Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 987
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 311: 116399, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36997131

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tiger bone, which had long been used in traditional Chinese medicine, had the action of removing wind and alleviating pain, strengthening the sinews and bones, and often used to treat bone impediment, and atrophic debility of bones in TCM clinical practice. As a substitute of natural bone tiger, artificial tiger bone Jintiange (JTG), has been approved by the State Food and Drug Administration of China for relief the symptom of osteoporosis, such as lumbago and back pain, lassitude in loin and legs, flaccidity and weakness legs, and walk with difficulty based on TCM theory. JTG has similar chemical profile to natural tiger bone, and contains mineral substance, peptides and proteins, and has been shown to protect bone loss in ovariectomized mice and exert the regulatory effects on osteoblast and osteoclast activities. But how the peptides and proteins in JTG modulate bone formation remains unclear. AIM: To investigate the stimulating effects of JTG proteins on osteogenesis and explore the possible underlying mechanisms. MATERIALS AND METHODS: JTG proteins were prepared from JTG Capsules by extracting calcium, phosphorus and other inorganic elements using SEP-PaktC18 desalting column. MC3T3-E1 cells were treated with JTG proteins to evaluate their effects and explore the underlying mechanisms. Osteoblast proliferation was detected by CCK-8 method. ALP activity was detected using a relevant assay kit, and bone mineralized nodules were stained with alizarin red-Tris-HCl solution. Cell apoptosis was analyzed by flow cytometry. Autophagy was observed by MDC staining, and autophagosomes were observed by TEM. Nuclear translocations of LC3 and CHOP were detected by immunofluorescence and observed under a laser confocal microscope. The expression of key proteins related to osteogenesis, apoptosis, autophagy and PI3K/AKT and ER stress pathways was analyzed by Western Blot analysis. RESULTS: JTG proteins improved osteogenesis as evidenced by the alteration of proliferation, differentiation and mineralization of MC3T3-E1 osteoblasts, inhibited their apoptosis, and enhanced autophagosome formation and autophagy. They also regulated the expression of key proteins of PI3K/AKT and ER stress pathways. In addition, PI3K/AKT and ER stress pathway inhibitors could reverse the regulatory effects of JTG proteins on osteogenesis, apoptosis, autophagy and PI3K/AKT and ER stress pathways. CONCLUSION: JTG proteins increased the osteogenesis and inhibited osteoblast apoptosis by enhancing autophagy via PI3K/AKT and ER stress signaling pathways.


Assuntos
Apoptose , Autofagia , Estresse do Retículo Endoplasmático , Etnofarmacologia , Osteoblastos , Osteogênese , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tigres , Osso e Ossos/química , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiologia , Linhagem Celular , Redes e Vias Metabólicas/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Animais , Camundongos , Ovariectomia , Feminino
2.
Med Mol Morphol ; 55(3): 174-186, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35461467

RESUMO

Cleidocranial dysplasia (CCD) is a hereditary disorder associated with skeletal dysplasia and dental abnormalities. CCD arises from heterozygous loss of function mutations in the Runt-related transcription factor 2 (RUNX2) gene. Osteoporosis is often observed in CCD patients and conventional vitamin D supplementation is recommended. However, sufficient evidences have not been presented yet. This study investigated the role of RUNX2 in osteoblastic differentiation and sought to identify potential target genes for the treatment of osteoporosis associated with CCD, using induced pluripotent stem cell (iPSC) technology. We successfully established Runx2-/-, Runx2+/- and wild-type miPSCs from litter-matched mice and found poor Vdr expression in Runx2-/-cells. Significant down-regulation of osteoblastic differentiation in Runx2-/- miPSCs was observed. Gene expression array revealed unexpected results such as remarkable increase of Rankl expression and decrease of Vdr in Runx2-/- cells. Insufficient response to vitamin D in Runx2-/- cells was also observed. Our results suggest that RUNX2 functions as a regulator of Rankl and Vdr and thereby controls bone density. These findings also suggest that conventional vitamin D supplementation may not be as effective as previously expected, in the treatment of osteoporosis associated with CCD, and that inhibiting RANKL function might be worth considering as an alternative treatment strategy.


Assuntos
Displasia Cleidocraniana , Subunidade alfa 1 de Fator de Ligação ao Core , Células-Tronco Pluripotentes Induzidas , Osteoporose , Vitamina D , Animais , Diferenciação Celular , Displasia Cleidocraniana/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Osteoporose/genética , Vitamina D/farmacologia
3.
Biomed Res Int ; 2021: 3664564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34853789

RESUMO

Tumor necrosis factor-α is a common cytokine that increases in inflammatory processes, slows the differentiation of bone formation, and induces osteodystrophy in the long-term inflammatory microenvironment. Our previous study confirmed that the Elongation protein 2 (ELP2) plays a significant role in osteogenesis and osteogenic differentiation, which is considered a drug discovery target in diseases related to bone formation and differentiation. In this study, we applied an in silico virtual screening method to select molecules that bind to the ELP2 protein from a chemical drug molecule library and obtained 95 candidates. Then, we included 11 candidates by observing the docking patterns and the noncovalent bonds. The binding affinity of the ELP2 protein with the candidate compounds was examined by SPR analysis, and 5 out of 11 compounds performed good binding affinity to the mouse ELP2 protein. After in vitro cell differentiation assay, candidates 2# and 5# were shown to reduce differentiation inhibition after tumor necrosis factor-α stimulation, allowing further optimization and development for potential clinical treatment of inflammation-mediated orthopedic diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Osteogênese/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Células 3T3 , Animais , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Bases de Dados de Produtos Farmacêuticos , Avaliação Pré-Clínica de Medicamentos , Marcadores Genéticos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular/química , Ligantes , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/genética , Osteogênese/fisiologia , Ligação Proteica , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Interface Usuário-Computador
4.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681927

RESUMO

Uremic toxins, such as indoxyl sulfate (IS) and kynurenine, accumulate in the blood in the event of kidney failure and contribute to further bone damage. To maintain the homeostasis of the skeletal system, bone remodeling is a persistent process of bone formation and bone resorption that depends on a dynamic balance of osteoblasts and osteoclasts. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates the toxic effects of uremic toxins. IS is an endogenous AhR ligand and is metabolized from tryptophan. In osteoclastogenesis, IS affects the expression of the osteoclast precursor nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) through AhR signaling. It is possible to increase osteoclast differentiation with short-term and low-dose IS exposure and to decrease differentiation with long-term and/or high-dose IS exposure. Coincidentally, during osteoblastogenesis, through the AhR signaling pathway, IS inhibits the phosphorylation of ERK, and p38 reduces the expression of the transcription factor 2 (Runx2), disturbing osteoblastogenesis. The AhR antagonist resveratrol has a protective effect on the IS/AhR pathway. Therefore, it is necessary to understand the multifaceted role of AhR in CKD, as knowledge of these transcription signals could provide a safe and effective method to prevent and treat CKD mineral bone disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Indicã/toxicidade , Osteoblastos/citologia , Osteoclastos/citologia , Receptores de Hidrocarboneto Arílico/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Indicã/urina , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/urina , Transdução de Sinais/efeitos dos fármacos
5.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502354

RESUMO

Oyster shells are rich in calcium, and thus, the potential use of waste shells is in the production of calcium phosphate (CaP) minerals for osteopathic biomedical applications, such as scaffolds for bone regeneration. Implanted scaffolds should stimulate the differentiation of induced pluripotent stem cells (iPSCs) into osteoblasts. In this study, oyster shells were used to produce nano-grade hydroxyapatite (HA) powder by the liquid-phase precipitation. Then, biphasic CaP (BCP) bioceramics with two different phase ratios were obtained by the foaming of HA nanopowders and sintering by two different two-stage heat treatment processes. The different sintering conditions yielded differences in structure and morphology of the BCPs, as determined by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface area analysis. We then set out to determine which of these materials were most biocompatible, by co-culturing with iPSCs and examining the gene expression in molecular pathways involved in self-renewal and differentiation of iPSCs. We found that sintering for a shorter time at higher temperatures gave higher expression levels of markers for proliferation and (early) differentiation of the osteoblast. The differences in biocompatibility may be related to a more hierarchical pore structure (micropores within macropores) obtained with briefer, high-temperature sintering.


Assuntos
Exoesqueleto/química , Hidroxiapatitas/química , Células-Tronco Pluripotentes Induzidas/metabolismo , Exoesqueleto/metabolismo , Animais , Materiais Biocompatíveis/química , Regeneração Óssea/fisiologia , Fosfatos de Cálcio/química , Adesão Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Cerâmica/química , Humanos , Hidroxiapatitas/síntese química , Hidroxiapatitas/metabolismo , Hidroxiapatitas/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Ostreidae/metabolismo , Porosidade/efeitos dos fármacos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
6.
Cells ; 10(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572032

RESUMO

The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.


Assuntos
Anabolizantes/farmacologia , Regeneração Óssea , Diferenciação Celular , Mecanotransdução Celular , Osteoblastos/citologia , Animais , Humanos , Osteoblastos/efeitos dos fármacos , Transdução de Sinais
7.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199016

RESUMO

Paeonia suffruticosa is a magnificent and long-lived woody plant that has traditionally been used to treat various diseases including inflammatory, neurological, cancer, and cardiovascular diseases. In the present study, we demonstrated the biological mechanisms of paeonoside (PASI) isolated from the dried roots of P. suffruticosa in pre-osteoblasts. Herein, we found that PASI has no cytotoxic effects on pre-osteoblasts. Migration assay showed that PASI promoted wound healing and transmigration in osteoblast differentiation. PASI increased early osteoblast differentiation and mineralized nodule formation. In addition, PASI enhanced the expression of Wnt3a and bone morphogenetic protein 2 (BMP2) and activated their downstream molecules, Smad1/5/8 and ß-catenin, leading to increases in runt-related transcription factor 2 (RUNX2) expression during osteoblast differentiation. Furthermore, PASI-mediated osteoblast differentiation was attenuated by inhibiting the BMP2 and Wnt3a pathways, which was accompanied by reduction in the expression of RUNX2 in the nucleus. Taken together, our findings provide evidence that PASI enhances osteoblast differentiation and mineralized nodules by regulating RUNX2 expression through the BMP2 and Wnt3a pathways, suggesting a potential role for PASI targeting osteoblasts to treat bone diseases including osteoporosis and periodontitis.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Glicosídeos/farmacologia , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Extratos Vegetais/farmacologia , Biomarcadores , Proteína Morfogenética Óssea 2/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Glicosídeos/química , Humanos , Imuno-Histoquímica , Espectroscopia de Ressonância Magnética/efeitos adversos , Osteogênese/efeitos dos fármacos , Extratos Vegetais/química , Via de Sinalização Wnt
8.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299204

RESUMO

BACKGROUND: bone tissue regeneration remains a current challenge. A growing body of evidence shows that mitochondrial dysfunction impairs osteogenesis and that this organelle may be the target for new therapeutic options. Current literature illustrates that red and near-infrared light can affect the key cellular pathways of all life forms through interactions with photoacceptors within the cells' mitochondria. The current study aims to provide an understanding of the mechanisms by which photobiomodulation (PBM) by 900-nm wavelengths can induce in vitro molecular changes in pre-osteoblasts. METHODS: The PubMed, Scopus, Cochrane, and Scholar databases were used. The manuscripts included in the narrative review were selected according to inclusion and exclusion criteria. The new experimental set-up was based on irradiation with a 980-nm laser and a hand-piece with a standard Gaussian and flat-top beam profile. MC3T3-E1 pre-osteoblasts were irradiated at 0.75, 0.45, and 0.20 W in continuous-wave emission mode for 60 s (spot-size 1 cm2) and allowed to generate a power density of 0.75, 0.45, and 0.20 W/cm2 and a fluence of 45, 27, and 12 J/cm2, respectively. The frequency of irradiation was once, three times (alternate days), or five times (every day) per week for two consecutive weeks. Differentiation, proliferation, and cell viability and their markers were investigated by immunoblotting, immunolabelling, fluorescein-FragELTM-DNA, Hoechst staining, and metabolic activity assays. RESULTS AND CONCLUSIONS: The 980-nm wavelength can photobiomodulate the pre-osteoblasts, regulating their metabolic schedule. The cellular signal activated by 45 J/cm2, 0.75 W and 0.75 W/cm2 consist of the PI3K/Akt/Bcl-2 pathway; differentiation markers were not affected, nor do other parameters seem to stimulate the cells. Our previous and present data consistently support the window effect of 980 nm, which has also been described in extracted mitochondria, through activation of signalling PI3K/Akt/Bcl-2 and cyclin family, while the Wnt and Smads 2/3-ß-catenin pathway was induced by 55 J/cm2, 0.9 W and 0.9 W/cm2.


Assuntos
Osteoblastos/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Crânio/citologia , Animais , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Lasers , Terapia com Luz de Baixa Intensidade/métodos , Camundongos , Osteoblastos/metabolismo , Osteoblastos/efeitos da radiação , Osteogênese , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais , Crânio/metabolismo , Crânio/efeitos da radiação
9.
Int J Mol Med ; 48(2)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34165156

RESUMO

Lycii radicis cortex (LRC) has been used to regulate high blood pressure, body temperature, pain and bone disorders in East Asia. Glucocorticoids (GCs), also known as steroids, are potent immunity regulators widely used in the treatment of inflammatory diseases. However, despite their effectiveness, GC usage is strictly controlled due to severe side­effects, such as osteoporosis. However, further research is required as to date, at least to the best of our knowledge, there is no appropriate model to overcome secondary osteoporosis as a side­effect of GC use. Thus, the aim of the present study was to establish an experimental model of osteoporosis induced by GC. Furthermore, the present study aimed to establish the research methodology for medical evaluations of the effectiveness and side­effects of GCs. A secondary osteoporosis animal model was established, and the animals were divided into two groups as follows: The allergic contact dermatitis (ACD)­induced group and the non­ACD­induced group. In the ACD­induced group, a GC topical application group was compared with a GC subcutaneous injection group. The results revealed that the presence of ACD affected the induction of GC­mediated osteoporosis. Therefore, the group exhibiting induced ACD that was treated with a topical application of GC was selected for examining the side­effects of GCs. The effects of LRC on secondary osteoporosis were confirmed in vivo and in vitro. The results indicated that LRC regulated dexamethasone­induced osteoblast apoptotic markers, including caspase­6, caspase­9, X­linked inhibitor of apoptosis, apoptosis inhibitor 1 and apoptosis inhibitor 2, and increased the expression of osteoblast differentiation­related genes, such as Runt­related transcription factor 2 and bone morphogenetic protein 2 in the MC3T3E­1 cell line. LRC also significantly reduced GC­induced osteoporosis and exerted anti­inflammatory effects in vivo. In addition, LRC inhibited the reduction of calbindin­D28k in the kidney. Overall, the results of the present study suggest that the use of LRC alleviates GC­induced secondary osteoporosis.


Assuntos
Proteína Morfogenética Óssea 2/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação para Baixo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Osteoporose/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteína Morfogenética Óssea 2/metabolismo , Calbindinas/genética , Calbindinas/metabolismo , Cálcio/metabolismo , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Dermatite Alérgica de Contato/etiologia , Dermatite Alérgica de Contato/genética , Dermatite Alérgica de Contato/prevenção & controle , Dinitroclorobenzeno/toxicidade , Modelos Animais de Doenças , Regulação para Baixo/genética , Medicamentos de Ervas Chinesas/análise , Cromatografia Gasosa-Espectrometria de Massas , Glucocorticoides , Humanos , Masculino , Camundongos Endogâmicos ICR , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoporose/induzido quimicamente , Osteoporose/genética
10.
Int J Mol Sci ; 22(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34065020

RESUMO

Although optical hyperthermia could be a promising anticancer therapy, the need for high concentrations of light-absorbing metal nanoparticles and high-intensity lasers, or large exposure times, could discourage its use due to the toxicity that they could imply. In this article, we explore a possible role of silica microparticles that have high biocompatibility and that scatter light, when used in combination with conventional nanoparticles, to reduce those high concentrations of particles and/or those intense laser beams, in order to improve the biocompatibility of the overall procedure. Our underlying hypothesis is that the scattering of light caused by the microparticles would increase the optical density of the irradiated volume due to the production of multiple reflections of the incident light: the nanoparticles present in the same volume would absorb more energy from the laser than without the presence of silica particles, resulting either in higher heat production or in the need for less laser power or absorbing particles for the same required temperature rise. Testing this new optical hyperthermia procedure, based on the use of a mixture of silica and metallic particles, we have measured cell mortality in vitro experiments with murine glioma (CT-2A) and mouse osteoblastic (MC3T3-E1) cell lines. We have used gold nanorods (GNRs) that absorb light with a wavelength of 808 nm, which are conventional in optical hyperthermia, and silica microparticles spheres (hereinafter referred to as SMSs) with a diameter size to scatter the light of this wavelength. The obtained results confirm our initial hypothesis, because a high mortality rate is achieved with reduced concentrations of GNR. We found a difference in mortality between CT2A cancer cells and cells considered non-cancer MC3T3, maintaining the same conditions, which gives indications that this technique possibly improves the efficiency in the cell survival. This might be related with differences in the proliferation rate. Since the experiments were carried out in the 2D dimensions of the Petri dishes, due to sedimentation of the silica particles at the bottom, whilst light scattering is a 3D phenomenon, a large amount of the energy provided by the laser escapes outside the medium. Therefore, better results might be expected when applying this methodology in tissues, which are 3D structures, where the multiple reflections of light we believe will produce higher optical density in comparison to the conventional case of no using scattering particles. Accordingly, further studies deserve to be carried out in this line of work in order to improve the optical hyperthermia technique.


Assuntos
Glioblastoma/terapia , Hipertermia Induzida , Nanopartículas Metálicas/administração & dosagem , Osteoblastos/citologia , Dióxido de Silício/química , Animais , Sobrevivência Celular , Células Cultivadas , Glioblastoma/patologia , Lasers , Nanopartículas Metálicas/química , Camundongos
11.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066458

RESUMO

Paeonia suffruticosa has been extensively used as a traditional medicine with various beneficial effects; paeonolide (PALI) was isolated from its dried roots. This study aimed to investigate the novel effects and mechanisms of PALI in pre-osteoblasts. Here, cell viability was evaluated using an MTT assay. Early and late osteoblast differentiation was examined by analyzing the activity of alkaline phosphatase (ALP) and by staining it with Alizarin red S (ARS). Cell migration was assessed using wound healing and Boyden chamber assays. Western blot and immunofluorescence analyses were used to examine the intracellular signaling pathways and differentiation proteins. PALI (0.1, 1, 10, 30, and 100 µM) showed no cytotoxic or proliferative effects in pre-osteoblasts. In the absence of cytotoxicity, PALI (1, 10, and 30 µM) promoted wound healing and transmigration during osteoblast differentiation. ALP staining demonstrated that PALI (1, 10, and 30 µM) promoted early osteoblast differentiation in a dose-dependent manner, and ARS staining showed an enhanced mineralized nodule formation, a key indicator of late osteoblast differentiation. Additionally, low concentrations of PALI (1 and 10 µM) increased the bone morphogenetic protein (BMP)-Smad1/5/8 and Wnt-ß-catenin pathways in osteoblast differentiation. Particularly, PALI (1 and 10 µM) increased the phosphorylation of ERK1/2 compared with BMP2 treatment, an FDA-approved drug for bone diseases. Furthermore, PALI-mediated early and late osteoblast differentiation was abolished in the presence of the ERK1/2 inhibitor U0126. PALI-induced RUNX2 (Cbfa1) expression and nuclear localization were also attenuated by blocking the ERK1/2 pathway during osteoblast differentiation. We suggest that PALI has biologically novel activities, such as enhanced osteoblast differentiation and bone mineralization mainly through the intracellular ERK1/2-RUNX2 signaling pathway, suggesting that PALI might have therapeutic action and aid the treatment and prevention of bone diseases, such as osteoporosis and periodontitis.


Assuntos
Acetofenonas/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/metabolismo , Osteogênese , Animais , Proteína Morfogenética Óssea 2/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Proteína Wnt3/metabolismo
12.
Nutr Res ; 90: 24-35, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34023805

RESUMO

Osteoarthritis (OA) is a prevalent debilitating age-related skeletal disease. The hallmark of OA is the degradation of articular cartilage that cushions the joint during movement. It is characterized by chronic pain and disability. Magnesium, a critical trace element in the human body, plays a pivotal role in metabolism homeostasis and the energy balance. Humans obtain magnesium mainly from the diet. However, inadequate magnesium intake is not uncommon. Moreover, the magnesium status deteriorates with ageing. There has been a growing body of clinical studies pointing to an intimate relationship between dietary magnesium and OA although the conclusion remains controversial. As reported, the magnesium ion concentration is essential to determine cell fate. Firstly, the low-concentration magnesium ions induced human fibroblasts senescence. Magnesium supplementation was also able to mitigate chondrocyte apoptosis, and to facilitate chondrocyte proliferation and differentiation. In this literature review, we will outline the existing evidence in animals and humans. We will also discuss the controversies on plasma or intracellular level of magnesium as the indicator of magnesium status. In addition, we put forward the interplay between dietary magnesium intake and intestinal microbiome to modulate the inflammatory milieu in the conjecture of OA pathogenesis. This leads to an emerging hypothesis that the synergistic effect of magnesium and probiotics may open a new avenue for the prevention and treatment of OA.


Assuntos
Dieta , Magnésio/administração & dosagem , Magnésio/fisiologia , Osteoartrite/fisiopatologia , Animais , Diferenciação Celular , Proliferação de Células , Senescência Celular , Condrócitos/citologia , Condrócitos/fisiologia , Suplementos Nutricionais , Fibroblastos/fisiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Articulações , Deficiência de Magnésio/fisiopatologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Estado Nutricional , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoblastos/citologia , Osteoblastos/fisiologia
13.
J Ethnopharmacol ; 280: 114236, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044074

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Marantodes pumilum (Blume) Kuntze has been claimed to be beneficial in protecting the bone against loss in post-menopausal women. In view of increased incidence of diabetes mellitus (DM) in post-menopausal period, M. pumilum ability to overcome the detrimental effect of estrogen-deficiency and DM on the bones were identified. AIM OF THE STUDY: To identify the mechanisms underlying protective effect of MPLA on the bone in estrogen-deficient, diabetic condition. METHODS: Adult female, estrogen-deficient, diabetic rats (225 ± 10 g) were divided into untreated group and treated with M. pumilum leaf aqueous extract (MPLA) (50 mg/kg/day and 100 mg/kg/day) and estrogen for 28 days (n = 6 per group). Fasting blood glucose (FBG) levels were weekly monitored and at the end of treatment, rats were sacrificed and femur bones were harvested. Bone collagen distribution was observed by Masson's trichome staining. Levels of bone osteoblastogenesis, apoptosis and proliferative markers were evaluated by Realtime PCR, Western blotting, immunofluorescence and immunohistochemistry. RESULTS: MPLA treatment was able to ameliorate the increased in FBG levels in estrogen deficient, diabetic rats. In these rats, decreased bone collagen content, expression level of osteoblastogenesis markers (Wnt3a, ß-catenin, Frizzled, Dvl and LRP-5) and proliferative markers (PCNA and c-Myc) and increased expression of anti-osteoblastogenesis marker (Gsk-3ß) and apoptosis markers (Caspase-3, Caspase-9 and Bax) but not Bcl-2 were ameliorated. Effects of 100 mg/kg/day MPLA were greater than estrogen. CONCLUSION: MPLA was able to protect against bone loss, thus making it a promising agent for the treatment of osteoporosis in women with estrogen deficient, diabetic condition.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Osteoblastos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Primulaceae/química , Animais , Apoptose/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Regulação para Baixo/efeitos dos fármacos , Estrogênios/metabolismo , Feminino , Osteoblastos/citologia , Folhas de Planta , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
14.
Int J Nanomedicine ; 16: 3429-3456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040372

RESUMO

PURPOSE: Osteoporosis results in a severe decrease in the life quality of many people worldwide. The latest data shows that the number of osteoporotic fractures is becoming an increasing international health service problem. Therefore, a new kind of controllable treatment methods for osteoporotic fractures is extensively desired. For that reason, we have manufactured and evaluated nanohydroxyapatite (nHAp)-based composite co-doped with iron oxide (IO) nanoparticles. The biomaterial was used as a matrix for the controlled delivery of miR-21-5p and miR-124-3p, which have a proven impact on bone cell metabolism. METHODS: The nanocomposite Ca5(PO4)3OH/Fe3O4 (later called nHAp/IO) was obtained by the wet chemistry method and functionalised with microRNAs (nHAp/IO@miR-21/124). Its physicochemical characterization was performed using XRPD, FT-IR, SEM-EDS and HRTEM and SAED methods. The modulatory effect of the composite was tested in vitro using murine pre-osteoblasts MC3T3-E1 and pre-osteoclasts 4B12. Moreover, the anti-inflammatory effects of biomaterial were analysed using a model of LPS-treated murine macrophages RAW 264.7. We have analysed the cells' viability, mitochondria membrane potential and oxidative stress under magnetic field (MF+) and without (MF-). Moreover, the results were supplemented with RT-qPCR and Western blot assays to evaluate the expression profile for master regulators of bone metabolism. RESULTS: The results indicated pro-osteogenic effects of nHAp/IO@miR-21/124 composite enhanced by exposure to MF. The enhanced osteogenesis guided by nHAp/IO@miR-21/124 presence was associated with increased metabolism of progenitor cells and activation of osteogenic markers (Runx-2, Opn, Coll-1). Simultaneously, nanocomposite decreased metabolism and differentiation of pre-osteoclastic 4B12 cells accompanied by reduced expression of CaII and Ctsk. Obtained composite regulated viability of bone progenitor cells and showed immunomodulatory properties inhibiting the expression of inflammatory markers, ie, TNF-α, iNOs or IL-1ß, in LPS-stimulated RAW 264.7 cells. CONCLUSION: We have described for the first time a new concept of osteoporosis treatment based on nHAp/IO@miR-21/124 application. Obtained results indicated that fabricated nanocomposite might impact proper regeneration of osteoporotic bone, restoring the balance between osteoblasts and osteoclast.


Assuntos
Durapatita/química , Nanopartículas Magnéticas de Óxido de Ferro/química , MicroRNAs/química , Osteoblastos/citologia , Osteoclastos/citologia , Osteoporose/patologia , Células 3T3 , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Portadores de Fármacos/química , Inflamação/terapia , Campos Magnéticos , Camundongos , MicroRNAs/genética , Nanocompostos/química , Osteoblastos/patologia , Osteoclastos/patologia , Osteogênese/genética , Osteoporose/genética , Osteoporose/terapia
15.
Int J Biol Sci ; 17(7): 1821-1836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994865

RESUMO

Both osteoblasts and preosteoclasts contribute to the coupling of osteogenesis and angiogenesis, regulating bone regeneration. Astragaloside IV (AS-IV), a glycoside of cycloartane-type triterpene derived from the Chinese herb Astragalus membranaceus, exhibits various biological activities, including stimulating angiogenesis and attenuating ischemic-hypoxic injury. However, the effects and underlying mechanisms of AS-IV in osteogenesis, osteoclastogenesis, and bone regeneration remain poorly understood. In the present study, we found that AS-IV treatment inhibited osteoclastogenesis, preserved preosteoclasts, and enhanced platelet-derived growth factor-BB (PDGF-BB)-induced angiogenesis. Additionally, AS-IV promoted cell viability, osteogenic differentiation, and angiogenic gene expression in bone marrow mesenchymal stem cells (BMSCs). The activation of AKT/GSK-3ß/ß-catenin signaling was found to contribute to the effects of AS-IV on osteoclastogenesis and osteogenesis. Furthermore, AS-IV accelerated bone regeneration during distraction osteogenesis (DO), as evidenced from the improved radiological and histological manifestations and biomechanical parameters, accompanied by enhanced angiogenesis within the distraction zone. In summary, AS-IV accelerates bone regeneration during DO, by enhancing osteogenesis and preosteoclast-induced angiogenesis simultaneously, partially through AKT/GSK-3ß/ß-catenin signaling. These findings reveal that AS-IV may serve as a potential bioactive molecule for promoting the coupling of osteogenesis and angiogenesis, and imply that AKT/GSK-3ß/ß-catenin signaling may be a promising therapeutic target for patients during DO treatment.


Assuntos
Medula Óssea/metabolismo , Regeneração Óssea/fisiologia , Neovascularização Fisiológica/fisiologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Medula Óssea/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Medicamentos de Ervas Chinesas , Masculino , Modelos Animais , Osteoblastos/citologia , Osteogênese/fisiologia , Ratos , Ratos Sprague-Dawley
16.
Molecules ; 26(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917440

RESUMO

Periodontitis is a set of chronic inflammatory diseases caused by the accumulation of Gram-negative bacteria on teeth, resulting in gingivitis, pocket formation, alveolar bone loss, tissue destruction, and tooth loss. In this study, the contents of ginsenosides isolated from Panax ginseng fruit extract were quantitatively analyzed, and the anti-inflammatory effects were evaluated in human periodontal ligament cells. The major ginsenosides, Re, Ra8, and Rf, present in ginseng fruit were simultaneously analyzed by a validated method using high-performance liquid chromatography with a diode-array detector; Re, Ra8, and Rf content per 1 g of P. ginseng fruit extract was 1.01 ± 0.03, 0.33 ± 0.01, and 0.55 ± 0.04 mg, respectively. Ginsenosides-Re, -Ra8, and -Rf inhibited the production of pro-inflammatory factors and the expression of important cytokines in periodontitis by inducing the expression of heme oxygenase 1 (HO-1), promoting osteoblast differentiation of periodontal ligament cells, suppressing alveolar bone loss, and promoting the expression of osteoblast-specific genes, such as alp, opn, and runx2. An inhibitory effect of these ginsenosides on periodontitis and alveolar bone loss was observed via the regulation of HO-1 and subsequent epidermal growth factor receptor (EGFR) signaling. Silencing EGFR with EGFR siRNA confirmed that the effect of ginsenosides on HO-1 is mediated by EGFR. In conclusion, this study evaluated the contents of ginsenosides-Re, -Ra8, and -Rf isolated from P. ginseng fruit extract. Therefore, these results provide important basic data for future P. ginseng fruit component studies and suggest that ginsenosides Re, Ra8, and Rf have potential as future treatment options for periodontitis.


Assuntos
Anti-Inflamatórios/farmacologia , Receptores ErbB/metabolismo , Ginsenosídeos/isolamento & purificação , Ginsenosídeos/farmacologia , Heme Oxigenase-1/metabolismo , Osteogênese/efeitos dos fármacos , Panax/química , Ligamento Periodontal/citologia , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Frutas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Ginsenosídeos/química , Humanos , Mediadores da Inflamação/metabolismo , Limite de Detecção , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Extratos Vegetais/química , Porphyromonas gingivalis/química , Análise de Regressão , Transdução de Sinais/efeitos dos fármacos
17.
J Ethnopharmacol ; 275: 114129, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33878416

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Curculigo orchioides Gaertn is used for the treatment of impotence, atrophic debility of bones (osteoporosis), limb limpness, and arthritis of the lumbar and knee joints in traditional Chinese medicine and Ayurvedic medical system. Curculigoside (Cur) from Curculigo orchioides Gaertn has been shown to have regulatory effects on bone metabolism via anti-oxidative activities in rats and osteoblasts. However, little is known about the molecular pharmacological activity of Cur in osteoclastic bone resorption. AIM: The aim of this work is to investigate the inhibitory effect of Cur against osteoclasts (OCs) under the oxidative stress status, and explore the possible underlying mechanism. MATERIALS AND METHODS: OCs were induced from RAW264.7 cells using RANKL and H2O2. The number of OCs was measured by tartrate-resistant acid phosphatase (TRAP) staining. F-Actin and nuclear translocation of P65 and Nrf2 were stained with immunofluorescence assay and observed under a laser confocal microscope. The biochemical parameters of OCs were detected with an ELISA kit. The expression of Nrf2 and NF-κB pathway-related proteins was analyzed by Western Blot. RESULTS: Cur inhibited the TRAP activity, release of degrading products from bone slices and the expression of NFATc1, c-Fos, Cathepsin K (Ctsk) and matrix metallopeptidase 9 (MMP9) of OCs induced with RANKL and H2O2. In addition, Cur suppressed the ROS level and NADPH oxidase 1(NOX1) and NADPH oxidase 4 (NOX4) activities of OCS. More importantly, Cur enhanced the expression and nucleus translocation of Nrf2 and activities of its regulatory cytoprotective enzymes, and reduced the NF-κB expression and phosphorylation and nucleus translocation of p65 in OCs. Furthermore, the Nrf2 inhibitor ML385 and NF-κB inhibitor Bay11-7082 counteracted the effect of Cur in OCs. CONCLUSION: Cur mitigated oxidative stress and osteoclastogenesis by activating Nrf2 and inhibiting the NF-κB pathway, suggesting that Cur may prove to be a promising candidate for the treatment of osteoporosis. Our findings may also help partially explain the rationale behind the traditional use of Curculigo orchioides Gaertn.


Assuntos
Benzoatos/farmacologia , Glucosídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Osteogênese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Acetilcisteína/farmacologia , Actinas/antagonistas & inibidores , Actinas/metabolismo , Animais , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Peróxido de Hidrogênio/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , NADPH Oxidase 1/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/metabolismo , NF-kappa B/antagonistas & inibidores , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Ligante RANK/farmacologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Fosfatase Ácida Resistente a Tartarato/metabolismo
18.
ACS Appl Mater Interfaces ; 13(21): 25290-25305, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33908252

RESUMO

It has been reported that multiwalled carbon nanotubes (MWCNTs) can reportedly positively affect growth and differentiation of bone-related cells and therefore offer great potential in biomedical applications. To overcome negative immune responses that limit their application, specific doping and functionalization can improve their biocompatibility. Here, we demonstrated that nitrogen-doped carboxylate-functionalized MWCNTs (N-MWCNTs) enhance bone remodeling both in vitro and in vivo with excellent biocompatibility, via stimulation of both bone resorption and formation. We revealed that 0.2 µg/mL N-MWCNTs not only increase the transcription of osteoblastogenic and osteoclastogenic genes but also up-regulate the activities of both TRAP and AKP in the differentiation of bone marrow stromal cells (BMSCs). Additionally, intramuscular administration of N-MWCNTs at a dosage of 1.0 mg/kg body weight enhances bone mineral density and bone mass content in mice, as well as induces potentiated degree of TRAP- and ARS-positive staining in the femur. The positive regulation of N-MWCNTs on bone remodeling is initiated by macrophage phagocytosis, which induces altered production of inflammatory cytokines by immune response pathways, and consequently up-regulates IL1α, IL10, and IL16. These cytokines collectively regulate the central osteoclastogenic transcription factor NFATc1 and osteoblastogenic BMP signaling, the suppression of which confirmed that these factors respectively participate in N-MWCNT-mediated regulation of osteoclastic and osteoblastic bone marrow stem cell activities. These results suggest that N-MWCNTs can be readily generalized for use as biomaterials in bone tissue engineering for metabolic bone disorders.


Assuntos
Adjuvantes Imunológicos/química , Remodelação Óssea , Nanotubos de Carbono/química , Nitrogênio/química , Animais , Células HEK293 , Células HeLa , Humanos , Camundongos , Osteoblastos/citologia , Osteoclastos/citologia , Engenharia Tecidual , Transcriptoma
19.
Int J Biol Macromol ; 182: 168-178, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33838184

RESUMO

Electrospun poly (l-lactide-co-d, l-lactide) (PLDLLA)/poly (vinyl alcohol) (PVA) nanofibers were reinforced by various contents (0-1 wt%) of phospho-calcified cellulose nanowhiskers (PCCNWs) as scaffolds in bone applications. The hydrophilicity and rate of hydrolytic degradation of PLDLLA were improved by introducing 10 wt% of PVA. PCCNWs with inherent hydrophilic properties, high aspect ratio, and large elastic modulus enhanced the hydrophilicity, accelerated the rate of degradation, and improved the mechanical properties of the nanofibrous samples. Moreover, calcium phosphate and phosphate functional groups on the surface of PCCNWs possessing act as stimulating agents for cellular activities such as proliferation and differentiation. Besides the physico-chemical properties investigation of PLDLLA/PVA-PCCNWs nanofibrous samples, their cytotoxicity was also studied and they did not show any adverse side effect. Incorporation of PCCNWs (1 wt%) into the PLDLLA/PVA nanofibrous samples showed more enzymatic activities and deposited calcium. The micrograph images of the morphology of human mesenchymal stem cells (hMSCs) cultured on the nanofibrous sample containing 1 wt% of PCCNWs after 14 days of cell differentiation revealed their high potential for bone tissue engineering.


Assuntos
Celulose/análogos & derivados , Nanofibras/química , Osteogênese , Poliésteres/química , Álcool de Polivinil/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Cálcio/química , Linhagem Celular , Módulo de Elasticidade , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Fósforo/química
20.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801166

RESUMO

Root bark of Dictamnus dasycarpus Turcz. has been widely used as a traditional medicine and is a well-known anti-inflammatory agent. We isolated limonoid triterpene, obacunone (Obac) from the dried root bark of D. dasycarpus. Obac has been reported to exhibit varieties of biological activities including anti-inflammatory, anti-cancer, and anti-oxidant effects. This study aimed to investigate the beneficial effects and biological mechanisms of Obac in osteoblast differentiation and bone matrix mineralization. In the present study, Obac at concentrations ranging from 1 to 100 µM showed no proliferation effects in MC3T3-E1. The treatment of Obac (1 and 10 µM) increased wound healing and migration rates in a dose-dependent manner. Alkaline phosphatase (ALP) staining and activity showed that Obac (1 and 10 µM) enhanced early osteoblast differentiation in a dose-dependent manner. Obac also increased late osteoblast differentiation in a dose-dependent manner, as indicated by the mineralized nodule formation of ARS staining. The effects of Obac on osteoblast differentiation was validated by the levels of mRNAs encoding the bone differentiation markers, including Alp, bone sialoprotein (Bsp), osteopontin (Opn), and osteocalcin (Ocn). Obac increased the expression of bone morphogenetic protein (BMP), and the phosphorylation of smad1/5/8, and the expression of runt-related transcription factor 2 (RUNX2); Obac also inhibited GSK3ß and upregulated the protein level of ß-catenin in a dose-dependent manner during osteoblast differentiation. Obac-mediated osteoblast differentiation was attenuated by a BMP2 inhibitor, Noggin and a Wnt/ß-catenin inhibitor, Dickkopf-1 (Dkk1) with the abolishment of RUNX2 expression and nuclear accumulation by Obac. Taken together, the findings of this study demonstrate that Obac has pharmacological and biological activates to promote osteoblast differentiation and bone mineralization through BMP2, ß-catenin, and RUNX2 pathways, and suggest that Obac might be a therapeutic effect for the treatment and prevention of bone diseases such as osteoporosis and periodontitis.


Assuntos
Benzoxepinas/farmacologia , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Limoninas/farmacologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Camundongos , Osteoblastos/efeitos dos fármacos , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA