Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.094
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
ACS Nano ; 18(15): 10625-10641, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563322

RESUMO

Development of nanomedicines that can collaboratively scavenge reactive oxygen species (ROS) and inhibit inflammatory cytokines, along with osteogenesis promotion, is essential for efficient osteoarthritis (OA) treatment. Herein, we report the design of a ROS-responsive nanomedicine formulation based on fibronectin (FN)-coated polymer nanoparticles (NPs) loaded with azabisdimethylphoaphonate-terminated phosphorus dendrimers (G4-TBP). The constructed G4-TBP NPs-FN with a size of 268 nm are stable under physiological conditions, can be specifically taken up by macrophages through the FN-mediated targeting, and can be dissociated in the oxidative inflammatory microenvironment. The G4-TBP NPs-FN loaded with G4-TBP dendrimer having intrinsic anti-inflammatory property and FN having both anti-inflammatory and antioxidative properties display integrated functions of ROS scavenging, hypoxia attenuation, and macrophage M2 polarization, thus protecting macrophages from apoptosis and creating designed bone immune microenvironment for stem cell osteogenic differentiation. These characteristics of the G4-TBP NPs-FN lead to their effective treatment of an OA model in vivo to reduce pathological changes of joints including synovitis inhibition and cartilage matrix degradation and simultaneously promote osteogenic differentiation for bone repair. The developed nanomedicine formulation combining the advantages of both bioactive phosphorus dendrimers and FN to treat OA may be developed for immunomodulatory therapy of different inflammatory diseases.


Assuntos
Dendrímeros , Nanopartículas , Osteoartrite , Humanos , Espécies Reativas de Oxigênio/metabolismo , Osteogênese , Dendrímeros/uso terapêutico , Osteoartrite/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Fósforo/uso terapêutico
2.
Nutrients ; 16(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38613068

RESUMO

Osteoarthritis (OA) is a degenerative bone disease characterized by inflammation as a primary pathology and currently lacks therapeutic interventions to impede its progression. Erigeron breviscapus (Vant.) Hand.-Mazz. (EB) is an east Asian herbal medicine with a long history of use and a wide range of confirmed efficacy against cardiovascular and central nervous system diseases. The purpose of this study is to evaluate whether EB is worthy of further investigation as a treatment for OA based on anti-inflammatory activity. This study aims to assess the potential of EB as a treatment for OA, focusing on its anti-inflammatory properties. Analgesic effects, functional improvements, and inhibition of cartilage destruction induced by EB were evaluated in acetic acid-induced peripheral pain mice and monosodium iodoacetate-induced OA rat models. Additionally, the anti-inflammatory effect of EB was assessed in serum and cartilage tissue in vivo, as well as in lipopolysaccharide-induced RAW 264.7 cells. EB demonstrated a significant alleviation of pain, functional impairment, and cartilage degradation in OA along with a notable inhibition of pro-inflammatory cytokines, including interleukin-1ß, interleukin-6, matrix metalloproteinases 13, and nitric oxide synthase 2, both in vitro and in vivo, in a dose-dependent manner compared to the active control. Accordingly, EB merits further exploration as a potential disease-modifying drug for OA, capable of mitigating the multifaceted pathology of osteoarthritis through its anti-inflammatory properties. Nonetheless, additional validation through a broader experimental design is essential to substantiate the findings of this study.


Assuntos
Erigeron , Osteoartrite , Animais , Camundongos , Ratos , Projetos de Pesquisa , Anti-Inflamatórios não Esteroides , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Dor/tratamento farmacológico , Extratos Vegetais/farmacologia
3.
Exp Gerontol ; 190: 112413, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570055

RESUMO

BACKGROUND: Osteoporotic osteoarthritis (OP-OA) is a severe pathological form of OA, urgently requiring precise management strategies and more efficient interventions. Emodin (Emo), an effective ingredient found in the traditional Chinese medicine rhubarb, has been dEmonstrated to promote osteogenesis and inhibit extracellular matrix degradation. In this study, we aimed to investigate the interventional effects of Emo on the subchondral bone and cartilage of the knee joints in OP-OA model rats. METHODS: Thirty-two SD rats were randomly and equally divided into sham, OP-OA, Emo low-dose, and Emo high-dose groups. Micro-CT scanning was conducted to examine the bone microstructure of the rat knee joints. H&E and Safranin O and Fast Green staining (SO&FG) were performed for the pathomorphological evaluation of the rat cartilage tissues. ELISA was used to estimate the rat serum expression levels of inflammatory factors, including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Additionally, the CCK-8 assay was utilized for determining the viability of Emo-treated BMSCs. Western blot and real-time PCR analyses were also employed to measure the bone formation indexes and cartilage synthesis and decomposition indexes. Lastly, the osteogenic and chondrogenic differentiation efficiency of the BMSCs was investigated via Alizarin Red and Alcian Blue staining. RESULTS: Emo intervention alleviated the bone microstructural disruption of the subchondral bone and articular cartilage in the OP-OA rats and up-regulated the expression of bone and cartilage anabolic metabolism indicators, decreased the expression of cartilage catabolism indicators, and diminished the expression of inflammatory factors in the rat serum (P<0.05). Furthermore, Emo reversed the decline in the osteogenic and chondrogenic differentiation ability of the BMSCs (P<0.05). CONCLUSION: Emo intervention mitigates bone loss and cartilage damage in OP-OA rats and promotes the osteogenic and chondrogenic differentiation of BMSCs.


Assuntos
Cartilagem Articular , Emodina , Osteoporose , Ratos Sprague-Dawley , Microtomografia por Raio-X , Animais , Emodina/farmacologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Ratos , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Feminino , Modelos Animais de Doenças , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia
4.
J Mater Chem B ; 12(17): 4148-4161, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591180

RESUMO

Cyaonoside A (CyA), derived from the natural Chinese medicine, Cyathula officinalis Kuan, which was for a long time used to treat knee injuries and relieve joint pain in traditional Chinese medicine, showed an unclear mechanism for protecting cartilage. In addition, CyA was poorly hydrosoluble and incapable of being injected directly into the joint cavity, which limited its clinical application. This study reveals that CyA resisted IL-1ß-mediated chondrogenic inflammation and apoptosis. Next, transcriptome sequencing is used to explore the potential mechanisms underlying CyA regulation of MSC chondrogenic differentiation. Based on these findings, CyA-loaded composite hydrogel microspheres (HLC) were developed and they possessed satisfactory loading efficiency, a suitable degradation rate and good biocompatibility. HLC increased chondrogenic anabolic gene (Acan, COL2A, and SOX9) expression, while downregulating the expression of the catabolic marker MMP13 in vitro. In the osteoarthritis mouse model, HLC demonstrated promising therapeutic capabilities by protecting the integrity of articular cartilage. In conclusion, this study provides insights into the regulatory mechanisms of CyA for chondrocytes and proposes a composite hydrogel microsphere-based advanced therapeutic strategy for osteoarthritis.


Assuntos
Condrócitos , Hidrogéis , Microesferas , Osteoartrite , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Camundongos , Inflamação/tratamento farmacológico , Camundongos Endogâmicos C57BL , Masculino , Tamanho da Partícula , Células Cultivadas
5.
Phytomedicine ; 128: 155279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581801

RESUMO

BACKGROUND: Osteoarthritis (OA) is characterized by degeneration of articular cartilage, leading to joint pain and dysfunction. Gubi Zhitong formula (GBZTF), a traditional Chinese medicine formula, has been used in the clinical treatment of OA for decades, demonstrating definite efficacy. However, its mechanism of action remains unclear, hindering its further application. METHODS: The ingredients of GBZTF were analyzed and performed with liquid chromatography-mass spectrometry (LC-MS). 6 weeks old SD rats were underwent running exercise (25 m/min, 80 min, 0°) to construct OA model with cartilage wear and tear. It was estimated by Micro-CT, Gait Analysis, Histological Stain. RNA-seq technology was performed with OA Rats' cartilage, and primary chondrocytes induced by IL-1ß (mimics OA chondrocytes) were utilized to evaluated and investigated the mechanism of how GBZTF protected OA cartilage from being damaged with some functional experiments. RESULTS: A total of 1006 compounds were identified under positive and negative ion modes by LC-MS. Then, we assessed the function of GBZTF through in vitro and vivo. It was found GBZTF could significantly up-regulate OA rats' limb coordination and weight-bearing capacity, and reduce the surface and sub-chondral bone erosions of OA joints, and protect cartilage from being destroyed by inflammatory factors (iNOS, IL-6, IL-1ß, TNF- α, MMP13, ADAMTS5), and promote OA chondrocytes proliferation and increase the S phage of cell cycle. In terms of mechanism, RNA-seq analysis of cartilage tissues revealed 1,778 and 3,824 differentially expressed genes (DEGs) in model vs control group and GBZTF vs model group, respectively. The mitophagy pathway was most significantly enriched in these DEGs. Further results of subunits of OA chondrocytes confirmed that GBZTF could alleviate OA-associated inflammation and cartilage damage through modulation BCL2 interacting protein 3-like (BNIP3L)-mediated mitophagy. CONCLUSION: The therapeutic effectiveness of GBZTF on OA were first time verified in vivo and vitro through functional experiments and RNA-seq, which provides convincing evidence to support the molecular mechanisms of GBZTF as a promising therapeutic decoction for OA.


Assuntos
Condrócitos , Medicamentos de Ervas Chinesas , Mitofagia , Osteoartrite , Ratos Sprague-Dawley , Animais , Osteoartrite/tratamento farmacológico , Condrócitos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Ratos , Mitofagia/efeitos dos fármacos , Masculino , Modelos Animais de Doenças , Proteínas de Membrana/metabolismo , Cartilagem Articular/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1007-1016, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621908

RESUMO

Chondrocytes are unique resident cells in the articular cartilage, and the pathological changes of them can lead to the occurrence of osteoarthritis(OA). Ligusticum cycloprolactam(LIGc) are derivatives of Z-ligustilide(LIG), a pharmacodynamic marker of Angelica sinensis, which has various biological functions such as anti-inflammation and inhibition of cell apoptosis. However, its protective effect on chondrocytes in the case of OA and the underlying mechanism remain unclear. This study conducted in vitro experiments to explore the molecular mechanism of LIGc in protecting chondrocytes from OA. The inflammation model of rat OA chondrocyte model was established by using interleukin-1ß(IL-1ß) to induce. LIGc alone and combined with glycyrrhizic acid(GA), a blocker of the high mobility group box-1 protein(HMGB1)/Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) signaling pathway, were used to intervene in the model, and the therapeutic effects were systematically evaluated. The viability of chondrocytes treated with different concentrations of LIGc was measured by the cell counting kit-8(CCK-8), and the optimal LIGc concentration was screened out. Annexin V-FITC/PI apoptosis detection kit was employed to examine the apoptosis of chondrocytes in each group. The enzyme-linked immunosorbent assay(ELISA) was employed to measure the expression of cyclooxygenase-2(COX-2), prostaglandin-2(PGE2), and tumor necrosis factor-alpha(TNF-α) in the supernatant of chondrocytes in each group. Western blot was employed to determine the protein levels of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), caspase-3, HMGB1, TLR4, and NF-κB p65. The mRNA levels of HMGB1, TLR4, NF-κB p65, and myeloid differentiation factor 88(MyD88) in chondrocytes were determined by real-time fluorescent quantitative PCR(RT-qPCR). The safe concentration range of LIGc on chondrocytes was determined by CCK-8, and then the optimal concentration of LIGc for exerting the effect was clarified. Under the intervention of IL-1ß, the rat chondrocyte model of OA was successfully established. The modeled chondrocytes showed increased apoptosis rate, promoted expression of COX-2, PGE2, and TNF-α, up-regulated protein levels of Bax, caspase-3, HMGB1, TLR4, and NF-κB p65 and mRNA levels of HMGB1, TLR4, NF-κB p65, and MyD88, and down-regulated protein level of Bcl-2. However, LIGc reversed the IL-1ß-induced changes of the above factors. Moreover, LIGc combined with GA showed more significant reversal effect than LIGc alone. These fin-dings indicate that LIGc extracted and derived from the traditional Chinese medicine A. sinensis can inhibit the inflammatory response of chondrocytes and reduce the apoptosis of chondrocytes, and this effect may be related to the HMGB1/TLR4/NF-κB signaling pathway. The pharmacological effect of LIGc on protecting chondrocytes has potential value in delaying the progression of OA and improving the clinical symptoms of patients, and deserves further study.


Assuntos
Proteína HMGB1 , Ligusticum , Osteoartrite , Humanos , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Condrócitos , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Dinoprostona , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Apoptose , RNA Mensageiro/metabolismo
7.
Front Immunol ; 15: 1363947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500879

RESUMO

Introduction: Osteoarthritis (OA) is associated with excessive cartilage degradation, inflammation, and decreased autophagy. Insufficient efficacy of conventional monotherapies and poor tissue regeneration due to side effects are just some of the unresolved issues. Our previous research has shown that Calebin A (CA), a component of turmeric (Curcuma longa), has pronounced anti-inflammatory and anti-oxidative effects by modulating various cell signaling pathways. Whether CA protects chondrocytes from degradation and apoptosis in the OA environment (EN), particularly via the autophagy signaling pathway, is however completely unclear. Methods: To study the anti-degradative and anti-apoptotic effects of CA in an inflamed joint, an in vitro model of OA-EN was created and treated with antisense oligonucleotides targeting NF-κB (ASO-NF-κB), and IκB kinase (IKK) inhibitor (BMS-345541) or the autophagy inhibitor 3-methyladenine (3-MA) and/or CA to affect chondrocyte proliferation, degradation, apoptosis, and autophagy. The mechanisms underlying the CA effects were investigated by MTT assays, immunofluorescence, transmission electron microscopy, and Western blot analysis in a 3D-OA high-density culture model. Results: In contrast to OA-EN or TNF-α-EN, a treatment with CA protects chondrocytes from stress-induced defects by inhibiting apoptosis, matrix degradation, and signaling pathways associated with inflammation (NF-κB, MMP9) or autophagy-repression (mTOR/PI3K/Akt), while promoting the expression of matrix compounds (collagen II, cartilage specific proteoglycans), transcription factor Sox9, and autophagy-associated proteins (Beclin-1, LC3). However, the preventive properties of CA in OA-EN could be partially abrogated by the autophagy inhibitor 3-MA. Discussion: The present results reveal for the first time that CA is able to ameliorate the progression of OA by modulating autophagy pathway, inhibiting inflammation and apoptosis in chondrocytes, suggesting that CA may be a novel therapeutic compound for OA.


Assuntos
NF-kappa B , Osteoartrite , Humanos , Fosfatidilinositol 3-Quinases , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Inflamação/metabolismo , Autofagia
8.
J Ethnopharmacol ; 325: 117887, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38346525

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ginkgo biloba, as the most widely available medicinal plant worldwide, has been frequently utilized for treat cardiovascular, cerebrovascular, diabetic and other diseases. Due to its distinct pharmacological effects, it has been broadly applications in pharmaceuticals, health products, dietary supplements, and so on. Ginkgolide C (GC), a prominent extract of Ginkgo biloba, possesses potential in anti-inflammatory and anti-oxidant efficacy. AIMS OF THE STUDY: To determine whether GC mitigated the progressive degeneration of articular cartilage in a Monosodium Iodoacetate (MIA)-induced osteoarthritis (OA) rat model by inhibiting the activation of the NLRP3 inflammasome, and the specific underlying mechanisms. MATERIALS AND METHODS: In vivo, an OA rat model was established by intra-articular injection of MIA. The protective effect of GC (10 mg/kg) on articular cartilage was evaluated. Application of ATDC5 cells to elucidate the mechanism of the protective effect of GC on articular cartilage. Specifically, the expression levels of molecules associated with cartilage ECM degrading enzymes, OS, ERS, and NLRP3 inflammasome activation were analyzed. RESULTS: In vivo, GC ameliorated MIA-induced OA rat joint pain, and exhibited remarkable anti-inflammatory and anti- ECM degradation effects via inhibition of the activation of NLRP3 inflammasome, the release of inflammatory factors, and the expression of matrix-degrading enzymes in cartilage. Mechanically, GC inhibited the activation of NLRP3 inflammasome by restraining ROS-mediated p-IRE1α and activating Nrf2/NQO1 signal path, thereby alleviating OA. The ROS scavenger NAC was as effective as GC in reducing ROS production and inhibiting the activation of NLRP3 inflammasome. CONCLUSIONS: GC have exerted chondroprotective effects by inhibiting the activation of NLRP3 inflammasome.


Assuntos
Cartilagem Articular , Ginkgolídeos , Lactonas , Osteoartrite , Ratos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Condrócitos , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Anti-Inflamatórios/efeitos adversos , Ácido Iodoacético/efeitos adversos , Ácido Iodoacético/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo
9.
Chin J Nat Med ; 22(2): 137-145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38342566

RESUMO

Excessive oxidative stress impairs cartilage matrix metabolism balance, significantly contributing to osteoarthritis (OA) development. Celastrol (CSL), a drug derived from Tripterygium wilfordii, has recognized applications in the treatment of cancer and immune system disorders, yet its antioxidative stress mechanisms in OA remain underexplored. This study aimed to substantiate CSL's chondroprotective effects and unravel its underlying mechanisms. We investigated CSL's impact on chondrocytes under both normal and inflammatory conditions. In vitro, CSL mitigated interleukin (IL)-1ß-induced activation of proteinases and promoted cartilage extracellular matrix (ECM) synthesis. In vivo, intra-articular injection of CSL ameliorated cartilage degeneration and mitigated subchondral bone lesions in OA mice. Mechanistically, it was found that inhibiting nuclear factor erythroid 2-related factor 2 (NRF2) abrogated CSL-mediated antioxidative functions and exacerbated the progression of OA. This study is the first to elucidate the role of CSL in the treatment of OA through the activation of NRF2, offering a novel therapeutic avenue for arthritis therapy.


Assuntos
Fator 2 Relacionado a NF-E2 , Osteoartrite , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/metabolismo , Condrócitos , Interleucina-1beta
10.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396803

RESUMO

Osteoarthritis is the most common type of arthritis, characterized by joint pain and a decline in physiological function. Scutellaria baicalensis Georgi (SB) is potentially effective against osteoarthritis because of its wide range of anti-inflammatory pharmacological activities. This study aimed to identify the mode of action of SB against osteoarthritis using network pharmacology prediction and experimental verification. Networks were constructed to key compounds, hub targets, and pathways essential for SB's effectiveness against osteoarthritis. Additionally, in vivo and in vitro tests were performed, including investigations on weight bearing in hind limbs, the acetic acid-induced writhing response, lipopolysaccharide-stimulated RAW264.7 cells, and serum cytokine responses. We identified 15 active compounds and 14 hub targets, supporting the anti-osteoarthritis effects of SB. The Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that fluid shear stress, atherosclerosis, phosphatidylinositol 3-kinase-Akt signaling, and cellular senescence pathways were important. SB showed substantial anti-inflammatory, analgesic, and joint tissue-protective effects against osteoarthritis. Our study shows that SB has the potential value to be further investigated as a candidate material for the treatment of osteoarthritis in the future.


Assuntos
Medicamentos de Ervas Chinesas , Osteoartrite , Farmacologia em Rede , Scutellaria baicalensis , Osteoartrite/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento Molecular
11.
J Ethnopharmacol ; 326: 117827, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38310989

RESUMO

BACKGROUND: In many different plants, including Dorstenia and Psoralea corylifolia L., Isobavachalcone (IBC) is a naturally occurring flavonoid chemical having a range of biological actions, including anti-inflammatory, immunomodulatory, and anti-bacterial. The "Theory of Medicinal Properties" of the Tang Dynasty states that Psoralea corylifolia L. has the ability to alleviate discomfort in the knees and waist. One of the most widespread chronic illnesses, osteoarthritis (OA), is characterized by stiffness and discomfort in the joints. However, there hasn't been much research done on the effectiveness and underlying processes of IBC in the treatment of osteoarthritis. AIM OF THE STUDY: To investigate the potential efficacy and mechanism of IBC in treating osteoarthritis, we adopted an integrated strategy of network pharmacology, molecular docking and experiment assessment. MATERIALS AND METHODS: The purpose of this research was to determine the impact of IBC on OA and the underlying mechanisms. IBC and OA possible targets and processes were predicted using network pharmacology, including the relationship between IBC and OA intersection targets, Cytoscape protein-protein interaction (PPI) to obtain key potential targets, and GO and KEGG pathway enrichment analysis to reveal the probable mechanism of IBC on OA. Following that, in vitro tests were carried out to confirm the expected underlying processes. Finally, in vivo tests clarified IBC's therapeutic efficacy on OA. RESULTS: We anticipated and validated that the impact of IBC on osteoarthritis is mostly controlled by the PI3K-AKT-NF-κB signaling pathway by combining the findings of network pharmacology analysis, molecular docking and Experiment Validation. CONCLUSIONS: This study reveals the IBC has potential to delay OA development.


Assuntos
Chalconas , Medicamentos de Ervas Chinesas , Fabaceae , Osteoartrite , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Osteoartrite/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
12.
Drug Des Devel Ther ; 18: 259-275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318502

RESUMO

Background: Astragalus membranaceus (AM) shows promise as a therapeutic agent for osteoarthritis (OA), a debilitating condition with high disability rates. OA exacerbation is linked to chondrocyte ferroptosis, yet the precise pharmacological mechanisms of AM remain unclear. Methods: We validated AM's protective efficacy in an anterior cruciate ligament transection (ACLT) mouse model of OA. The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database was utilized to identify AM's active components and their targets. FerrDb (a database for regulators and markers of ferroptosis and ferroptosis-disease associations) pinpointed ferroptosis-related targets, while GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), Therapeutic Target Database (TTD), and DrugBank sourced OA-related genes. Molecular docking analysis further validated these targets. Ultimately, the validation of the results was accomplished through in vitro experiments. Results: AM exhibited anabolic effects and suppressed catabolism in OA chondrocytes. Network pharmacology identified 19 common genes, and molecular docking suggested quercetin, an AM constituent, interacts with key proteins like HO-1 and NRF2 to inhibit chondrocyte ferroptosis. In vitro experiments confirmed AM's ability to modulate the NRF2/HO-1 pathway via quercetin, mitigating chondrocyte ferroptosis. Conclusion: This study elucidates how AM regulates chondrocyte ferroptosis, impacting OA progression, providing a theoretical basis and experimental support for AM's scientific application.


Assuntos
Medicamentos de Ervas Chinesas , Ferroptose , Osteoartrite , Humanos , Animais , Camundongos , Astragalus propinquus , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , Farmacologia em Rede , Quercetina , Bases de Dados Genéticas , Osteoartrite/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia
13.
Phytother Res ; 38(4): 1990-2006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372204

RESUMO

Osteoarthritis (OA) is characterized by an imbalance between M1 and M2 polarized synovial macrophages. Quercetin has shown protective effects against OA by altering M1/M2-polarized macrophages, but the underlying mechanisms remain unclear. In this study, rat chondrocytes were treated with 10 ng/mL of IL-1ß. To create M1-polarized macrophages in vitro, rat bone marrow-derived macrophages (rBMDMs) were treated with 100 ng/mL LPS. To mimic OA conditions observed in vivo, a co-culture system of chondrocytes and macrophages was established. ATP release assays, immunofluorescence assays, Fluo-4 AM staining, Transwell assays, ELISA assays, and flow cytometry were performed. Male adult Sprague-Dawley (SD) rats were used to create an OA model. Histological analyses, including H&E, and safranin O-fast green staining were performed. Our data showed a quercetin-mediated suppression of calcium ion influx and ATP release, with concurrent downregulation of TRPV1 and P2X7 in the chondrocytes treated with IL-1ß. Activation of TRPV1 abolished the quercetin-mediated effects on calcium ion influx and ATP release in chondrocytes treated with IL-1ß. In the co-culture system, overexpression of P2X7 in macrophages attenuated the quercetin-mediated effects on M1 polarization, migration, and inflammation. Either P2X7 or NLRP3 knockdown attenuated IL-1ß-induced M1/M2 polarization, migration, and inflammation. Moreover, overexpression of TRPV1 reduced the quercetin-mediated suppressive effects on OA by promoting M1/M2-polarized macrophages in vivo. Collectively, our data showed that quercetin-induced suppression of TRPV1 leads to a delay in OA progression by shifting the macrophage polarization from M1 to M2 subtypes via modulation of the P2X7/NLRP3 pathway.


Assuntos
Osteoartrite , Quercetina , Animais , Masculino , Ratos , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Inflamação/metabolismo , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoartrite/tratamento farmacológico , Quercetina/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais
14.
J Med Food ; 27(4): 301-311, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377551

RESUMO

Baicalin has been acknowledged for its anti-inflammatory properties. However, its potential impact on osteoarthritis (OA) has not yet been explored. Therefore, our study aimed to examine the effects of Baicalin on OA, both in laboratory and animal models. To evaluate its efficacy, human chondrocytes affected by OA were treated with interleukin-1ß and/or Baicalin. The effects were then assessed through viability tests using the cell counting kit-8 (CCK-8) method and flow cytometry. In addition, we analyzed the expressions of various factors such as FOXO1, autophagy, apoptosis, and cartilage synthesis and breakdown to corroborate the effects of Baicalin. We also assessed the severity of OA through analysis of tissue samples. Our findings demonstrate that Baicalin effectively suppresses inflammatory cytokines and MMP-13 levels caused by collagenase-induced osteoarthritis, while simultaneously preserving the levels of Aggrecan and Col2. Furthermore, Baicalin has been shown to enhance autophagy. Through the use of FOXO1 inhibitors, lentivirus-mediated knockdown, and chromatin immunoprecipitation, we verified that Baicalin exerts its protective effects by activating FOXO1, which binds to the Beclin-1 promoter, thereby promoting autophagy. In conclusion, our results show that Baicalin has potential as a therapeutic agent for treating OA (Clinical Trial Registration number: 2023-61).


Assuntos
Cartilagem Articular , Flavonoides , Proteína Forkhead Box O1 , Osteoartrite , Animais , Humanos , Apoptose , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Condrócitos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Proteína Forkhead Box O1/efeitos dos fármacos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Homeostase , Interleucina-1beta/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo
15.
Aging (Albany NY) ; 16(5): 4250-4269, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38407978

RESUMO

Lei's formula (LSF), a traditional Chinese herbal remedy, is recognized for its remarkable clinical effectiveness in treating osteoarthritis (OA). Despite its therapeutic potential, the exact molecular mechanisms underlying LSF's action in OA have remained enigmatic. Existing research has shed light on the role of the mTOR signaling pathway in promoting chondrocyte senescence, a central factor in OA-related cartilage degeneration. Consequently, targeting mTOR to mitigate chondrocyte senescence presents a promising avenue for OA treatment. The primary objective of this study is to establish LSF's chondroprotective potential and confirm its anti-osteoarthritic efficacy through mTOR inhibition. In vivo assessments using an OA mouse model reveal substantial articular cartilage degeneration. However, LSF serves as an effective guardian of articular cartilage, evidenced by reduced subchondral osteosclerosis, increased cartilage thickness, improved surface smoothness, decreased OARSI scores, elevated expression of cartilage anabolic markers (Col2 and Aggrecan), reduced expression of catabolic markers (Adamts5 and MMP13), increased expression of the chondrocyte hypertrophy marker (Col10), and decreased expression of chondrocyte senescence markers (P16 and P21). In vitro findings demonstrate that LSF shields chondrocytes from H2O2-induced apoptosis, inhibits senescence, enhances chondrocyte differentiation, promotes the synthesis of type II collagen and proteoglycans, and reduces cartilage degradation. Mechanistically, LSF suppresses chondrocyte senescence through the mTOR axis, orchestrating the equilibrium between chondrocyte anabolism and catabolism, ultimately leading to reduced apoptosis and decelerated OA cartilage degradation. LSF holds significant promise as a therapeutic approach for OA treatment, offering new insights into potential treatments for this prevalent age-related condition.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Animais , Condrócitos/metabolismo , Peróxido de Hidrogênio/farmacologia , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Cartilagem Articular/metabolismo
16.
Fitoterapia ; 174: 105870, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423225

RESUMO

A systematic mechanistic review was performed to determine mechanistic evidence for curcumin on pro-inflammatory matrix metalloproteinases and Osteoarthritis to understand the underlying pathophysiology, and to evaluate available human intervention evidence to inform clinical decision making. The systematic literature search was performed in 3 tranches (reviews, mechanistic, intervention studies) using PubMed, with no date limitations and using specific search terms. 65 out of 393 screened papers were accepted based on detailed inclusion and exclusion criteria. The mechanistic search was divided into three searches and the intervention searches were subdivided into four searches. Curcumin demonstrated significant inhibition of matrix metalloproteinases linked to cartilage degradation in Osteoarthritis through reduced activation of the nuclear factor kappa-B signaling pathway via suppressing phosphorylation of Iκßa and p65 nuclear translocation. Mechanistic evidence implicated matrix metalloproteinases in Osteoarthritis by decreasing Type II collagen, leading to cartilage damage. As a potential nutritional intervention for Osteoarthritis, curcumin could reduce inflammatory markers and improve pain and function scores. The evidence indicates most formulations of turmeric extract and curcumin extract, bio-enhanced and non-bio-enhanced, are effective at improving inflammatory markers and pain and function to a greater or lesser extent. Due to the high heterogeneity of the formulations, dosage, and duration of the studies, further research is needed to fully understand curcumin's potential as a promising non-pharmaceutical intervention for Osteoarthritis. This mechanism review identifies a gap in current research for the mechanism by which Type II collagen is mediated.


Assuntos
Curcumina , Osteoartrite , Humanos , Curcumina/farmacologia , Curcumina/metabolismo , Colágeno Tipo II/metabolismo , Colágeno Tipo II/farmacologia , Condrócitos/metabolismo , Estrutura Molecular , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , NF-kappa B/metabolismo , Dor , Metaloproteinases da Matriz/metabolismo
17.
Mol Nutr Food Res ; 68(8): e2300614, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38389158

RESUMO

SCOPE: Comprehensive assessment of l-carnitine's safety and effectiveness in reducing inflammatory markers in osteoarthritis (OA) patients. METHODS AND RESULTS: Journal articles on l-carnitine for OA are gathered using computer searches of PubMed, Embase, the Cochrane Library, and Web of Science. The kind of literature that is found is restricted to clinical randomized controlled trials (RCTs). The Cochrane Handbook risk of bias assessment tool RevMan 5.4 software is used to conduct a meta-analysis. The systematic assessment comprises eight trials totaling 619 patients; the included studies' quality is mediocre. The study's findings demonstrate that OA patients' Western Ontario and McMaster University (WOMAC) function improves and that treatment efficacy outperforms that of the control group (mean difference [MD] = -7.75, 95% CI [-14.63, -0.86]; Z = 2.21; p = 0.03), WOMAC total (MD = -10.24, 95% CI [-18.97, -1.51]; Z = 2.30; p = 0.02), and visual analogue scale (VAS) pain (MD = -14.01, 95% CI [-16.16, -11.85]; Z = 12.74; p < 0.00001). The studies that are methodically reviewed also discover heterogeneity, which may have resulted from the created pooled data and requires more analysis. CONCLUSION: In patients with OA, l-carnitine effectively decreases clinical signs and symptoms, inflammatory markers, pain, and stiffness indicators, and significantly improves WOMAC and VAS scores.


Assuntos
Carnitina , Suplementos Nutricionais , Osteoartrite , Humanos , Carnitina/farmacologia , Carnitina/administração & dosagem , Osteoartrite/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
18.
Drug Deliv Transl Res ; 14(6): 1517-1534, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38225521

RESUMO

Osteoarthritis (OA) is a prevalent chronic condition that primarily impacts the articular cartilage and surrounding bone tissue, resulting in joint inflammation and structural deterioration. The etiology of OA is multifaceted and intricately linked to the oxidative stress response of joint tissue. Oxidative stress (OS) in OA leads to the creation of reactive oxygen species (ROS) and other oxidizing agents, resulting in detrimental effects on chondrocytes. This oxidative damage diminishes the flexibility and robustness of cartilage, thereby expediting the progression of joint deterioration. Therefore, the antioxidant effect is crucial in the treatment of OA. Currently, a considerable number of components found in traditional Chinese medicine (TCM) have been scientifically demonstrated to exhibit remarkable antioxidant and anti-inflammatory properties. Nevertheless, the utilization of this program is considerably constrained as a result of intrinsic deficiencies, notably stability concerns. The successful amalgamation of TCM components with nanotechnology has properly tackled these concerns and enhanced the efficacy of therapeutic results. The objective of this study is to delineate the antioxidant characteristics of nano-TCM and assess the current inventory of literature pertaining to the application of nano-TCM in the treatment of OA. In conclusion, this paper will now turn to the constraints and potential avenues for the advancement of nano-TCM within the realm of OA therapy.


Assuntos
Antioxidantes , Medicina Tradicional Chinesa , Nanotecnologia , Osteoartrite , Osteoartrite/tratamento farmacológico , Humanos , Antioxidantes/administração & dosagem , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Animais , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Estresse Oxidativo/efeitos dos fármacos
19.
J Ethnopharmacol ; 321: 117432, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992880

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: It has been widely reported that various anti-rheumatic traditional Chinese medicines (TCMs) ameliorate rheumatoid arthritis (RA) and osteoarthritis (OA) through regulating the abnormal production, assembly, and activation of the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome. These TCMs include monomers isolated from Chinese herbs, extracts of Chinese herbs, and Chinese medical formulae with a lengthy application history. AIM OF THE STUDY: This review aimed to summarize and analyze the published articles about the NLRP3 inflammasome and its role in the pathogenesis of RA and OA. We also reviewed existing knowledge on the therapeutic mechanism of TCMs in RA and OA via the regulation of the NLRP3 inflammasome. MATERIALS AND METHODS: We searched for relevant articles with the keywords "NLRP3 inflammasome", "traditional Chinese medicine," "Chinese herbal drugs," "rheumatoid arthritis," and "osteoarthritis." The information retrieval was conducted in medical Chinese and English databases from the date of construction to April 19, 2023, including PubMed, MEDLINE, Web of Science, Scopus, Ovid, China National Knowledge Infrastructure (CNKI), Chinese Biomedicine Literature Database (CBM), Chinese Science and Technology Periodicals Database (VIP), and China Online Journals (COJ). RESULTS: According to retrieval results, 35 TCMs have been demonstrated to relieve RA by targeting the NLRP3 inflammasome, including six traditional Chinese prescriptions, seven extracts of Chinese herbs, and 22 monomers extracted from traditional Chinese herbs and formulae. Additionally, 23 TCMs have shown anti-OA effects with abilities to modulate the NLRP3 inflammasome, including five traditional Chinese prescriptions, one extract of Chinese herbs, and 17 monomers from Chinese herbs. CONCLUSIONS: We summarized mechanism research about the pivotal roles of the NLRP3 inflammasome in the pathogenesis of RA and OA. Moreover, a review of TCMs with targets of the NLRP3 inflammasome in RA and OA treatment was also conducted. Our work is conducive to a better application of TCMs in complementary and alternative therapies in RA and OA.


Assuntos
Antirreumáticos , Artrite Reumatoide , Medicamentos de Ervas Chinesas , Osteoartrite , Humanos , Inflamassomos , Medicina Tradicional Chinesa , Proteína 3 que Contém Domínio de Pirina da Família NLR , Artrite Reumatoide/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico
20.
Int J Biol Macromol ; 257(Pt 2): 128630, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070808

RESUMO

Previously, we prepared a chondroitin sulfate-soluble undenatured type II collagen complex (CS-SC II) with low salt content. This paper further explored the differences between CS-SC II and SC II in terms of gastrointestinal digestive characteristics and osteoarthritis (OA) improvement. In vitro and in vivo experiments showed that the gastric digestive stability of CS-SC II was high under both pH 2.0 and pH 3.0, the α1 chain and triple helix structure of type II collagen retained >60 %. However, SC II had high gastric digestive stability only under pH 3.0. Furthermore, intestinal digestion had little effect on α1 chains of CS-SC II and SC II, and distribution experiments showed that they might exert their biological activities in the intestine. CS-SC II had obvious improvement in OA rats at 1.0 mg/kg/d, that is, the joint swelling was significantly reduced and the weight-bearing ratio of the right hind limb was increased to 49 %, which was close to that of 4.0 mg/kg/d SC II. The wear of articular cartilage, Mankin and OARSI scores of rats in CS-SC II group were significantly reduced. The effects of low-dose CS-SC II on the proportion of regulatory T cells (Treg), mRNA expression of OA key biomarkers (Il6, Ccl7, MMP-3 and MMP13) and signaling pathway genes (NF-κB, AKT or AMPKα) were comparable to those of high-dose SC II. These results showed that CS-SC II might have greater potential to improve OA at a lower dose than SC II due to its high gastrointestinal digestive stability at a wide range of pH conditions.


Assuntos
Cartilagem Articular , Osteoartrite , Ratos , Animais , Sulfatos de Condroitina/química , Colágeno Tipo II/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA