RESUMO
Skin infections caused by drug-resistant Staphylococcus aureus occur at high rates nationwide. Mouse primary epidermal organoids (mPEOs) possess stratified histological and morphological characteristics of epidermis and are highly similar to their derived tissue at the transcriptomic and proteomic levels. Herein, the susceptibility of mPEOs to methicillin-resistant S. aureus USA300 infection was investigated. The results show that mPEOs support USA300 colonization and invasion, exhibiting swollen epithelial squamous cells with nuclear necrosis and secreting inflammatory factors such as IL-1ß. Meanwhile mPEOs beneficial to observe the process of USA300 colonization with increasing infection time, and USA300 induces mPEOs to undergo pyroptosis and autophagy. In addition, we performed a drug screen for the mPEO infection model and showed that vancomycin restores cell viability and inhibits bacterial internalization in a concentration-dependent manner. In conclusion, we establish an in vitro skin infection model that contributes to the examination of drug screening strategies and antimicrobial drug mechanisms.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Organoides , Infecções Estafilocócicas , Animais , Camundongos , Avaliação Pré-Clínica de Medicamentos/métodos , Epiderme/metabolismo , Epiderme/microbiologia , Epiderme/patologia , Proteômica , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Organoides/metabolismo , Organoides/microbiologiaRESUMO
Approaches based on animal and two-dimensional (2D) cell culture models cannot ensure reliable results in modeling novel pathogens or in drug testing in the short term; therefore, there is rising interest in platforms such as organoids. To develop a toolbox that can be used successfully to overcome current issues in modeling various infections, it is essential to provide a framework of recent achievements in applying organoids. Organoids have been used to study viruses, bacteria, and protists that cause, for example, respiratory, gastrointestinal, and liver diseases. Their future as models of infection will be associated with improvements in system complexity, including abilities to model tissue structure, a dynamic microenvironment, and coinfection. Teaser. Organoids are a flexible tool for modelling viral, bacterial and protist infections. They can provide fast and reliable information on the biology of pathogens and in drug screening, and thus have become essential in combatting emerging infectious diseases.
Assuntos
Avaliação Pré-Clínica de Medicamentos , Infecções , Organoides , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/tendências , Infecções/tratamento farmacológico , Infecções/microbiologia , Modelos Animais , Organoides/efeitos dos fármacos , Organoides/microbiologia , Reprodutibilidade dos TestesRESUMO
Bacterial biofilms cause 65% of all human infections and are highly resistant to antibiotic therapy but lack specific treatments. To provide a human organoid model for studying host-microbe interplay and enabling screening for novel antibiofilm agents, a human epidermis organoid model with robust methicillin-resistant Staphylococcus aureus (MRSA) USA300 and Pseudomonas aeruginosa PAO1 biofilm was developed. Treatment of 1-day and 3-day MRSA and PAO1 biofilms with antibiofilm peptide DJK-5 significantly and substantially reduced the bacterial burden. This model enabled the screening of synthetic host defense peptides, revealing their superior antibiofilm activity against MRSA compared to the antibiotic mupirocin. The model was extended to evaluate thermally wounded skin infected with MRSA biofilms resulting in increased bacterial load, cytotoxicity, and pro-inflammatory cytokine levels that were all reduced upon treatment with DJK-5. Combination treatment of DJK-5 with an anti-inflammatory peptide, 1002, further reduced cytotoxicity and skin inflammation.
Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Modelos Biológicos , Organoides/microbiologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Carga Bacteriana/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Queimaduras/tratamento farmacológico , Queimaduras/imunologia , Queimaduras/microbiologia , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Organoides/efeitos dos fármacos , Organoides/imunologia , Organoides/lesões , Pseudomonas aeruginosa/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/imunologia , Pele/lesões , Pele/microbiologiaRESUMO
Secretory immunoglobulin A (SIgA) antibodies play an important role in protecting the mucosal surfaces against pathogens and maintaining homeostasis with the commensal microbiota. Because a substantial portion of the gut microbiota is coated with SIgA, we hypothesized that microbiota-SIgA complexes are important for the maintenance of gut homeostasis. Here we investigated the relationship between microbiota-SIgA complexes and inflammatory epithelial cell responses. We used a multi-cellular three-dimensional (3D) organotypical model of the human intestinal mucosa composed of an intestinal epithelial cell line and primary human lymphocytes/monocytes, endothelial cells and fibroblasts. We also used human SIgA from human colostrum, and a prominent bacterial member of the first colonizers, Escherichia coli, as a surrogate commensal. We found that free and microbiota-complexed SIgA triggered different epithelial responses. While free SIgA up-regulated mucus production, expression of polymeric immunoglobulin receptor (pIgR) and secretion of interleukin-8 and tumoir necrosis factor-α, microbiota-complexed SIgA mitigated these responses. These results suggest that free and complexed SIgA have different functions as immunoregulatory agents in the gut and that an imbalance between the two may affect gut homeostasis.