Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401674

RESUMO

The incidence of neurodegenerative diseases has increased greatly worldwide due to the rise in life expectancy. In spite of notable development in the understanding of these disorders, there has been limited success in the development of neuroprotective agents that can slow the progression of the disease and prevent neuronal death. Some natural products and molecules are very promising neuroprotective agents because of their structural diversity and wide variety of biological activities. In addition to their neuroprotective effect, they are known for their antioxidant, anti-inflammatory and antiapoptotic effects and often serve as a starting point for drug discovery. In this review, the following natural molecules are discussed: firstly, kynurenic acid, the main neuroprotective agent formed via the kynurenine pathway of tryptophan metabolism, as it is known mainly for its role in glutamate excitotoxicity, secondly, the dietary supplement pantethine, that is many sided, well tolerated and safe, and the third molecule, α-lipoic acid is a universal antioxidant. As a conclusion, because of their beneficial properties, these molecules are potential candidates for neuroprotective therapies suitable in managing neurodegenerative diseases.


Assuntos
Ácido Cinurênico/metabolismo , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Panteteína/análogos & derivados , Ácido Tióctico/metabolismo , Animais , Antioxidantes/uso terapêutico , Humanos , Ácido Cinurênico/uso terapêutico , Redes e Vias Metabólicas/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Panteteína/metabolismo , Panteteína/uso terapêutico , Ácido Tióctico/uso terapêutico
2.
Antimicrob Agents Chemother ; 58(12): 7258-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25246400

RESUMO

Pyrazinamide (PZA) is a first-line tuberculosis drug that inhibits the growth of Mycobacterium tuberculosis via an as yet undefined mechanism. An M. tuberculosis laboratory strain that was auxotrophic for pantothenate was found to be insensitive to PZA and to the active form, pyrazinoic acid (POA). To determine whether this phenotype was strain or condition specific, the effect of pantothenate supplementation on PZA activity was assessed using prototrophic strains of M. tuberculosis. It was found that pantothenate and other ß-alanine-containing metabolites abolished PZA and POA susceptibility, suggesting that POA might selectively target pantothenate synthesis. However, when the pantothenate-auxotrophic strain was cultivated using a subantagonistic concentration of pantetheine in lieu of pantothenate, susceptibility to PZA and POA was restored. In addition, we found that ß-alanine could not antagonize PZA and POA activity against the pantothenate-auxotrophic strain, indicating that the antagonism is specific to pantothenate. Moreover, pantothenate-mediated antagonism was observed for structurally related compounds, including n-propyl pyrazinoate, 5-chloropyrazinamide, and nicotinamide, but not for nicotinic acid or isoniazid. Taken together, these data demonstrate that while pantothenate can interfere with the action of PZA, pantothenate synthesis is not directly targeted by PZA. Our findings suggest that targeting of pantothenate synthesis has the potential to enhance PZA efficacy and possibly to restore PZA susceptibility in isolates with panD-linked resistance.


Assuntos
Antituberculosos/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Panteteína/farmacologia , Ácido Pantotênico/farmacologia , Pirazinamida/antagonistas & inibidores , Antituberculosos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacologia , Panteteína/metabolismo , Ácido Pantotênico/metabolismo , Pirazinamida/análogos & derivados , Pirazinamida/metabolismo , Pirazinamida/farmacologia , beta-Alanina/metabolismo , beta-Alanina/farmacologia
3.
Mol Cells ; 32(5): 431-5, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21912874

RESUMO

Phosphopantetheine adenylyltransferase (PPAT) catalyzes the reversible transfer of an adenylyl group from ATP to 4'-phosphopantetheine (Ppant) to form dephospho-CoA (dPCoA) and pyrophosphate in the Coenzyme A (CoA) biosynthetic pathway. Importantly, PPATs are the potential target for developing antibiotics because bacterial and mammalian PPATs share little sequence homology. Previous structural studies revealed the mechanism of the recognizing substrates and products. The binding modes of ATP, ADP, Ppant, and dPCoA are highly similar in all known structures, whereas the binding modes of CoA or 3'-phosphoadenosine 5'-phosphosulfate binding are novel. To provide further structural information on ligand binding by PPATs, the crystal structure of PPAT from Enterococcus faecalis was solved in three forms: (i) apo form, (ii) binary complex with ATP, and (iii) binary complex with pantetheine. The substrate analog, pantetheine, binds to the active site in a similar manner to Ppant. The new structural information reported in this study including pantetheine as a potent inhibitor of PPAT will supplement the existing structural data and should be useful for structure-based antibacterial discovery against PPATs.


Assuntos
Trifosfato de Adenosina/química , Coenzima A/química , Enterococcus faecalis/enzimologia , Nucleotidiltransferases/química , Panteteína/química , Trifosfato de Adenosina/metabolismo , Coenzima A/metabolismo , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Panteteína/análogos & derivados , Panteteína/metabolismo , Estrutura Quaternária de Proteína
4.
Ideggyogy Sz ; 62(7-8): 220-9, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19685700

RESUMO

Pantethine, the stable disulfide form of pantetheine, is the major precursor of coenzyme A, which plays a central role in the metabolism of lipids and carbohydrates. Coenzyme A is a cofactor in over 70 enzymatic pathways, including fatty acid oxidation, carbohydrate metabolism, pyruvate degradation, amino acid catabolism, haem synthesis, acetylcholine synthesis, phase II detoxification, acetylation, etc. Pantethine has beneficial effects in vascular disease, it able to decrease the hyperlipidaemia, moderate the platelet function and prevent the lipid-peroxidation. Moreover its neuro-endocrinological regulating role, its good influence on cataract and cystinosis are also proved. This molecule is a well-tolerated therapeutic agent; the frequency of its side-effect is very low and mild. Based on these preclinical and clinical data, it could be recommended using this compound as adjuvant therapy.


Assuntos
Antioxidantes/farmacologia , Coenzima A/biossíntese , Ácidos Graxos/metabolismo , Hipolipemiantes/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Panteteína/análogos & derivados , Acetilcolina/biossíntese , Animais , Antioxidantes/química , Antioxidantes/uso terapêutico , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Plaquetas/efeitos dos fármacos , Catarata/induzido quimicamente , Catarata/prevenção & controle , Sistema Nervoso Central/efeitos dos fármacos , Coenzima A/metabolismo , Cistina/efeitos dos fármacos , Cistinose/prevenção & controle , Carboidratos da Dieta/metabolismo , Humanos , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , Hipolipemiantes/uso terapêutico , Oxirredução , Panteteína/química , Panteteína/metabolismo , Panteteína/farmacologia , Panteteína/uso terapêutico , Ácido Pantotênico/farmacologia , Piruvatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA