Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 30(1): e14468, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37950551

RESUMO

AIMS: This study aimed to investigate the effect of perineuronal net (PNN) and neurocan (NCAN) on spinal inhibitory parvalbumin interneuron (PV-IN), and the mechanism of electroacupuncture (EA) in promoting spinal cord injury (SCI) repair through neurocan in PNN. METHODS: A mouse model of SCI was established. Sham-operated mice or SCI model mice were treated with chondroitin sulfate ABC (ChABC) enzyme or control vehicle for 2 weeks (i.e., sham+veh group, sham+ChABC group, SCI+veh group, and SCI+ChABC group, respectively), and then spinal cord tissues were taken from the T10 lesion epicenter for RNA sequencing (RNA-seq). MSigDB Hallmark and C5 databases for functional analysis, analysis strategies such as differential expression gene analysis (DEG), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), and protein-protein interaction (PPI). According to the results of RNA-seq analysis, the expression of NCAN was knocked down or overexpressed by virus intervention, or/and EA intervention. Polymerase chain reaction (PCR), immunofluorescence, western blot, electrophysiological, and behavioral tests were performed. RESULTS: After the successful establishment of SCI model, the motor dysfunction of lower limbs, and the expression of PNN core glycan protein at the epicenter of SCI were reduced. RNA-seq and PCR showed that PNN core proteoglycans except NCAN showed the same expression trend in normal and injured spinal cord treated with ChABC. KEGG and GSEA showed that PNN is mainly associated with inhibitory GABA neuronal function in injured spinal cord tissue, and PPI showed that NCAN in PNN can be associated with inhibitory neuronal function through parvalbumin (PV). Calcium imaging showed that local parvalbumin interneuron (PV-IN) activity decreased after PNN destruction, whether due to ChABC treatment or surgical bruising of the spinal cord. Overexpression of neurocan in injured spinal cord can enhance local PV-IN activity. PCR and western blot suggested that overexpression or knockdown of neurocan could up-regulate or down-regulate the expression of GAD. At the same time, the activity of PV-IN in the primary motor cortex (M1) and the primary sensory cortex of lower (S1HL) extremity changed synchronously. In addition, overexpression of neurocan improved the electrical activity of the lower limb and promoted functional repair of the paralyzed hind limb. EA intervention reversed the down-regulation of neurocan, enhanced the expression of PNN in the lesioned area, M1 and S1HL. CONCLUSION: Neurocan in PNN can regulate the activity of PV-IN, and EA can promote functional recovery of mice with SCI by upregulating neurocan expression in PNN.


Assuntos
Eletroacupuntura , Traumatismos da Medula Espinal , Animais , Camundongos , Ratos , Neurônios GABAérgicos/metabolismo , Neurocam , Parvalbuminas/metabolismo , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
2.
Gene ; 897: 148081, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101713

RESUMO

Azadiradione is a small bioactive limonoid found in the seed of Azadirachta Indica, an Indian medicinal plant commonly known as Neem. Recently, it has been shown to ameliorate the disease pathology in fly and mouse model of Huntington's disease by restoring impaired proteostasis. Here we report that the azadiradione could be involved in modulating the synaptic function through increased expression of Ube3a, a dual function protein having ubiquitin ligase and co-activator functions and associated with Angelman syndrome and autism. Treatment of azadiradione to HT22 hippocampal cell line and in adult mice induced the expression of Ube3a as well as two important synaptic function and plasticity regulating proteins, parvalbumin and brain-derived neurotropic factor (BDNF). Interestingly, another synaptic plasticity modulating protein Arc (activity-regulated cytoskeletal associated protein) was down-regulated by azadiradione. Partial knockdown of Ube3a in HT22 cell abrogated azadiradione induced expression of parvalbumin and BDNF. Ube3a-maternal deficient mice also exhibited significantly decreased expression of parvalbumin and BDNF in their brain and treatment of azadiradione in these animals did not rescue the altered expression of either parvalbumin or BDNF. These results indicate that azadiradione-induced expression of parvalbumin and BDNF in the brain is mediated through Ube3a and suggest that azadiradione could be implicated in restoring synaptic dysfunction in many neuropsychiatric/neurodegenerative disorders.


Assuntos
Síndrome de Angelman , Limoninas , Camundongos , Animais , Limoninas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Parvalbuminas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Encéfalo/metabolismo , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Síndrome de Angelman/patologia , Modelos Animais de Doenças
3.
Cell ; 186(26): 5739-5750.e17, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38070510

RESUMO

Conscious perception is greatly diminished during sleep, but the underlying circuit mechanism is poorly understood. We show that cortical ignition-a brain process shown to be associated with conscious awareness in humans and non-human primates-is strongly suppressed during non-rapid-eye-movement (NREM) sleep in mice due to reduced cholinergic modulation and rapid inhibition of cortical responses. Brain-wide functional ultrasound imaging and cell-type-specific calcium imaging combined with optogenetics showed that activity propagation from visual to frontal cortex is markedly reduced during NREM sleep due to strong inhibition of frontal pyramidal neurons. Chemogenetic activation and inactivation of basal forebrain cholinergic neurons powerfully increased and decreased visual-to-frontal activity propagation, respectively. Furthermore, although multiple subtypes of dendrite-targeting GABAergic interneurons in the frontal cortex are more active during wakefulness, soma-targeting parvalbumin-expressing interneurons are more active during sleep. Chemogenetic manipulation of parvalbumin interneurons showed that sleep/wake-dependent cortical ignition is strongly modulated by perisomatic inhibition of pyramidal neurons.


Assuntos
Eletroencefalografia , Parvalbuminas , Sono , Animais , Camundongos , Neurônios Colinérgicos/fisiologia , Lobo Frontal/metabolismo , Parvalbuminas/metabolismo , Sono/fisiologia , Vigília/fisiologia
4.
Neurobiol Dis ; 188: 106332, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890559

RESUMO

Down syndrome (DS) is a genetic disorder caused by triplication of human chromosome 21. In addition to intellectual disability, DS is defined by a premature aging phenotype and Alzheimer's disease (AD) neuropathology, including septohippocampal circuit vulnerability and degeneration of basal forebrain cholinergic neurons (BFCNs). The Ts65Dn mouse model recapitulates key aspects of DS/AD pathology, namely age-associated atrophy of BFCNs and cognitive decline in septohippocampal-dependent behavioral tasks. We investigated whether maternal choline supplementation (MCS), a well-tolerated treatment modality, protects vulnerable BFCNs from age- and genotype-associated degeneration in trisomic offspring. We also examined the effect of trisomy, and MCS, on GABAergic basal forebrain parvalbumin neurons (BFPNs), an unexplored neuronal population in this DS model. Unbiased stereological analyses of choline acetyltransferase (ChAT)-immunoreactive BFCNs and parvalbumin-immunoreactive BFPNs were conducted using confocal z-stacks of the medial septal nucleus and the vertical limb of the diagonal band (MSN/VDB) in Ts65Dn mice and disomic (2N) littermates at 3-4 and 10-12 months of age. MCS trisomic offspring displayed significant increases in ChAT-immunoreactive neuron number and density compared to unsupplemented counterparts, as well as increases in the area of the MSN/VDB occupied by ChAT-immunoreactive neuropil. MCS also rescued BFPN number and density in Ts65Dn offspring, a novel rescue of a non-cholinergic cell population. Furthermore, MCS prevented age-associated loss of BFCNs and MSN/VDB regional area in 2N offspring, indicating genotype-independent neuroprotective benefits. These findings demonstrate MCS provides neuroprotection of vulnerable BFCNs and non-cholinergic septohippocampal BFPNs, indicating this modality has translational value as an early life therapy for DS, as well as extending benefits to the aging population at large.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Síndrome de Down , Humanos , Animais , Camundongos , Idoso , Parvalbuminas , Neurônios GABAérgicos , Colina O-Acetiltransferase , Modelos Animais de Doenças , Degeneração Neural , Suplementos Nutricionais , Colina
5.
Neurochem Res ; 48(10): 3146-3159, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37347359

RESUMO

Acupuncture can alleviate depression-like behaviors. However, the neural mechanisms behind the anti-depressive effect remain unknown. Perineuronal net (PNN) abnormalities have been reported in multiple psychiatric disorders. This study investigated the modulation and neural mechanism of PNNs in the anti-depressant process of electroacupuncture (EA) at Baihui (GV20) and Yintang (GV29) points. A rat depression model was induced by chronic unpredicted mild stress (CUMS). The results revealed that CUMS, applied for four weeks, specifically reduces PNNs around parvalbumin (PV). In addition, EA and fluoxetine treatments reverse the decrease in PNNs+ cell density and the ratio of PV and PNN double-positive cells to PV+ neurons in the medial prefrontal cortex (mPFC) after CUMS. Furthermore, EA treatment can reverse the decrease in the protein expression of PNN components (aggrecan and brevican) in the mPFC caused by stress. After EA treatment, the decreased expression of GAD67, GLuA1, and PSD95 in the mPFC induced by CUMS for four weeks was also reversed. PNN degradation in mPFC brain areas potentially interferes with the anti-depressant benefits of EA in rats with depression induced by CUMS. EA treatment did not increase PNNs+ cell density and the ratio of PV and PNN double-positive cells to PV+ neurons after PNNs degradation in the mPFC brain region of rats. This finding indicated that the mechanism of acupuncture's anti-depressant effect may be based on reversing the CUMS-induced decline in PNN expression, the functional impairment of γ-aminobutyric acid (GABA) neurons, and the regulation of excitatory synaptic proteins expression.


Assuntos
Depressão , Eletroacupuntura , Ratos , Animais , Depressão/terapia , Neurônios/metabolismo , Matriz Extracelular/metabolismo , Córtex Cerebral/metabolismo , Parvalbuminas/metabolismo
6.
J Comp Neurol ; 531(18): 1934-1962, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37357562

RESUMO

Fundamental differences in excitatory pyramidal cells across cortical areas and species highlight the implausibility of extrapolation from mouse to primate neurons and cortical networks. Far less is known about comparative regional and species-specific features of neurochemically distinct cortical inhibitory interneurons. Here, we quantified the density, laminar distribution, and somatodendritic morphology of inhibitory interneurons expressing one or more of the calcium-binding proteins (CaBPs) (calretinin [CR], calbindin [CB], and/or parvalbumin [PV]) in mouse (Mus musculus) versus rhesus monkey (Macaca mulatta) in two functionally and cytoarchitectonically distinct regions-the primary visual and frontal cortical areas-using immunofluorescent multilabeling, stereological counting, and 3D reconstructions. There were significantly higher densities of CB+ and PV+ neurons in visual compared to frontal areas in both species. The main species difference was the significantly greater density and proportion of CR+ interneurons and lower extent of CaBP coexpression in monkey compared to mouse cortices. Cluster analyses revealed that the somatodendritic morphology of layer 2-3 inhibitory interneurons is more dependent on CaBP expression than on species and area. Only modest effects of species were observed for CB+ and PV+ interneuron morphologies, while CR+ neurons showed no difference. By contrast to pyramidal cells that show highly distinctive area- and species-specific features, here we found more subtle differences in the distribution and features of interneurons across areas and species. These data yield insight into how nuanced differences in the population organization and properties of neurons may underlie specializations in cortical regions to confer species- and area-specific functional capacities.


Assuntos
Parvalbuminas , Proteína G de Ligação ao Cálcio S100 , Animais , Camundongos , Calbindinas/metabolismo , Calbindina 2/metabolismo , Parvalbuminas/metabolismo , Proteína G de Ligação ao Cálcio S100/análise , Proteína G de Ligação ao Cálcio S100/metabolismo , Córtex Pré-Frontal , Interneurônios/metabolismo , Lobo Frontal , Macaca mulatta
7.
J Neurosci ; 43(20): 3630-3646, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37068932

RESUMO

The impact of stress on the formation and expression of memory is well studied, especially on the contributions of stress hormones. But how stress affects brain circuitry dynamically to modulate memory is far less understood. Here, we used male C57BL6/J mice in an auditory fear conditioning as a model system to examine this question and focused on the impact of stress on dorsomedial prefrontal cortex (dmPFC) neurons which play an important role in probabilistic fear memory. We found that paraventricular thalamus (PVT) neurons are robustly activated by acute restraining stress. Elevated PVT activity during probabilistic fear memory expression increases spiking in the dmPFC somatostatin neurons which in turn suppresses spiking of dmPFC parvalbumin (PV) neurons, and reverts the usual low fear responses associated with probabilistic fear memory to high fear. This dynamic and reversible modulation allows the original memory to be preserved and modulated during memory expression. In contrast, elevated PVT activity during fear conditioning impairs synaptic modifications in the dmPFC PV-neurons and abolishes the formation of probabilistic fear memory. Thus, PVT functions as a stress sensor to modulate the formation and expression of aversive memory by tuning inhibitory functions in the prefrontal circuitry.SIGNIFICANCE STATEMENT The impact of stress on cognitive functions, such as memory and executive functions, are well documented especially on the impact by stress hormone. However, the contributions of brain circuitry are far less understood. Here, we show that a circuitry-based mechanism can dynamically modulate memory formation and expression, namely, higher stress-induced activity in paraventricular thalamus (PVT) impairs the formation and expression of probabilistic fear memory by elevating the activity of somatostatin-neurons to suppress spiking in dorsomedial prefrontal parvalbumin (PV) neurons. This stress impact on memory via dynamic tuning of prefrontal inhibition preserves the formed memory but enables a dynamic expression of memory. These findings have implications for better stress coping strategies as well as treatment options including better drug targets/mechanisms.


Assuntos
Parvalbuminas , Tálamo , Camundongos , Animais , Masculino , Tálamo/fisiologia , Afeto , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Somatostatina
8.
Cell ; 186(7): 1352-1368.e18, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001500

RESUMO

Resilience enables mental elasticity in individuals when rebounding from adversity. In this study, we identified a microcircuit and relevant molecular adaptations that play a role in natural resilience. We found that activation of parvalbumin (PV) interneurons in the primary auditory cortex (A1) by thalamic inputs from the ipsilateral medial geniculate body (MG) is essential for resilience in mice exposed to chronic social defeat stress. Early attacks during chronic social defeat stress induced short-term hyperpolarizations of MG neurons projecting to the A1 (MGA1 neurons) in resilient mice. In addition, this temporal neural plasticity of MGA1 neurons initiated synaptogenesis onto thalamic PV neurons via presynaptic BDNF-TrkB signaling in subsequent stress responses. Moreover, optogenetic mimicking of the short-term hyperpolarization of MGA1 neurons, rather than merely activating MGA1 neurons, elicited innate resilience mechanisms in response to stress and achieved sustained antidepressant-like effects in multiple animal models, representing a new strategy for targeted neuromodulation.


Assuntos
Córtex Auditivo , Camundongos , Animais , Córtex Auditivo/metabolismo , Tálamo/fisiologia , Neurônios/metabolismo , Corpos Geniculados , Interneurônios/fisiologia , Parvalbuminas/metabolismo
9.
Exp Neurol ; 360: 114289, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36471512

RESUMO

BACKGROUND: Based on the theory of interhemispheric inhibition and the bimodal balance-recovery model in stroke, we explored the effects of excitation/inhibition (E/I) of parvalbumin (PV) neurons in the contralateral primary motor cortex (cM1) connecting the ipsilateral M1 (iM1) via the corpus callosum (cM1-CC-iM1) of ischemic stroke rats by optogenetic stimulation. METHODS: We tested this by injecting anterograde and retrograde virus in rats with middle cerebral artery occlusion (MCAO), and evaluated the neurological scores, motor behavior, volume of cerebral infarction and the E/I balance of the bilateral M1 two weeks after employing optogenetic treatment. RESULTS: We found that concentrations of Glu and GABA decreased and increased, respectively, in the iM1 of MCAO rats, and that the former increased in the cM1, suggesting E/I imbalance in bilateral M1 after ischemic stroke. Interestingly, optogenetic stimulation improved M1 E/I imbalance, as illustrated by the increase of Glu in the iM1 and the decrease of GABA in both iM1 and cM1, which were accompanied by an improvement in neurological deficit and motor dysfunction. In addition, we observed a reduced infarct volume, an increase in the expression of the NMDAR and AMPAR, and a decrease in GAD67 in the iM1 after intervention. CONCLUSIONS: Optogenetic modulation of PV neurons of the iM1-CC-cM1 improve E/I balance, leading to reduced neurological deficit and improved motor dysfunction following ischemic stroke in rats.


Assuntos
AVC Isquêmico , Córtex Motor , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Ratos , Animais , Parvalbuminas , Optogenética , Infarto da Artéria Cerebral Média , Neurônios , Ácido gama-Aminobutírico
10.
J Neurosci ; 42(43): 8095-8112, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36104281

RESUMO

Intracortical inhibition in motor cortex (M1) regulates movement and motor learning. If cortical and thalamic inputs target different inhibitory cell types in different layers, then these afferents may play different roles in regulating M1 output. Using mice of both sexes, we quantified input to two main classes of M1 interneurons, parvalbumin+ (PV+) cells and somatostatin+ (SOM+) cells, using monosynaptic rabies tracing. We then compared anatomic and functional connectivity based on synaptic strength from sensory cortex and thalamus. Functionally, each input innervated M1 interneurons with a unique laminar profile. Different interneuron types were excited in a distinct, complementary manner, suggesting feedforward inhibition proceeds selectively via distinct circuits. Specifically, somatosensory cortex (S1) inputs primarily targeted PV+ neurons in upper layers (L2/3) but SOM+ neurons in middle layers (L5). Somatosensory thalamus [posterior nucleus (PO)] inputs targeted PV+ neurons in middle layers (L5). In contrast to sensory cortical areas, thalamic input to SOM+ neurons was equivalent to that of PV+ neurons. Thus, long-range excitatory inputs target inhibitory neurons in an area and a cell type-specific manner, which contrasts with input to neighboring pyramidal cells. In contrast to feedforward inhibition providing generic inhibitory tone in cortex, circuits are selectively organized to recruit inhibition matched to incoming excitatory circuits.SIGNIFICANCE STATEMENT M1 integrates sensory information and frontal cortical inputs to plan and control movements. Although inputs to excitatory cells are described, the synaptic circuits by which these inputs drive specific types of M1 interneurons are unknown. Anatomical results with rabies tracing and physiological quantification of synaptic strength shows that two main classes of inhibitory cells (PV+ and SOM+ interneurons) both receive substantial cortical and thalamic input, in contrast to interneurons in sensory areas (where thalamic input strongly prefers PV+ interneurons). Further, each input studied targets PV+ and SOM+ interneurons in a different fashion, suggesting that separate, specific circuits exist for recruitment of feedforward inhibition.


Assuntos
Córtex Motor , Raiva , Feminino , Masculino , Camundongos , Animais , Parvalbuminas/metabolismo , Córtex Motor/metabolismo , Raiva/metabolismo , Tálamo/fisiologia , Neurônios/fisiologia , Interneurônios/fisiologia , Somatostatina/metabolismo
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2353-2356, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086446

RESUMO

Electrical motor cortex stimulation (EMCS) has been used for Parkinson's Disease (PD) treatment. Some studies found that distinct cell types might lead to selective effects. As the largest subgroup of interneurons, Parvalbumin (PV) neurons have been reported to be involved in the mechanisms of therapeutic efficacy for PD treatment. However, little is known about their responses to the EMCS. In this study, we used in-vivo two-photon imaging to record calcium activities of PV neurons (specific type) and all neurons (non-specific type) in layer 2/3 primary motor cortex (MI) during EMCS with various stimulus parameters. We found PV neurons displayed different profiles of activation property compared to all neurons. The cathodal polarity preference of PV neurons decreased at a high-frequency stimulus. The calcium transients of PV neurons generated by EMCS trended to be with large amplitude and short active duration. The optimal activation frequency of PV neurons is higher than that of all neurons. These results improved our understanding of the selective effects of EMCS on specific cell types, which could bring more effective stimulation protocols for PD treatment.


Assuntos
Córtex Motor , Parvalbuminas , Cálcio/metabolismo , Interneurônios/metabolismo , Neurônios/fisiologia , Parvalbuminas/metabolismo
12.
Acta Neuropathol Commun ; 10(1): 86, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676735

RESUMO

Although Down syndrome (DS), the most common developmental genetic cause of intellectual disability, displays proliferation and migration deficits in the prenatal frontal cortex (FC), a knowledge gap exists on the effects of trisomy 21 upon postnatal cortical development. Here, we examined cortical neurogenesis and differentiation in the FC supragranular (SG, II/III) and infragranular (IG, V/VI) layers applying antibodies to doublecortin (DCX), non-phosphorylated heavy-molecular neurofilament protein (NHF, SMI-32), calbindin D-28K (Calb), calretinin (Calr), and parvalbumin (Parv), as well as ß-amyloid (APP/Aß and Aß1-42) and phospho-tau (CP13 and PHF-1) in autopsy tissue from age-matched DS and neurotypical (NTD) subjects ranging from 28-weeks (wk)-gestation to 3 years of age. Thionin, which stains Nissl substance, revealed disorganized cortical cellular lamination including a delayed appearance of pyramidal cells until 44 wk of age in DS compared to 28 wk in NTD. SG and IG DCX-immunoreactive (-ir) cells were only visualized in the youngest cases until 83 wk in NTD and 57 wk DS. Strong SMI-32 immunoreactivity was observed in layers III and V pyramidal cells in the oldest NTD and DS cases with few appearing as early as 28 wk of age in layer V in NTD. Small Calb-ir interneurons were seen in younger NTD and DS cases compared to Calb-ir pyramidal cells in older subjects. Overall, a greater number of Calb-ir cells were detected in NTD, however, the number of Calr-ir cells were comparable between groups. Diffuse APP/Aß immunoreactivity was found at all ages in both groups. Few young cases from both groups presented non-neuronal granular CP13 immunoreactivity in layer I. Stronger correlations between brain weight, age, thionin, DCX, and SMI-32 counts were found in NTD. These findings suggest that trisomy 21 affects postnatal FC lamination, neuronal migration/neurogenesis and differentiation of projection neurons and interneurons that likely contribute to cognitive impairment in DS.


Assuntos
Síndrome de Down , Lobo Frontal , Neurogênese , Calbindinas/metabolismo , Pré-Escolar , Síndrome de Down/patologia , Lobo Frontal/citologia , Lobo Frontal/patologia , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Proteínas de Neurofilamentos/metabolismo , Parvalbuminas/metabolismo , Tioninas/metabolismo
13.
Ann Neurol ; 92(4): 670-685, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35748636

RESUMO

Leptomeningeal and perivenular infiltrates are important contributors to cortical grey matter damage and disease progression in multiple sclerosis (MS). Whereas perivenular inflammation induces vasculocentric lesions, leptomeningeal involvement follows a subpial "surface-in" gradient. To determine whether similar gradient of damage occurs in deep grey matter nuclei, we examined the dorsomedial thalamic nuclei and cerebrospinal fluid (CSF) samples from 41 postmortem secondary progressive MS cases compared with 5 non-neurological controls and 12 controls with other neurological diseases. CSF/ependyma-oriented gradient of reduction in NeuN+ neuron density was present in MS thalamic lesions compared to controls, greatest (26%) in subventricular locations at the ependyma/CSF boundary and least with increasing distance (12% at 10 mm). Concomitant graded reduction in SMI31+ axon density was observed, greatest (38%) at 2 mm from the ependyma/CSF boundary and least at 10 mm (13%). Conversely, gradient of major histocompatibility complex (MHC)-II+ microglia density increased by over 50% at 2 mm at the ependyma/CSF boundary and only by 15% at 10 mm and this gradient inversely correlated with the neuronal (R = -0.91, p < 0.0001) and axonal (R = -0.79, p < 0.0001) thalamic changes. Observed gradients were also detected in normal-appearing thalamus and were associated with rapid/severe disease progression; presence of leptomeningeal tertiary lymphoid-like structures; large subependymal infiltrates, enriched in CD20+ B cells and occasionally containing CXCL13+ CD35+ follicular dendritic cells; and high CSF protein expression of a complex pattern of soluble inflammatory/neurodegeneration factors, including chitinase-3-like-1, TNFR1, parvalbumin, neurofilament-light-chains and TNF. Substantial "ependymal-in" gradient of pathological cell alterations, accompanied by presence of intrathecal inflammation, compartmentalized either in subependymal lymphoid perivascular infiltrates or in CSF, may play a key role in MS progression. SUMMARY FOR SOCIAL MEDIA: Imaging and neuropathological evidences demonstrated the unique feature of "surface-in" gradient of damage in multiple sclerosis (MS) since early pediatric stages, often associated with more severe brain atrophy and disease progression. In particular, increased inflammation in the cerebral meninges has been shown to be strictly associated with an MS-specific gradient of neuronal, astrocyte, and oligodendrocyte loss accompanied by microglial activation in subpial cortical layers, which is not directly related to demyelination. To determine whether a similar gradient of damage occurs in deep grey matter nuclei, we examined the potential neuronal and microglia alterations in the dorsomedial thalamic nuclei from postmortem secondary progressive MS cases in combination with detailed neuropathological characterization of the inflammatory features and protein profiling of paired CSF samples. We observed a substantial "subependymal-in" gradient of neuro-axonal loss and microglia activation in active thalamic lesions of progressive MS cases, in particular in the presence of increased leptomeningeal and cerebrospinal fluid (CSF) inflammation. This altered graded pathology was found associated with more severe and rapid progressive MS and increased inflammatory degree either in large perivascular subependymal infiltrates, enriched in B cells, or within the paired CSF, in particular with elevated levels of a complex pattern of soluble inflammatory and neurodegeneration factors, including chitinase 3-like-1, TNFR1, parvalbumin, neurofilament light-chains and TNF. These data support a key role for chronic, intrathecally compartmentalized inflammation in specific disease endophenotypes. CSF biomarkers, together with advance imaging tools, may therefore help to improve not only the disease diagnosis but also the early identification of specific MS subgroups that would benefit of more personalized treatments. ANN NEUROL 2022;92:670-685.


Assuntos
Quitinases , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Córtex Cerebral/metabolismo , Progressão da Doença , Epêndima , Humanos , Inflamação/complicações , Esclerose Múltipla/patologia , Esclerose Múltipla Crônica Progressiva/complicações , Parvalbuminas/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Tálamo/patologia
14.
Science ; 376(6594): 724-730, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549430

RESUMO

Rapid eye movement (REM) sleep is associated with the consolidation of emotional memories. Yet, the underlying neocortical circuits and synaptic mechanisms remain unclear. We found that REM sleep is associated with a somatodendritic decoupling in pyramidal neurons of the prefrontal cortex. This decoupling reflects a shift of inhibitory balance between parvalbumin neuron-mediated somatic inhibition and vasoactive intestinal peptide-mediated dendritic disinhibition, mostly driven by neurons from the central medial thalamus. REM-specific optogenetic suppression of dendritic activity led to a loss of danger-versus-safety discrimination during associative learning and a lack of synaptic plasticity, whereas optogenetic release of somatic inhibition resulted in enhanced discrimination and synaptic potentiation. Somatodendritic decoupling during REM sleep promotes opposite synaptic plasticity mechanisms that optimize emotional responses to future behavioral stressors.


Assuntos
Dendritos , Plasticidade Neuronal , Córtex Pré-Frontal , Sono REM , Animais , Dendritos/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Parvalbuminas/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Sono REM/fisiologia , Tálamo/citologia , Tálamo/fisiologia
15.
Nat Commun ; 13(1): 2246, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473906

RESUMO

Identification of mechanisms which increase deep sleep could lead to novel treatments which promote the restorative effects of sleep. Here, we show that knockdown of the α3 GABAA-receptor subunit from parvalbumin neurons in the thalamic reticular nucleus using CRISPR-Cas9 gene editing increased the thalamocortical delta (1.5-4 Hz) oscillations which are implicated in many health-promoting effects of sleep. Inhibitory synaptic currents in thalamic reticular parvalbumin neurons were strongly reduced in vitro. Further analysis revealed that delta power in long NREM bouts prior to NREM-REM transitions was preferentially affected by deletion of α3 subunits. Our results identify a role for GABAA receptors on thalamic reticular nucleus neurons and suggest antagonism of α3 subunits as a strategy to enhance delta activity during sleep.


Assuntos
Parvalbuminas , Sono de Ondas Lentas , Animais , Camundongos , Neurônios/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Tálamo/fisiologia , Ácido gama-Aminobutírico
16.
J Neuropsychiatry Clin Neurosci ; 34(2): 113-123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35040663

RESUMO

Parvalbumin (PV) interneurons are present in multiple brain regions and produce complex influences on brain functioning. An increasing number of research findings indicate that the function of these interneurons is more complex than solely to inhibit pyramidal neurons in the cortex. They generate feedback and feedforward inhibition of cortical neurons, and they are critically involved in the generation of neuronal network oscillation. These oscillations, generated by various brain regions, are linked to perceptions, thought processes, and cognitive functions, all of which, in turn, influence human emotions and behavior. Both animal and human studies consistently have found that meditation practice results in enhancement in the effects of alpha-, theta-, and gamma-frequency oscillations, which may correspond to positive changes in cognition, emotion, conscious awareness, and, subsequently, behavior. Although the study of meditation has moved into mainstream neuroscience research, the link between PV interneurons and any role they might play in meditative states remains elusive. This article is focused primarily on gamma-frequency oscillation, which is generated by PV interneurons, to develop insight and perspective into the role of PV interneurons in meditation. This article also points to new and emerging directions that address whether this role of PV interneurons in meditation extends to a beneficial, and potentially therapeutic, role in the treatment of common psychiatric disorders, including schizophrenia.


Assuntos
Meditação , Transtornos Mentais , Animais , Encéfalo/metabolismo , Humanos , Interneurônios/metabolismo , Transtornos Mentais/terapia , Parvalbuminas/metabolismo
17.
J Neurosci ; 42(8): 1383-1405, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34983816

RESUMO

In sensory cortices, the information flow has been thought to be processed vertically across cortical layers, with layer 4 being the major thalamo-recipient which relays thalamic signals to layer 2/3, which in turn transmits thalamic information to layer 5 and 6 to then leave the cortex to reach subcortical and cortical long-range structures. Although several exceptions to this model have been described, neurons in layer 4 are still considered to establish only local (i.e., interlaminar and short-range) connections. Here, taking advantage of anatomic, electrophysiological, and optogenetic techniques, we describe, for the first time, a long-range corticostriatal class of pyramidal neurons in layer 4 (CS-L4) of the mouse auditory cortex that receive direct thalamic inputs. The CS-L4 neurons are embedded in a feedforward inhibitory circuit involving local parvalbumin neurons and establish connections in the posterior striatum in yet another feedforward inhibitory thalamo→cortico(L4)→striatal circuit which potentially contributes in controlling control the output of striatal spiny projection neurons.SIGNIFICANCE STATEMENT The assumption has been that layer 4 neurons are the main thalamic recipient layer, projecting to the upper cortical layer 2/3. However, no study has revealed a detailed understanding of the circuit mechanisms by which layer 4 sends a projection to a subcortical structure, such as the striatum, and differentially innervate the spiny projection neurons (SPNs) and intrastriatal parvalbumin-expressing neurons. For the first time, our results demonstrate that the auditory cortex projects to the posterior part of the dorsal striatum via pyramidal neurons located in layer 4 (CS-L4 neurons). Here we propose a new wiring diagram that implemented the old one, in which layer 4 is not only involved in the transfer of thalamic input to the upper layer 2/3, but can also exert a direct top-down control, bypassing intracortical processing of subcortical structures, such as the posterior part of the dorsal striatum. This poses a new conceptual cell element (CS-L4 neurons) for experimental and theoretical work of the cortical function.


Assuntos
Córtex Auditivo , Parvalbuminas , Animais , Córtex Auditivo/fisiologia , Corpo Estriado/fisiologia , Camundongos , Parvalbuminas/metabolismo , Percepção , Tálamo/fisiologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-34814088

RESUMO

The relatively easy access to fish worldwide, alongside the increase of aquaculture production contributes to increased fish consumption which result in higher prevalence of respective allergies. Allergies to fish constitute a significant concern worldwide. ß-parvalbumin is the main elicitor for IgE-mediated reactions. Creatine, involved in the muscle energy metabolism, and ethylenediamine tetraacetic acid (EDTA), a calcium chelator, are potential molecules to modulate parvalbumin. The purpose of this study was to test creatine (2, 5 and 8%) and EDTA (1.5, 3 and 4.5%) supplementation in fish diets to modulate ß-parvalbumin expression and structure and its allergenicity in farmed European seabass (Dicentrarchus labrax) while assessing its effects on the end-product quality. Fish welfare and muscle quality parameters were evaluated by plasma metabolites, rigor mortis, muscle pH and sensory and texture analysis. Proteomics was used to assess alterations in muscle proteome profile and metabolic fingerprinting by Fourier transform infrared spectroscopy was used to assess the liver metabolic profile. In addition, IgE-reactivity to parvalbumin was analysed using fish allergic patient sera. Metabolic fingerprinting of liver tissue revealed no major alterations in infrared spectra with creatine supplementation, while with EDTA, only absorption bands characteristic of lipids were altered. Comparative proteomics showed up regulation of (tropo) myosin and phosphoglycerate mutase 2 with Creatine supplementation. In the case of EDTA proteomics showed up regulation of proteins involved in cellular and ion homeostasis. Allergenicity seems not to be modulated with creatine or EDTA supplementation as no decreased expression levels were found and IgE-binding reactivity showed no quantitative differences.


Assuntos
Bass , Hipersensibilidade , Alérgenos , Animais , Creatina , Dieta , Suplementos Nutricionais , Ácido Edético , Humanos , Imunoglobulina E , Músculos , Parvalbuminas
19.
Cell Rep ; 37(3): 109837, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686328

RESUMO

The selection of goal-directed behaviors is supported by neural circuits located within the frontal cortex. Frontal cortical afferents arise from multiple brain areas, yet the cell-type-specific targeting of these inputs is unclear. Here, we use monosynaptic retrograde rabies mapping to examine the distribution of afferent neurons targeting distinct classes of local inhibitory interneurons and excitatory projection neurons in mouse infralimbic frontal cortex. Interneurons expressing parvalbumin, somatostatin, or vasoactive intestinal peptide receive a large proportion of inputs from the hippocampus, while interneurons expressing neuron-derived neurotrophic factor receive a large proportion of inputs from thalamic regions. A similar dichotomy is present among the four different excitatory projection neurons. These results show a prominent bias among long-range hippocampal and thalamic afferent systems in their targeting to specific sets of frontal cortical neurons. Moreover, they suggest the presence of two distinct local microcircuits that control how different inputs govern frontal cortical information processing.


Assuntos
Lobo Frontal/fisiologia , Hipocampo/fisiologia , Interneurônios/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia , Animais , Comportamento Animal , Lobo Frontal/citologia , Lobo Frontal/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Inibição Neural , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Parvalbuminas/genética , Parvalbuminas/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Sinapses/metabolismo , Tálamo/citologia , Tálamo/metabolismo , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo
20.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445628

RESUMO

We investigated the alterations of hippocampal and reticulo-thalamic (RT) GABAergic parvalbumin (PV) interneurons and their synaptic re-organizations underlying the prodromal local sleep disorders in the distinct rat models of Parkinson's disease (PD). We demonstrated for the first time that REM sleep is a predisposing state for the high-voltage sleep spindles (HVS) induction in all experimental models of PD, particularly during hippocampal REM sleep in the hemiparkinsonian models. There were the opposite underlying alterations of the hippocampal and RT GABAergic PV+ interneurons along with the distinct MAP2 and PSD-95 expressions. Whereas the PD cholinopathy enhanced the number of PV+ interneurons and suppressed the MAP2/PSD-95 expression, the hemiparkinsonism with PD cholinopathy reduced the number of PV+ interneurons and enhanced the MAP2/PSD-95 expression in the hippocampus. Whereas the PD cholinopathy did not alter PV+ interneurons but partially enhanced MAP2 and suppressed PSD-95 expression remotely in the RT, the hemiparkinsonism with PD cholinopathy reduced the PV+ interneurons, enhanced MAP2, and did not change PSD-95 expression remotely in the RT. Our study demonstrates for the first time an important regulatory role of the hippocampal and RT GABAergic PV+ interneurons and the synaptic protein dynamic alterations in the distinct rat models of PD neuropathology.


Assuntos
Modelos Animais de Doenças , Hipocampo/patologia , Interneurônios/patologia , Doença de Parkinson/complicações , Parvalbuminas/metabolismo , Transtornos do Sono-Vigília/patologia , Sinapses/patologia , Animais , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropatologia , Ratos , Ratos Wistar , Formação Reticular/metabolismo , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/metabolismo , Sinapses/metabolismo , Tálamo/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA