failures and the associated costs demonstrate a need for more representative models of human organ systems for screening in the preclinical phase of drug development. In this study, we review the recent advances in in vitro modeling including three-dimensional (3D) organoids, 3D microfabrication, and 3D bioprinting for various organs including the heart, kidney, lung, gastrointestinal tract (intestine-gut-stomach), liver, placenta, adipose, retina, bone, and brain as well as multiorgan models. The availability of organ-on-chip models provides a wealth of opportunities to understand the pathogenesis of human diseases and provide a potentially better model to screen a drug, as these models utilize a dynamic 3D environment similar to the human body. Although there are limitations of organ-on-chip models, the emergence of new technologies have refined their capability for translational research as well as precision medicine.


Assuntos
Bioimpressão/métodos , Desenvolvimento de Medicamentos , Microtecnologia/métodos , Organoides/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Dispositivos Lab-On-A-Chip , Chumbo/efeitos adversos , Chumbo/uso terapêutico , Técnicas de Cultura de Órgãos , Organoides/crescimento & desenvolvimento
11.
Biochim Biophys Acta Mol Basis Dis ; 1865(5): 1003-1018, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30075192

RESUMO

A challenge in developing effective treatments is the modeling of the human disease using in vitro and in vivo systems. Animal models have played a critical role in the understanding of disease pathophysiology, target validation, and evaluation of novel therapeutic agents. However, as the success rate from entry into clinical testing to drug approval remains low, it is critical to have high quality and well-validated models reflective of the disease condition. Additional experimental models are being developed based on functional in vitro 3D tissue models such as organoids and 3D bioprinted tissues. Because these 3D tissue models mimic closer the architecture, cell composition and physiology of native tissues, they are now being used as screening platforms in drug discovery and development and for tissue transplant in regenerative medicine. Here we review the current state-of-art of in vitro and in vivo translational models for the development of therapies for rare diseases of the liver.


Assuntos
Hepatopatias/etiologia , Organoides/patologia , Pesquisa Translacional Biomédica/métodos , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Terapia Genética/métodos , Humanos , Hepatopatias/patologia , Hepatopatias/terapia , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Impressão Tridimensional , Doenças Raras
13.
Sci Rep ; 7(1): 12277, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947782

RESUMO

Precision cancer medicine seeks to target the underlying genetic alterations of cancer; however, it has been challenging to use genetic profiles of individual patients in identifying the most appropriate anti-cancer drugs. This spurred the development of patient avatars; for example, patient-derived xenografts (PDXs) established in mice and used for drug exposure studies. However, PDXs are associated with high cost, long development time and low efficiency of engraftment. Herein we explored the use of microfluidic devices or microchambers as simple and low-cost means of maintaining bladder cancer cells over extended periods of times in order to study patterns of drug responsiveness and resistance. When placed into 75 µm tall microfluidic chambers, cancer cells grew as ellipsoids reaching millimeter-scale dimeters over the course of 30 days in culture. We cultured three PDX and three clinical patient specimens with 100% success rate. The turn-around time for a typical efficacy study using microchambers was less than 10 days. Importantly, PDX-derived ellipsoids in microchambers retained patterns of drug responsiveness and resistance observed in PDX mice and also exhibited in vivo-like heterogeneity of tumor responses. Overall, this study establishes microfluidic cultures of difficult-to-maintain primary cancer cells as a useful tool for precision cancer medicine.


Assuntos
Antineoplásicos/administração & dosagem , Microfluídica/métodos , Técnicas de Cultura de Órgãos/métodos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Antineoplásicos/farmacologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Resistência a Medicamentos , Humanos , Microfluídica/instrumentação , Modelos Teóricos , Técnicas de Cultura de Órgãos/instrumentação , Organoides/efeitos dos fármacos , Organoides/crescimento & desenvolvimento
14.
Biomaterials ; 110: 45-59, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27710832

RESUMO

Engineering cardiac tissues and organ models remains a great challenge due to the hierarchical structure of the native myocardium. The need of integrating blood vessels brings additional complexity, limiting the available approaches that are suitable to produce integrated cardiovascular organoids. In this work we propose a novel hybrid strategy based on 3D bioprinting, to fabricate endothelialized myocardium. Enabled by the use of our composite bioink, endothelial cells directly bioprinted within microfibrous hydrogel scaffolds gradually migrated towards the peripheries of the microfibers to form a layer of confluent endothelium. Together with controlled anisotropy, this 3D endothelial bed was then seeded with cardiomyocytes to generate aligned myocardium capable of spontaneous and synchronous contraction. We further embedded the organoids into a specially designed microfluidic perfusion bioreactor to complete the endothelialized-myocardium-on-a-chip platform for cardiovascular toxicity evaluation. Finally, we demonstrated that such a technique could be translated to human cardiomyocytes derived from induced pluripotent stem cells to construct endothelialized human myocardium. We believe that our method for generation of endothelialized organoids fabricated through an innovative 3D bioprinting technology may find widespread applications in regenerative medicine, drug screening, and potentially disease modeling.


Assuntos
Bioimpressão/métodos , Células Endoteliais , Miocárdio , Organoides/crescimento & desenvolvimento , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/química , Células Endoteliais/citologia , Humanos , Hidrogéis/química , Microfibrilas/química , Miócitos Cardíacos/química , Miócitos Cardíacos/metabolismo , Organoides/química , Organoides/metabolismo , Medicina Regenerativa
15.
Science ; 345(6194): 1247125, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-25035496

RESUMO

Classical experiments performed half a century ago demonstrated the immense self-organizing capacity of vertebrate cells. Even after complete dissociation, cells can reaggregate and reconstruct the original architecture of an organ. More recently, this outstanding feature was used to rebuild organ parts or even complete organs from tissue or embryonic stem cells. Such stem cell-derived three-dimensional cultures are called organoids. Because organoids can be grown from human stem cells and from patient-derived induced pluripotent stem cells, they have the potential to model human development and disease. Furthermore, they have potential for drug testing and even future organ replacement strategies. Here, we summarize this rapidly evolving field and outline the potential of organoid technology for future biomedical research.


Assuntos
Doença , Modelos Biológicos , Organogênese , Organoides/crescimento & desenvolvimento , Células-Tronco Pluripotentes/citologia , Animais , Encéfalo/fisiologia , Técnicas de Cultura de Células , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Intestinos/fisiologia , Fígado/fisiologia , Camundongos , Mutagênese , Técnicas de Cultura de Órgãos , Organoides/citologia , Células-Tronco Pluripotentes/fisiologia , Retina/fisiologia , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA