Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 49(5): 3849-3861, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35235155

RESUMO

BACKGROUND: Dromedary or one-humped camel (Camelus dromedarius) is distinctively acclimatized to survive the arid conditions of the desert environment. It has an excellent ability to compete dehydration with substantial tolerance for rapid dehydration. Therefore, it offers an excellent model for studying osmoregulation. Molecular characterization of Na+/K+ ATPase as a central regulator of electrolyte normohemostasis affords a better understanding of this mechanism in camel. Here is the first to resolve the full-length of alpha-1 subunit of sodium pump (ATP1A1) gene with its differential expression in dromedary tissues. RESULTS: The nucleotide sequence for the recovered full cDNA of ATP1A1was submitted to the GenBank (NCBI GenBank accession #MW628635) and bioinformatically analyzed. The cDNA sequence was of 3760 bp length with an open reading frame (ORF) of 3066 bp encoding a putative 1021 amino acids polypeptide with a molecular mass of 112696 Da. Blast search analysis revealed the shared high similarity of dromedary ATP1A1gene with other known ATP1A1genes in different species. The comparative analysis of its protein sequence confirmed the high identity with other mammalian ATP1A1 proteins. Further transcriptomic investigation for different organs was performed by real-time PCR to compare its level of expression among different organs. The results confirm a direct function between the ATP1A1 gene expression and the order of vital performance of these organs. The expression of ATP1A1 mRNA in the adrenal gland and brain was significantly higher than that in the other organs. The noticed down expression in camel kidney concomitant with overexpression in the adrenal cortex might interpret how dromedary expels access sodium without water loss with relative high ability to restrain mineralocorticoid-induced sodium retention on drinking salty water. CONCLUSION: The results reflect the importance of sodium pump in these organs. Na+/K+ ATPase in the adrenal gland and brain than other organs.


Assuntos
Camelus , ATPase Trocadora de Sódio-Potássio , Animais , Camelus/genética , Camelus/metabolismo , Clonagem Molecular , DNA Complementar/genética , Desidratação , Osmorregulação/genética , Alinhamento de Sequência , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Água/metabolismo
2.
Sci Rep ; 11(1): 2335, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504846

RESUMO

Long-standing clinical findings report a dramatic surge of vasopressin in umbilical cord blood of the human neonate, but the neural underpinnings and function(s) of this phenomenon remain obscure. We studied neural activation in perinatal mice and rats, and found that birth triggers activation of the suprachiasmatic, supraoptic, and paraventricular nuclei of the hypothalamus. This was seen whether mice were born vaginally or via Cesarean section (C-section), and when birth timing was experimentally manipulated. Neuronal phenotyping showed that the activated neurons were predominantly vasopressinergic, and vasopressin mRNA increased fivefold in the hypothalamus during the 2-3 days before birth. Copeptin, a surrogate marker of vasopressin, was elevated 30-to 50-fold in plasma of perinatal mice, with higher levels after a vaginal than a C-section birth. We also found an acute decrease in plasma osmolality after a vaginal, but not C-section birth, suggesting that the difference in vasopressin release between birth modes is functionally meaningful. When vasopressin was administered centrally to newborns, we found an ~ 50% reduction in neuronal cell death in specific brain areas. Collectively, our results identify a conserved neuroendocrine response to birth that is sensitive to birth mode, and influences peripheral physiology and neurodevelopment.


Assuntos
Hipotálamo/metabolismo , Sistemas Neurossecretores/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Vasopressinas/metabolismo , Animais , Biomarcadores/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osmorregulação/genética , Osmorregulação/fisiologia , Vasopressinas/genética
3.
Fish Physiol Biochem ; 42(6): 1647-1664, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27289588

RESUMO

The Na+/K+-ATPase (NKA) is considered as the main pump involved in active ion transport. In the European sea bass, Dicentrarchus labrax, we found two genes encoding for the alpha 1 subunit isoforms (NKA α1a and NKA α1b). NKA α1a and NKA α1b isoform amino acid (aa) sequences were compared through phylogeny and regarding key functional motifs between salmonids and other acanthomorph species. Analysis of aa sequences of both isoforms revealed a high degree of conservation across teleosts. The expression pattern of both nka α1a and nka α1b was measured in the gill, kidney and posterior intestine of fish in seawater (SW) and transferred to fresh water (FW) at different exposure times. Nka α1a was more expressed than nka α1b whatever the condition and the tissue analyzed. After long-term salinity acclimation (2.5 years) either in FW or SW, transcript levels of nka α1a were higher in the kidney followed by the posterior intestine and the gill. Compared to SW conditions, expression of nka α1a in FW was significantly increased or decreased, respectively, in gill and posterior intestine. In contrast, branchial nka α1b was significantly decreased in FW-acclimated fish. Short-term FW acclimation seems to rapidly increase nka α1a transcript levels in the kidney unlike in gill tissues where different gene expression levels are detected only after long-term acclimation.


Assuntos
Bass/genética , Proteínas de Peixes/genética , Osmorregulação/genética , ATPase Trocadora de Sódio-Potássio/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Bass/fisiologia , Clonagem Molecular , DNA Complementar/genética , Brânquias/metabolismo , Mucosa Intestinal/metabolismo , Rim/metabolismo , Filogenia , Isoformas de Proteínas/genética , Salinidade
4.
Nature ; 530(7590): 331-5, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26814964

RESUMO

Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Genoma de Planta/genética , Água do Mar , Zosteraceae/genética , Aclimatação/genética , Parede Celular/química , Etilenos/biossíntese , Duplicação Gênica , Genes de Plantas/genética , Redes e Vias Metabólicas , Dados de Sequência Molecular , Oceanos e Mares , Osmorregulação/genética , Filogenia , Folhas de Planta/metabolismo , Estômatos de Plantas/genética , Pólen/metabolismo , Salinidade , Tolerância ao Sal/genética , Alga Marinha/genética , Terpenos/metabolismo
5.
Protoplasma ; 252(6): 1439-50, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25691002

RESUMO

Physiological, biochemical, and gene expression responses under drought stress were studied in Withania somnifera. Photosynthesis rate, stomatal conductance, transpiration rate, relative water content, chlorophyll content, and quantum yield of photosystems I and II (PSI and PSII) decreased in response to drought stress. Comparative expression of genes involved in osmoregulation, detoxification, signal transduction, metabolism, and transcription factor was analyzed through quantitative RT-PCR. The genes encoding 1-pyrroline-5-carboxylate synthetase (P5CS), glutathione S-transferase (GST), superoxide dismutase (SOD), serine threonine-protein kinase (STK), serine threonine protein phosphatase (PSP), aldehyde dehydrogenase (AD), leucoanthocyanidin dioxygenase/anthocyanin synthase (LD/AS), HSP, MYB, and WRKY have shown upregulation in response to drought stress condition in leaf tissues. Enhanced detoxification and osmoregulation along with increased withanolides production were also observed under drought stress. The results of this study will be helpful in developing stress-tolerant and high secondary metabolite yielding genotypes.


Assuntos
Aclimatação , Secas , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metabolômica , Fotossíntese/genética , Proteínas de Plantas/genética , Withania/genética , Perfilação da Expressão Gênica/métodos , Metabolômica/métodos , Osmorregulação/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais , Estresse Fisiológico , Fatores de Tempo , Withania/enzimologia , Vitanolídeos/metabolismo
6.
Gen Comp Endocrinol ; 197: 5-17, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24332959

RESUMO

The dynamic changes in mRNA expression levels for vasotocin (AVT) and isotocin (IT) receptor gene levels were assessed in a time-course response study in immature male specimens of the gilthead sea bream (Sparus aurata) submitted to hyper- (55‰ salinity) and hypo-osmotic (5‰ salinity) challenges. Two different cDNAs for the AVT receptor and one for the IT receptor (V1a2-type and V2-type AVTR, and ITR, respectively) were cloned by screening an S. aurata brain cDNA library. Genes for these receptors were expressed differentially and is nearly ubiquitously in 26 of the examined tissues. In the gills, both environmental salinity challenges up-regulated AVTR V1a2-type gene expression concomitantly with mRNA expression protein activity of Na(+), K(+)-ATPase gene expression and protein, whereas the AVTR V2-type and cystic fibrosis transmembrane conductance regulator (CFTR) mRNA levels were associated with mRNAs environmental salinity, indicating a possible connection between AVTRs and these transporters. In kidney, AVTR V1a2-type gene expression peaked rapidly and lasted only a short time (12-24h) in response to both osmotic challenges. In contrast, AVTR V2-type mRNA levels were enhanced in specimens exposed to hyperosmotic conditions, whereas they decreased under hypoosmotic environments, suggesting an antidiuretic role related to the vasoconstriction function. In the hypothalamus, only the expression of the AVTR V2-type gene was enhanced at 7 and 14 days under both experimental conditions. In the liver, both AVTRs had increased mRNA levels, with the upregulation of their AVTR V2-type gene increasing faster than the V1a2-type. The ITR gene was not sensitive to variations of external salinity in any of the analyzed tissues. Our results demonstrate the involvement of the vasotocinergic, but not the isotocinergic, pathway as well as the hypothalamic function, in the adjustments of both osmoregulatory and metabolic processes after osmotic challenges.


Assuntos
Osmorregulação/genética , Ocitocina/análogos & derivados , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Dourada/genética , Vasotocina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Regulação da Expressão Gênica/fisiologia , Brânquias/fisiologia , Hipotálamo/fisiologia , Fígado/fisiologia , Masculino , Dados de Sequência Molecular , Osmorregulação/fisiologia , Pressão Osmótica/fisiologia , Ocitocina/metabolismo , Filogenia , RNA Mensageiro/metabolismo , Salinidade , Dourada/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA