Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Life Sci ; 329: 121955, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37473801

RESUMO

AIMS: This histological study focuses on the impact of electronic cigarette liquid (EC) on lingual papillae, especially taste buds, compare it to nicotine, and investigates the potential of vitamins in reversing these unwanted changes. MAIN METHODS: 40 adult male rats were allocated into 5 groups. Control injected saline intraperitoneally, electronic cigarettes group injected EC-liquid containing nicotine of dose (0.75 mg/kg), electronic cigarette group injected EC-liquid then supplemented orally with vitamins C and E, nicotine group injected pure nicotine of dose (0.75 mg/kg) and lastly nicotine group injected with pure nicotine of dose (0.75 mg/kg) then supplemented orally with vitamins C and E. Keratin surface area and the ratio between taste buds and its epithelial covering surface areas in fungiform papillae were measured. KEY FINDINGS: Histological examination of EC group revealed abnormal epithelial stratification and mitotic figs. EC plus V group showed intact basal cell layer. N group showed better histological stratification than EC group. Fungiform and circumvallate papillae in EC and N groups showed distorted appearance of taste buds. Histomorphometry analysis showed a significant decrease in taste buds to epithelium surface areas in EC, nicotine, and EC plus V groups, p-value (<0.05). There was no significant difference between control and N plus V groups. SIGNIFICANCE: Administration of vitamins C and E showed preservation of normal histological features of the lingual mucous membrane. EC caused striking damage to taste buds even after the administration of vitamins. The negative effects of electronic cigarettes are not confined only to the presence of nicotine.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Papilas Gustativas , Masculino , Ratos , Animais , Papilas Gustativas/metabolismo , Ácido Ascórbico/farmacologia , Nicotina/farmacologia , Nicotina/metabolismo , Língua , Vitamina A , Vitamina K/metabolismo , Suplementos Nutricionais , Vitaminas
2.
Nutrients ; 14(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36235793

RESUMO

Vitamins are known to generate bitterness, which may contribute to an off-taste or aftertaste for some nutritional supplements. This negative sensation can lead to a reduction in their consumption. Little is known about the bitter taste threshold and taste sensing system for the bitter taste detection of vitamins. To better understand the mechanisms involved in bitterness perception, we combined taste receptor functional assays and sensory analysis. In humans, bitter taste detection is mediated by 25 G-protein-coupled receptors belonging to the TAS2R family. First, we studied the bitterness of thirteen vitamins using a cellular-based functional taste receptor assay. We found four vitamins that can stimulate one or more TAS2Rs. For each positive molecule-receptor combination, we tested seven increasing concentrations to determine the half-maximal effective concentration (EC50) and the cellular bitter taste threshold. Second, we measured the bitter taste detection threshold for four vitamins that exhibit a strong bitter taste using a combination of ascending series and sensory difference tests. A combination of sensory and biological data can provide useful results that explain the perception of vitamin bitterness and its real contribution to the off-taste of nutritional supplements.


Assuntos
Papilas Gustativas , Paladar , Humanos , Receptores Acoplados a Proteínas G , Limiar Gustativo , Vitamina A , Vitaminas/farmacologia
3.
J Agric Food Chem ; 70(35): 10826-10835, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35998688

RESUMO

Although the technique for taste cell culture has been reported, cultured taste cells have remained poorly validated. This study systematically compared the cultured cells derived from both taste and non-taste tissues. Fourteen cell lines established from rat circumvallate papillae (RCVs* or RCVs), non-taste lingual epithelia (RVEs), and tail skins (RTLs) were analyzed by PCR, immunocytochemistry, proteomics, and calcium imaging. The cell lines were morphologically indistinguishable, and all expressed some taste-related molecules. Of the tested RCVs*, RCVs, RVEs, and RTLs (%), 84.7 ± 7.8, 63.9 ± 22.8, 46.8 ± 0.3, and 40.8 ± 15.1 of them were responsive to at least one tastant or ATP, respectively. However, the calcium signaling pathways in the responding cells differed from the canonical taste transduction pathways in the taste cells in vivo, suggesting that they were not genuine taste cells. In addition, the growth medium intended for taste cell culture did not prevent the proliferation of non-gustatory epithelial cells regardless of supplementation of Y-27632 and EGF. In conclusion, the current method for taste cell culture is susceptible to pseudo-taste cells that may lead to overinterpretation. Thus, biosensors that rely on calcium responses of cultured taste cells should be applied with extreme caution.


Assuntos
Técnicas Biossensoriais , Papilas Gustativas , Animais , Cálcio/metabolismo , Células Cultivadas , Ratos , Paladar/fisiologia , Papilas Gustativas/metabolismo , Língua/metabolismo
4.
Chem Senses ; 472022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35512652

RESUMO

In addition to the well-accepted taste receptors corresponding to the 6 basic taste qualities, sweet, salty, sour, bitter, umami, and fatty, another type of taste receptor, calcium-sensing receptor (CaSR), is located in taste bud cells. CaSR is called the kokumi receptor because its agonists induce koku (or kokumi), a Japanese word meaning the enhancement of flavor characteristics, such as thickness, mouthfulness, and continuity. Kokumi is an important factor in enhancing food palatability. γ-Glu-Val-Gly (EVG) is the most potent agonist of CaSR, which induces a strong kokumi flavor. However, no behavioral studies have been documented in animals using EVG. Here, we show that EVG at low concentrations that do not elicit a taste of its own enhances preferences for umami, fat, and sweet taste solutions in rats. An increased preference for inosine monophosphate (IMP) and Intralipos was the most dominant effect. NPS-2143, an antagonist of CaSR, abolished the additive effect of EVG on IMP and Intralipos solutions. These effects of EVG on taste stimuli are thought to occur in the oral cavity, because the effects of EVG were confirmed in a brief exposure test. The additive effects on IMP and Intralipos remained after the transection of the chorda tympani, indicating that these effects also occur in the palate and/or posterior part of the tongue. Moreover, the additive effects of EVG were verified in electrophysiological taste nerve responses. These results may partially provide the underlying mechanisms for EVG to induce kokumi flavor in humans.


Assuntos
Papilas Gustativas , Paladar , Animais , Suplementos Nutricionais , Dipeptídeos , Ingestão de Alimentos , Inosina Monofosfato/farmacologia , Ratos , Receptores de Detecção de Cálcio , Paladar/fisiologia
5.
Nutrients ; 13(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34578798

RESUMO

(Background) We investigated the effect of dietary supplementation with monosodium glutamate (MSG) on chemotherapy-induced downregulation of the T1R3 taste receptor subunit expression in the tongue of patients with advanced head and neck cancer. (Methods) Patients undergoing two rounds of chemoradiotherapy were randomly allocated to a control or intervention group (dietary supplementation with MSG at 2.7 g/day during the second round of chemotherapy). The relative expression of T1R3, a subunit of both umami and sweet taste receptors, in the tongue was assessed by quantitative polymerase chain reaction analysis. Dysgeusia was assessed with a visual analog scale and daily energy intake was evaluated. (Results) T1R3 expression levels in the tongue, taste sensitivity, and daily energy intake were significantly reduced after the first round of chemotherapy compared with before treatment. Furthermore, these parameters significantly decreased after the second round of chemotherapy, but the extent of decrease was significantly attenuated in the MSG group compared with the control group. (Conclusions) MSG supplementation suppresses chemotherapy-induced dysgeusia, possibly due to the inhibition of the T1R3-containing taste receptor downregulation in the tongue, thereby increasing energy intake in patients with advanced head and neck cancer.


Assuntos
Disgeusia/terapia , Neoplasias de Cabeça e Pescoço/terapia , Receptores Acoplados a Proteínas G/metabolismo , Glutamato de Sódio/administração & dosagem , Língua/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Quimiorradioterapia/efeitos adversos , Suplementos Nutricionais , Regulação para Baixo/efeitos dos fármacos , Disgeusia/etiologia , Feminino , Neoplasias de Cabeça e Pescoço/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Receptores Acoplados a Proteínas G/genética , Paladar/efeitos dos fármacos , Papilas Gustativas/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33931548

RESUMO

Many bees possess a tongue resembling a brush composed of a central rod (glossa) covered by elongated papillae, which is dipped periodically into nectar to collect this primary source of energy. In vivo measurements show that the amount of nectar collected per lap remains essentially constant for sugar concentrations lower than 50% but drops significantly for a concentration around 70%. To understand this variation of the ingestion rate with the sugar content of nectar, we investigate the dynamics of fluid capture by Bombus terrestris as a model system. During the dipping process, the papillae, which initially adhere to the glossa, unfold when immersed in the nectar. Combining in vivo investigations, macroscopic experiments with flexible rods, and an elastoviscous theoretical model, we show that the capture mechanism is governed by the relaxation dynamics of the bent papillae, driven by their elastic recoil slowed down through viscous dissipation. At low sugar concentrations, the papillae completely open before the tongue retracts out of nectar and thus, fully contribute to the fluid capture. In contrast, at larger concentrations corresponding to the drop of the ingestion rate, the viscous dissipation strongly hinders the papillae opening, reducing considerably the amount of nectar captured. This study shows the crucial role of flexible papillae, whose aspect ratio determines the optimal nectar concentration, to understand quantitatively the capture of nectar by bees and how physics can shed some light on the degree of adaptation of a specific morphological trait.


Assuntos
Algoritmos , Abelhas/fisiologia , Comportamento Alimentar/fisiologia , Modelos Biológicos , Néctar de Plantas/química , Língua/fisiologia , Animais , Abelhas/anatomia & histologia , Ingestão de Energia/fisiologia , Pólen/química , Polinização/fisiologia , Papilas Gustativas/fisiologia , Língua/anatomia & histologia , Viscosidade
7.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806052

RESUMO

In addition to the sense of taste and olfaction, chemesthesis, the sensation of irritation, pungency, cooling, warmth, or burning elicited by spices and herbs, plays a central role in food consumption. Many plant-derived molecules demonstrate their chemesthetic properties via the opening of transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels. TRPA1 and TRPV1 are structurally related thermosensitive cation channels and are often co-expressed in sensory nerve endings. TRPA1 and TRPV1 can also indirectly influence some, but not all, primary taste qualities via the release of substance P and calcitonin gene-related peptide (CGRP) from trigeminal neurons and their subsequent effects on CGRP receptor expressed in Type III taste receptor cells. Here, we will review the effect of some chemesthetic agonists of TRPA1 and TRPV1 and their influence on bitter, sour, and salt taste qualities.


Assuntos
Canal de Cátion TRPA1/fisiologia , Canais de Cátion TRPV/fisiologia , Paladar , Animais , Peptídeo Relacionado com Gene de Calcitonina/química , Capsaicina/farmacologia , Cátions , Humanos , Camundongos , Neurônios/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Polimorfismo de Nucleotídeo Único , Ratos , República da Coreia , Células Receptoras Sensoriais/metabolismo , Especiarias , Substância P/metabolismo , Canal de Cátion TRPA1/química , Canais de Cátion TRPV/química , Papilas Gustativas/metabolismo , Nervo Trigêmeo/metabolismo
8.
J Vis Exp ; (168)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33645563

RESUMO

Within the last ten years, advances in genetically encoded calcium indicators (GECIs) have promoted a revolution in in vivo functional imaging. Using calcium as a proxy for neuronal activity, these techniques provide a way to monitor the responses of individual cells within large neuronal ensembles to a variety of stimuli in real time. We, and others, have applied these techniques to image the responses of individual geniculate ganglion neurons to taste stimuli applied to the tongues of live anesthetized mice. The geniculate ganglion is comprised of the cell bodies of gustatory neurons innervating the anterior tongue and palate as well as some somatosensory neurons innervating the pinna of the ear. Imaging the taste-evoked responses of individual geniculate ganglion neurons with GCaMP has provided important information about the tuning profiles of these neurons in wild-type mice as well as a way to detect peripheral taste miswiring phenotypes in genetically manipulated mice. Here we demonstrate the surgical procedure to expose the geniculate ganglion, GCaMP fluorescence image acquisition, initial steps for data analysis, and troubleshooting. This technique can be used with transgenically encoded GCaMP, or with AAV-mediated GCaMP expression, and can be modified to image particular genetic subsets of interest (i.e., Cre-mediated GCaMP expression). Overall, in vivo calcium imaging of geniculate ganglion neurons is a powerful technique for monitoring the activity of peripheral gustatory neurons and provides complementary information to more traditional whole-nerve chorda tympani recordings or taste behavior assays.


Assuntos
Cálcio/metabolismo , Gânglio Geniculado/fisiologia , Neurônios/fisiologia , Paladar/fisiologia , Anestesia , Animais , Gânglio Geniculado/cirurgia , Imobilização , Camundongos , Estimulação Física , Papilas Gustativas/fisiologia , Traqueotomia
9.
J Nat Prod ; 83(6): 1740-1750, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32496797

RESUMO

Bitter taste receptors (hTAS2R) are expressed ectopically in various tissues, raising the possibility of a pharmacological exploitation. This seems of particular relevance in airways, since hTAS2Rs are involved in the protection of the aerial tissues from infections and in bronchodilation. The bis-guaianolide absinthin (1), one of the most bitter compounds known, targets the hTAS2R46 bitter receptor. Absinthin (1), an unstable compound, readily turns into anabsinthin (2) with substantial retention of the bitter properties, and this compound was used as a starting material to explore the chemical space around the bis-guaianolide bitter pharmacophore. Capitalizing on the chemoselective opening of the allylic lactone ring, the esters 3 and 4, and the nor-azide 6 were prepared and assayed on human bronchoepithelial (BEAS-2B) cells expressing hTAS2R46. Anti-inflammatory activity was evaluated by measuring the expression of MUC5AC, iNOS, and cytokines, as well as the production of superoxide anion, qualifying the methyl ester 3 as the best candidate for additional studies.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Sesquiterpenos de Guaiano/farmacologia , Artemisia/química , Brônquios/citologia , Cálcio/metabolismo , Linhagem Celular , Citocinas/antagonistas & inibidores , Ésteres/química , Humanos , Estrutura Molecular , Mucina-5B/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Superóxidos/metabolismo , Papilas Gustativas
10.
Fitoterapia ; 143: 104543, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32151640

RESUMO

Although the bioactive compounds in goji have been thoroughly identified and quantified, little information is available on the bitter compounds in the berries, and no systematic works on the substances responsible for their bitterness have been performed. Herein, the substances contributing to the bitterness of berries were isolated and purified from bitter-tasting goji by the combined use of column chromatography and high-pressure liquid chromatography (HPLC). The bitterness of the isolated compounds was evaluated using a biosensor with immobilized rat taste-bud tissues. The structures were elucidated via comprehensive mass spectrometry (MS) and nuclear magnetic resonance (NMR) analyses. Seven spermine or spermidine alkaloids were identified, including four new compounds (lyciamarspermidines A and B and lyciamarspermines A and B). The intensities of the bitterness levels of the isolated compounds differed with the number of glucose substituents. These isolated compounds all contribute to the bitterness of goji. The results of this study provide opportunities for the further investigation of the bitterness of goji.


Assuntos
Alcaloides/análise , Frutas/química , Lycium/química , Poliaminas/análise , Paladar , Adulto , Animais , Técnicas Biossensoriais , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Masculino , Espectrometria de Massas , Estrutura Molecular , Ratos , Papilas Gustativas , Adulto Jovem
11.
Zhen Ci Yan Jiu ; 45(10): 775-80, 2020 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-33788441

RESUMO

OBJECTIVE: To observe the effect of electroacupuncture (EA) on food intake, body weight, number of taste bud cells and the expression of lipid taste bud receptor (CD36), Gα-gustducin, post-synaptic density protein 95 (PSD95) and neurofilament light chain (NFL) proteins in the tongue or hippocampus in obese rats, so as to explore its mechanism underlying reducing body weight. METHODS: A total of 30 male SD rats were randomly divided into control, model and EA groups (n=10 in each group, 5 rats for H.E. staining and immunohistochemistry, and 5 for Western blot). The obesity model was established by feeding the rats with high fat diet for 11 weeks. Following successful modeling, EA (2 Hz/15 Hz, 1.0-1.2 mA) was applied to "Tianshu" (ST25) for 30 min, once a day, 5 times/week for 5 weeks. The body length, body weight and maximum daily food consumption were recorded every day, followed by calculating the lee's index. Histopathological changes of the circumvallate papillae (CVP) and number of taste bud cells and CD36 were detected by HE staining and immunohistochemistry (IHC), separately. The expression levels of CD36, PSD95 and NFL proteins in the hippocampus were detected by Western blot. RESULTS: The body weight, Lee's index and daily food consumption were significantly higher in the model group than in the control group (P<0.01), and were significantly lowered after EA intervention in comparison with the model group (P<0.01), suggesting an improvement of obesity. H.E. staining displayed that the CVP area and the number of taste bud cells were obviously decreased in the model group in contrast to the control group (P<0.01), and were notably increased in the EA group in contrast to the model group (P<0.05, P<0.01). IHC and Western blot showed that the expression levels of CD36 in the tongue and hippocampus were obviously up-regulated in the model group relevant to the control group (P<0.01, P<0.05), and considerably down-regulated in the EA group relevant to the model group (P<0.05, P<0.01). The expression levels of Gα-gustducin in the tongue, and PSD95 and NFL in the hippocampus were remarkably decreased in the model group relevant to the control group (P<0.01, P<0.05), and significantly increased in the EA group relevant to the model group (P<0.01, P<0.05). CONCLUSION: EA can reduce daily food consumption and body weight in obese rats, which is associated with its effects in down-regulating the expression of CD36 in taste buds and hippocampus, and up-regulating the expression of Gα-gustducin in the tongue, and PSD95 and NFL proteins in the hippocampus. It suggests that EA may regulate the feeding behavior of obese rats by influencing the cognitive memory mechanism involved in CD36 in hippocampus.


Assuntos
Eletroacupuntura , Papilas Gustativas , Pontos de Acupuntura , Animais , Ingestão de Alimentos , Hipocampo , Lipídeos , Masculino , Obesidade/genética , Obesidade/terapia , Ratos , Ratos Sprague-Dawley , Língua
12.
Physiol Behav ; 212: 112719, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634524

RESUMO

Food intake patterns are regulated by signals from the gustatory neural circuit, a complex neural network that begins at the tongue and continues to homeostatic and hedonic brain regions involved in eating behavior. The goal of the current study was to investigate the short-term effects of continuous access to a high fat diet (HFD) versus limited access to dietary fat on the gustatory neural circuit. Male Sprague-Dawley rats were fed a chow diet, a HFD (56% kcal from fat), or provided limited, daily (2 h/day) or limited, intermittent (2 h/day, 3 times/week) access to vegetable shortening for 2 weeks. Real time PCR was used to determine mRNA expression of markers of fat sensing/signaling (e.g. CD36) on the circumvallate papillae, markers of homeostatic eating in the mediobasal hypothalamus (MBH) and markers of hedonic eating in the nucleus accumbens (NAc). Continuous HFD increased mRNA levels of lingual CD36 and serotonin signaling, altered markers of homeostatic and hedonic eating. Limited, intermittent access to dietary fat selectively altered the expression of genes associated with the regulation of dopamine signaling. Overall, these data suggest that short-term, continuous access to HFD leads to altered fat taste and decreased expression of markers of homeostatic and hedonic eating. Limited, intermittent access, or binge-like, consumption of dietary fat led to an overall increase in markers of hedonic eating, without altering expression of lingual fat sensors or homeostatic eating. These data suggest that there are differential effects of meal patterns on gustatory neurocircuitry which may regulate the overconsumption of fat and lead to obesity.


Assuntos
Antígenos CD36/fisiologia , Comportamento Alimentar/fisiologia , Hipotálamo/metabolismo , Núcleo Accumbens/metabolismo , Papilas Gustativas/metabolismo , Animais , Biomarcadores/metabolismo , Antígenos CD36/biossíntese , Dieta Hiperlipídica , Dopamina/biossíntese , Expressão Gênica/fisiologia , Masculino , Ratos , Serotonina/biossíntese , Transdução de Sinais/fisiologia
13.
Crit Rev Food Sci Nutr ; 59(3): 528-535, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28910546

RESUMO

Hops (Humulus lupulus L.) is by far the greatest contributors to the bitter property of beer. Over the past years, a large body of evidence demonstrated the presence of taste receptors in different locations of the oral cavity. In addition to the taste buds of the tongue, cells expressing these receptors have been identified in olfactory bulbs, respiratory and gastrointestinal tract. In the gut, the attention was mainly directed to sweet Taste Receptor (T1R) and bitter Taste Receptor (T2R) receptors. In particular, T2R has shown to modulate secretion of different gut hormones, mainly Glucagon-like Peptide 1 (GLP-1), which are involved in the regulation of glucose homeostasis and the control of gut motility, thereby increasing the sense of satiety. Scientific interest in the activity of bitter taste receptors emerges because of their wide distribution in the human species and the large range of natural substances that interact with them. Beer, whose alcohol content is lower than in other common alcoholic beverages, contains a considerable amount of bitter compounds and current scientific evidence shows a direct effect of beer compounds on glucose homeostasis. The purpose of this paper is to review the available literature data in order to substantiate the novel hypothesis of a possible direct effect of hop-derived bitter compounds on secretion of GLP-1, through the activation of T2R, with consequent improvement of glucose homeostasis.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Humulus/química , Extratos Vegetais/farmacologia , Animais , Cerveja/análise , Células Enteroendócrinas/química , Células Enteroendócrinas/efeitos dos fármacos , Células Enteroendócrinas/fisiologia , Trato Gastrointestinal/química , Trato Gastrointestinal/fisiologia , Peptídeo 1 Semelhante ao Glucagon/efeitos dos fármacos , Humanos , Extratos Vegetais/química , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/fisiologia , Paladar , Papilas Gustativas/efeitos dos fármacos
14.
Biomater Sci ; 6(12): 3388-3396, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30371689

RESUMO

Cells can communicate with one another through physical connections and chemical signaling, activating various signaling pathways that can affect cellular functions and behaviors. In taste buds, taste cells transmit taste information to neurons via paracrine signaling. However, no previous studies have reported the in vitro co-culture of taste and neuronal cells, which allows us to monitor intercellular communications and better understand the mechanism of taste perception. Here, we introduce the first investigation on the proximate assembly and co-culture of taste cells and neurons to monitor the intercellular transmission of taste signals. Taste cells and neurons are placed closely using a pair of single-stranded oligonucleotides conjugated with polyethylene glycol and a phospholipid. Complementary oligonucleotide conjugates are anchored into the cellular membrane of neonatal taste cells and embryonic hippocampal neuronal cells, respectively, and then the cells are self-assembled into a functional multicellular unit for taste perception. Treatment of the assembled cells with a bitter tastant generates the sequential influx of calcium ions into the cytoplasm in taste cells and then in neuronal cells. Our work demonstrates that the cellular self-assembly is critical for efficient taste signal transduction, which can be used as a promising platform to construct cell-based biosensors for taste sensing.


Assuntos
Comunicação Celular , Transdução de Sinais , Papilas Gustativas/citologia , Animais , Técnicas Biossensoriais/métodos , Células Cultivadas , Técnicas de Cocultura/métodos , Hipocampo/citologia , Camundongos , Oligodesoxirribonucleotídeos/farmacologia , Papilas Gustativas/efeitos dos fármacos , Papilas Gustativas/fisiologia , Percepção Gustatória
15.
Nutrients ; 10(10)2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30241419

RESUMO

Obesity is one of the major public health issues, and its prevalence is steadily increasing all the world over. The endocannabinoid system (ECS) has been shown to be involved in the intake of palatable food via activation of cannabinoid 1 receptor (CB1R). However, the involvement of lingual CB1R in the orosensory perception of dietary fatty acids has never been investigated. In the present study, behavioral tests on CB1R-/- and wild type (WT) mice showed that the invalidation of Cb1r gene was associated with low preference for solutions containing rapeseed oil or a long-chain fatty acid (LCFA), such as linoleic acid (LA). Administration of rimonabant, a CB1R inverse agonist, in mice also brought about a low preference for dietary fat. No difference in CD36 and GPR120 protein expressions were observed in taste bud cells (TBC) from WT and CB1R-/- mice. However, LCFA induced a higher increase in [Ca2+]i in TBC from WT mice than that in TBC from CB1R-/- mice. TBC from CB1R-/- mice also exhibited decreased Proglucagon and Glp-1r mRNA and a low GLP-1 basal level. We report that CB1R is involved in fat taste perception via calcium signaling and GLP-1 secretion.


Assuntos
Ácidos Graxos , Preferências Alimentares , Obesidade/genética , Receptor CB1 de Canabinoide/genética , Papilas Gustativas/metabolismo , Percepção Gustatória/genética , Paladar/genética , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Sinalização do Cálcio/genética , Antagonistas de Receptores de Canabinoides/farmacologia , Gorduras na Dieta , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Ácido Linoleico , Masculino , Camundongos Knockout , Obesidade/etiologia , Proglucagon/genética , Proglucagon/metabolismo , RNA Mensageiro/metabolismo , Óleo de Brassica napus , Receptor CB1 de Canabinoide/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Rimonabanto/farmacologia
16.
Peptides ; 107: 32-38, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30055207

RESUMO

Non-nutritive sweeteners have been considered to promote diet healthfulness by delivering a pleasant sweet taste without calories. We investigated the effects of long term supplementation with drinks containing saccharin on body weight and possible mechanisms of the effects in post-weanling rats. Our results showed that saccharin solution intake increased food intake and energy intake in male rats. In males, saccharin solution intake increased TIR3 mRNA expression in the taste buds and ghrelin receptor mRNA expression both in the taste buds and hypothalamus, whereas no effects were observed in females. These results suggest the effects of saccharin solution exposure on food intake and body weight gain may be different in developmental males and females. In males, peripheral sweet taste receptors and both peripheral and central ghrelin receptors may be involved in the effect of saccharin solution intake to promote food intake and weight gain.


Assuntos
Regulação da Expressão Gênica , Receptores de Grelina/genética , Sacarina/farmacologia , Papilas Gustativas/metabolismo , Aumento de Peso/efeitos dos fármacos , Animais , Apetite/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Hipotálamo/metabolismo , Masculino , RNA Mensageiro , Ratos , Caracteres Sexuais , Edulcorantes/farmacologia
17.
Nutr Res Rev ; 31(2): 256-266, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29886857

RESUMO

The anatomical structure and function of beaks, bills and tongue together with the mechanics of deglutition in birds have contributed to the development of a taste system denuded of macrostructures visible to the human naked eye. Studies in chickens and other birds have revealed that the avian taste system consists of taste buds not clustered in papillae and located mainly (60 %) in the upper palate hidden in the crevasses of the salivary ducts. That explains the long delay in the understanding of the avian taste system. However, recent studies reported 767 taste buds in the oral cavity of the chicken. Chickens appear to have an acute sense of taste allowing for the discrimination of dietary amino acids, fatty acids, sugars, quinine, Ca and salt among others. However, chickens and other birds have small repertoires of bitter taste receptors (T2R) and are missing the T1R2 (related to sweet taste in mammals). Thus, T1R2-independent mechanisms of glucose sensing might be particularly relevant in chickens. The chicken umami receptor (T1R1/T1R3) responds to amino acids such as alanine and serine (known to stimulate the umami receptor in rodents and fish). Recently, the avian nutrient chemosensory system has been found in the gastrointestinal tract and hypothalamus related to the enteroendocrine system which mediates the gut-brain dialogue relevant to the control of feed intake. Overall, the understanding of the avian taste system provides novel and robust tools to improve avian nutrition.


Assuntos
Regulação do Apetite , Galinhas/fisiologia , Ingestão de Alimentos/fisiologia , Nutrientes , Papilas Gustativas , Percepção Gustatória , Paladar , Animais , Sistema Endócrino , Sistema Nervoso Entérico , Trato Gastrointestinal , Humanos , Hipotálamo , Palato
18.
PLoS One ; 13(3): e0194953, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566052

RESUMO

Oral sensitivity to fats varies in individuals influencing nutritional status and health. Variations in oleic acid perception are associated with CD36 and odorant binding protein (OBPIIa) polymorphisms, and 6-n-propylthiouracil (PROP) sensitivity, which is mediated by TAS2R38 receptor. L-Arginine (L-Arg) supplementation was shown to modify the perception of the five taste qualities. Here we analyzed the effect of three concentrations (5, 10, 15 mmol/L) of L-Arg on oral perception of oleic acid in forty-six subjects classified for PROP taster status and genotyped for TAS2R38, CD36 and OBPIIa polymorphisms. L-Arg supplementation was effective in increasing the perceived intensity of oleic acid in most subjects. The lowest concentration was the most effective, especially in PROP non-tasters or medium tasters, and in subjects with at least an allele A in CD36 and OBPIIa loci. Density Functional Theory (DFT) calculations were exploited to characterize the chemical interaction between L-Arg and oleic acid, showing that a stable 1:1 oleate·ArgH+ adduct can be formed, stabilized by a pair of hydrogen bonds. Results indicate that L-Arg, acting as a 'carrier' of fatty acids in saliva, can selectively modify taste response, and suggest that it may to be used in personalized dietetic strategies to optimize eating behaviors and health.


Assuntos
Arginina/farmacologia , Antígenos CD36/genética , Lipocalinas/genética , Ácido Oleico/farmacologia , Polimorfismo de Nucleotídeo Único , Propiltiouracila/farmacologia , Percepção Gustatória/genética , Paladar/efeitos dos fármacos , Adulto , Interações Medicamentosas , Feminino , Humanos , Masculino , Locos de Características Quantitativas/genética , Receptores Acoplados a Proteínas G/genética , Papilas Gustativas/metabolismo , Percepção Gustatória/efeitos dos fármacos , Adulto Jovem
19.
J Food Sci ; 82(9): 2177-2182, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28833098

RESUMO

Multiple recent reports have detailed the presence of adenosine receptors in sweet sensitive taste cells of mice. These receptors are activated by endogenous adenosine in the plasma to enhance sweet signals within the taste bud, before reporting to the primary afferent. As we commonly consume caffeine, a powerful antagonist for such receptors, in our daily lives, an intriguing question we sought to answer was whether the caffeine we habitually consume in coffee can inhibit the perception of sweet taste in humans. 107 panelists were randomly assigned to 2 groups, sampling decaffeinated coffee supplemented with either 200 mg of caffeine, about the level found in a strong cup of coffee, or an equally bitter concentration of quinine. Participants subsequently performed sensory testing, with the session repeated in the alternative condition in a second session on a separate day. Panelists rated both the sweetened coffee itself and subsequent sucrose solutions as less sweet in the caffeine condition, despite the treatment having no effect on bitter, sour, salty, or umami perception. Panelists were also unable to discern whether they had consumed the caffeinated or noncaffeinated coffee, with ratings of alertness increased equally, but no significant improvement in reaction times, highlighting coffee's powerful placebo effect. This work validates earlier observations in rodents in a human population.


Assuntos
Cafeína/metabolismo , Receptores Purinérgicos P1/metabolismo , Percepção Gustatória , Adolescente , Adulto , Animais , Café/metabolismo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Sacarose , Edulcorantes/metabolismo , Paladar , Papilas Gustativas/metabolismo , Adulto Jovem
20.
Nutrients ; 9(6)2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28587069

RESUMO

Behavioral reaction to different taste qualities affects nutritional status and health. 6-n-Propylthiouracil (PROP) tasting has been reported to be a marker of variation in taste perception, food preferences, and eating behavior, but results have been inconsistent. We showed that l-Arg can enhance the bitterness intensity of PROP, whilst others have demonstrated a suppression of the bitterness of quinine. Here, we analyze the taste perception of sweet, sour, salty, bitter, and umami and the modifications caused by l-Arg supplementation, as a function of PROP-taster status. Taste perception was assessed by testing the ability to recognize, and the responsiveness to, representative solutions of the five primary taste qualities, also when supplemented with l-Arg, in subjects classified as PROP-tasting. Super-tasters, who showed high papilla density, gave higher ratings to sucrose, citric acid, caffeine, and monosodium l-glutamate than non-tasters. l-Arg supplementation mainly modified sucrose perception, enhanced the umami taste, increased NaCl saltiness and caffeine bitterness only in tasters, and decreased citric acid sourness. Our findings confirm the role of PROP phenotype in the taste perception of sweet, sour, and bitter and show its role in umami. The results suggest that l-Arg could be used as a strategic tool to specifically modify taste responses related to eating behaviors.


Assuntos
Arginina/farmacologia , Propiltiouracila , Percepção Gustatória/genética , Adulto , Arginina/administração & dosagem , Suplementos Nutricionais , Feminino , Preferências Alimentares/fisiologia , Humanos , Masculino , Papilas Gustativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA