Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Psychiatry ; 23(10): 2057-2065, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29180672

RESUMO

Growing evidence points to a disruption of cortico-thalamo-cortical circuits in schizophrenia (SZ) and bipolar disorder (BD). Clues for a specific involvement of the thalamic reticular nucleus (TRN) come from its unique neuronal characteristics and neural connectivity, allowing it to shape the thalamo-cortical information flow. A direct involvement of the TRN in SZ and BD has not been tested thus far. We used a combination of human postmortem and rodent studies to test the hypothesis that neurons expressing parvalbumin (PV neurons), a main TRN neuronal population, and associated Wisteria floribunda agglutinin-labeled perineuronal nets (WFA/PNNs) are altered in SZ and BD, and that these changes may occur early in the course of the disease as a consequence of oxidative stress. In both disease groups, marked decreases of PV neurons (immunoreactive for PV) and WFA/PNNs were observed in the TRN, with no effects of duration of illness or age at onset. Similarly, in transgenic mice with redox dysregulation, numbers of PV neurons and WFA/PNN+PV neurons were decreased in transgenic compared with wild-type mice; these changes were present at postnatal day (P) 20 for PV neurons and P40 for WFA/PNN+PV neurons, accompanied by alterations of their firing properties. These results show profound abnormalities of PV neurons in the TRN of subjects with SZ and BD, and offer support for the hypothesis that oxidative stress may play a key role in impacting TRN PV neurons at early stages of these disorders. We put forth that these TRN abnormalities may contribute to disruptions of sleep spindles, focused attention and emotion processing in these disorders.


Assuntos
Transtorno Bipolar/fisiopatologia , Esquizofrenia/fisiopatologia , Núcleos Talâmicos/fisiopatologia , Animais , Transtorno Bipolar/metabolismo , Encéfalo/fisiopatologia , Feminino , Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Rede Nervosa/metabolismo , Estresse Oxidativo/fisiologia , Parvalbuminas/metabolismo , Parvalbuminas/fisiologia , Esquizofrenia/metabolismo , Tálamo/fisiopatologia
2.
Neuron ; 89(3): 521-35, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26844832

RESUMO

The precise connectivity of somatostatin and parvalbumin cortical interneurons is generated during development. An understanding of how these interneuron classes incorporate into cortical circuitry is incomplete but essential to elucidate the roles they play during maturation. Here, we report that somatostatin interneurons in infragranular layers receive dense but transient innervation from thalamocortical afferents during the first postnatal week. During this period, parvalbumin interneurons and pyramidal neurons within the same layers receive weaker thalamocortical inputs, yet are strongly innervated by somatostatin interneurons. Further, upon disruption of the early (but not late) somatostatin interneuron network, the synaptic maturation of thalamocortical inputs onto parvalbumin interneurons is perturbed. These results suggest that infragranular somatostatin interneurons exhibit a transient early synaptic connectivity that is essential for the establishment of thalamic feedforward inhibition mediated by parvalbumin interneurons.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Interneurônios/fisiologia , Vias Neurais/crescimento & desenvolvimento , Parvalbuminas/fisiologia , Somatostatina/fisiologia , Tálamo/fisiologia , Animais , Córtex Cerebral/fisiologia , Camundongos , Vias Neurais/fisiologia , Células Piramidais/fisiologia , Tálamo/crescimento & desenvolvimento
3.
FASEB J ; 24(3): 844-52, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19890015

RESUMO

Cerebral selenium (Se) deficiency is associated with neurological phenotypes including seizures and ataxia. We wanted to define whether neurons require selenoprotein expression and which selenoproteins are most important, and explore the possible pathomechanism. Therefore, we abrogated the expression of all selenoproteins in neurons by genetic inactivation of the tRNA[Ser](Sec) gene. Cerebral expression of selenoproteins was significantly diminished in the mutants, and histological analysis revealed progressive neurodegeneration. Developing interneurons failed to specifically express parvalbumin (PV) in the mutants. Electrophysiological recordings, before overt cell death, showed normal excitatory transmission, but revealed spontaneous epileptiform activity consistent with seizures in the mutants. In developing cortical neuron cultures, the number of PV(+) neurons was reduced on combined Se and vitamin E deprivation, while other markers, such as calretinin (CR) and GAD67, remained unaffected. Because of the synergism between Se and vitamin E, we analyzed mice lacking neuronal expression of the Se-dependent enzyme glutathione peroxidase 4 (GPx4). Although the number of CR(+) interneurons remained normal in Gpx4-mutant mice, the number of PV(+) interneurons was reduced. Since these mice similarly exhibit seizures and ataxia, we conclude that GPx4 is a selenoenzyme modulating interneuron function and PV expression. Cerebral SE deficiency may thus act via reduced GPx4 expression.-Wirth, E. K., Conrad, M., Winterer, J., Wozny, C., Carlson, B. A., Roth, S., Schmitz, D., Bornkamm, G. W., Coppola, V., Tessarollo, L., Schomburg, L., Köhrle, J., Hatfield, D. L., Schweizer, U. Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration.


Assuntos
Interneurônios/fisiologia , Degeneração Neural/metabolismo , Degeneração Neural/prevenção & controle , Convulsões/metabolismo , Convulsões/prevenção & controle , Selenoproteínas/fisiologia , Animais , Western Blotting , Calbindina 2 , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Eletrofisiologia , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/fisiologia , Imuno-Histoquímica , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Camundongos , Camundongos Knockout , Parvalbuminas/metabolismo , Parvalbuminas/fisiologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/fisiologia , Proteína G de Ligação ao Cálcio S100/metabolismo , Proteína G de Ligação ao Cálcio S100/fisiologia , Selênio/farmacologia , Selenoproteínas/metabolismo , Vitamina E/farmacologia
4.
J Neurosci ; 25(42): 9782-93, 2005 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-16237182

RESUMO

In the hippocampal CA1 area, a relatively homogenous population of pyramidal cells is accompanied by a diversity of GABAergic interneurons. Previously, we found that parvalbumin-expressing basket, axo-axonic, bistratified, and oriens-lacunosum moleculare cells, innervating different domains of pyramidal cells, have distinct firing patterns during network oscillations in vivo. A second family of interneurons, expressing cholecystokinin but not parvalbumin, is known to target the same domains of pyramidal cells as do the parvalbumin cells. To test the temporal activity of these independent and parallel GABAergic inputs, we recorded the precise spike timing of identified cholecystokinin interneurons during hippocampal network oscillations in anesthetized rats and determined their molecular expression profiles and synaptic targets. The cells were cannabinoid receptor type 1 immunopositive. Contrary to the stereotyped firing of parvalbumin interneurons, cholecystokinin-expressing basket and dendrite-innervating cells discharge, on average, with 1.7 +/- 2.0 Hz during high-frequency ripple oscillations in an episode-dependent manner. During theta oscillations, cholecystokinin-expressing interneurons fire with 8.8 +/- 3.3 Hz at a characteristic time on the ascending phase of theta waves (155 +/- 81 degrees), when place cells start firing in freely moving animals. The firing patterns of some interneurons recorded in drug-free behaving rats were similar to cholecystokinin cells in anesthetized animals. Our results demonstrate that cholecystokinin- and parvalbumin-expressing interneurons make different contributions to network oscillations and play distinct roles in different brain states. We suggest that the specific spike timing of cholecystokinin interneurons and their sensitivity to endocannabinoids might contribute to differentiate subgroups of pyramidal cells forming neuronal assemblies, whereas parvalbumin interneurons contribute to synchronizing the entire network.


Assuntos
Relógios Biológicos/fisiologia , Colecistocinina/fisiologia , Hipocampo/metabolismo , Neurônios/metabolismo , Parvalbuminas/fisiologia , Ácido gama-Aminobutírico/fisiologia , Potenciais de Ação/fisiologia , Animais , Colecistocinina/biossíntese , Colecistocinina/genética , Regulação da Expressão Gênica/fisiologia , Hipocampo/citologia , Masculino , Rede Nervosa/citologia , Rede Nervosa/metabolismo , Neurônios/citologia , Parvalbuminas/biossíntese , Parvalbuminas/genética , Ratos , Ratos Sprague-Dawley , Receptores de GABA/biossíntese , Receptores de GABA/genética
5.
Circ Res ; 94(9): 1235-41, 2004 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-15059934

RESUMO

Hypertrophic cardiomyopathy mutations A63V and E180G in alpha-tropomyosin (alpha-Tm) have been shown to cause slow cardiac muscle relaxation. In this study, we used two complementary genetic strategies, gene transfer in isolated rat myocytes and transgenesis in mice, to ascertain whether parvalbumin (Parv), a myoplasmic calcium buffer, could correct the diastolic dysfunction caused by these mutations. Sarcomere shortening measurements in rat cardiac myocytes expressing the alpha-Tm A63V mutant revealed a slower time to 50% relengthening (T50R: 44.2+/-1.4 ms in A63V, 36.8+/-1.0 ms in controls; n=96 to 108; P<0.001) when compared with controls. Dual gene transfer of alpha-Tm A63V and Parv caused a marked decrease in T50R (29.8+/-1.0 ms). However, this increase in relaxation rate was accompanied with a decrease in shortening amplitude (114.6+/-4.4 nm in A63+Parv, 137.8+/-5.3 nm in controls). Using an asynchronous gene transfer strategy, Parv expression was reduced (from approximately 0.12 to approximately 0.016 mmol/L), slow relaxation redressed, and shortening amplitude maintained (T50R=33.9+/-1.6 ms, sarcomere shortening amplitude=132.2+/-7.0 nm in A63V+PVdelayed; n=56). Transgenic mice expressing the E180G alpha-Tm mutation and mice expressing Parv in the heart were crossed. In isolated adult myocytes, the alpha-Tm mutation alone (E180G+/PV-) had slower sarcomere relengthening kinetics than the controls (T90R: 199+/-7 ms in E180G+/PV-, 130+/-4 ms in E180G-/PV-; n=71 to 72), but when coexpressed with Parv, cellular relaxation was faster (T90R: 36+/-4 ms in E180G+/PV+). Collectively, these findings show that slow relaxation caused by alpha-Tm mutants can be corrected by modifying calcium handling with Parv.


Assuntos
Sinalização do Cálcio/fisiologia , Cardiomiopatia Hipertrófica/genética , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Parvalbuminas/fisiologia , Tropomiosina/genética , Citoesqueleto de Actina/ultraestrutura , Substituição de Aminoácidos , Animais , Sinalização do Cálcio/genética , Cruzamentos Genéticos , Estudos de Viabilidade , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Mutação de Sentido Incorreto , Parvalbuminas/genética , Mutação Puntual , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/fisiologia , Sarcômeros/ultraestrutura , Relação Estrutura-Atividade , Fatores de Tempo , Transdução Genética , Tropomiosina/química
6.
Nature ; 423(6943): 982-6, 2003 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-12827201

RESUMO

The manner in which the nervous system allocates limited motor resources when confronted with conflicting behavioural demands is a crucial issue in understanding how sensory information is transformed into adaptive motor responses. Understanding this selection process is of particular concern in current models of functions of the basal ganglia. Here we report that the basal ganglia use simultaneous enhancing and suppressing processes synergistically to modulate sensory activity in the superior colliculi, which are bilaterally paired midbrain structures involved in the control of visual orientation behaviours. These complementary processes presumably ensure accurate gaze shifts mediated by the superior colliculi despite the presence of potential distractors.


Assuntos
Gânglios da Base/fisiologia , Movimentos Oculares/fisiologia , Colículos Superiores/fisiologia , Animais , Gatos , Fixação Ocular/fisiologia , Lateralidade Funcional , Masculino , Inibição Neural , Neurônios/fisiologia , Parvalbuminas/fisiologia , Estimulação Luminosa , Ácido gama-Aminobutírico/fisiologia
7.
Somatosens Mot Res ; 17(1): 67-80, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10833086

RESUMO

The intrinsic circuitry of the motor cortex comprises a complex network of connections whose synaptic relationships are poorly understood. This study was designed to determine the characteristics of subsets of GABAergic neurons containing the calcium-binding proteins parvalbumin (PV) and calbindin (CB), and their relationships with intrinsic axons in motor cortex. Immunohistochemically identified PV-containing neuronal profiles were more evenly distributed across cortical laminae (38% in II-III, 32% inV, 30% in VI) and more numerous (2.1/1) than CB-containing neuronal profiles (71% in II-III, 17% in V, 12% in VI). Relationships between neurons and axons intrinsic to motor cortex were visualized with fluorescent markers using the laser scanning confocal microscope. Similar percentages of PV (43%) and CB-immunoreactive (IR) (40%) neurons formed sparsely distributed appositions (1-5/neuron) with anterogradely labeled axons. The mean distances of such appositions from the somata were significantly different for the two groups (PV, mean = 22 microm, range = 1.6-93 microm; CB, mean = 32 microm, range = 6.2-132 microm). PV-IR neurons had a lower ratio of axosomatic/axodendritic appositions (1/99) compared with CB-IR neurons (14/86). Ultrastructural studies confirmed these findings. Fifty-seven percent of CB-IR neurons and 38% of PV-IR neurons formed synapses with intrinsic axons. Both populations received sparse input (1-6 synapses/neuron). Nearly all appositions between labeled terminals and postsynaptic profiles formed one synapse. Postsynaptic dendrites of PV-IR neurons (mean = 1.4 microm diameter) were larger than those of CB-IR neurons (mean = 1.1 microm), indicating more proximal synapses. Distinct input patterns of intrinsic axons to the two populations of neurons suggest unique roles in cortical processing.


Assuntos
Axônios/fisiologia , Córtex Motor/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Axônios/ultraestrutura , Mapeamento Encefálico , Calbindinas , Proteínas de Ligação ao Cálcio/fisiologia , Gatos , Feminino , Masculino , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Córtex Motor/anatomia & histologia , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Parvalbuminas/fisiologia , Proteína G de Ligação ao Cálcio S100/fisiologia , Membranas Sinápticas/fisiologia , Membranas Sinápticas/ultraestrutura
8.
Neurochem Res ; 22(7): 799-803, 1997 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9232631

RESUMO

In the course of the study of structure-functional properties and molecular mechanisms of neuropeptides and of low molecular weight proteins of the central nervous system we succeeded in isolating from the soluble fraction of bovine hypothalamus a protein having M(r) 11897.3, according to mass spectral analysis. The purification procedure was mainly based on reversed phase HPLC. As the N-terminus of the molecule was found to be blocked, we have subjected it to CNBr degradation. By Edman microsequence analysis of the peptide fragments and by data base searching the isolated substance was identified as parvalbumin alpha (PRVA)-one of the calcium-binding proteins. However, its primary structure was found not to be identical to that of the known PRVAs from other sources. One of the features of PRVA is its stability. Being subjected to an exhausting purification procedure it retains its complete structure. As neuropeptides and low molecular weight proteins are found to be polyfunctional, a central question concerns the biological role of PRVAs in terms of "where and when" they express their action.


Assuntos
Proteínas de Ligação ao Cálcio/química , Hipotálamo/química , Proteínas do Tecido Nervoso/química , Parvalbuminas/química , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/fisiologia , Bovinos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/fisiologia , Parvalbuminas/fisiologia , Relação Estrutura-Atividade
10.
Brain Res ; 475(2): 205-17, 1988 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-3214731

RESUMO

The characterization of neuron populations by their immunoreactivity against parvalbumin- and calbindin (28-kDa)-antisera has been used to study the postnatal development of the visual diencephalic nucleus rotundus and the mesencephalic nucleus isthmi complex in zebra finches. In nucleus rotundus, parvalbumin-immunoreactivity was restricted to the neuropil during the first 10 days and appears additionally in somata around day 12 where it remains until adulthood. Calbindin-immunoreactivity of the very scarce neuropil and the few somata, which can be observed during the first two weeks, disappears until adulthood. Thus, the adult nucleus rotundus shows an almost complementary distribution of calbindin- and parvalbumin-immunoreactive structures: the numerous, heavily parvalbumin-positive somata, which are surrounded by dense immunoreactive neuropil are in sharp contrast to the complete absence of calbindin-immunoreactive somata. Only a thin rim surrounding this nucleus contains punctate calbindin-positive neuropil. In the nucleus isthmi complex, parvalbumin and calbindin staining patterns show markedly different developmental profiles. While the density of parvalbumin-immunoreactive neuropil in the parvocellular part of the nucleus isthmi continuously increases and the somata remain unstained, the initially heavily calbindin-positive somata gradually lose their immunoreactivity during the first two weeks. In the adult nucleus isthmi complex, parvalbumin- and calbindin show nearly identical staining patterns. A comparison between the two calcium-binding proteins and GABA-immunoreactivity in adult brains revealed different relationships in the two nuclei: while in nucleus rotundus GABA-staining pattern neither resembles that of parvalbumin nor of calbindin, in the nucleus isthmi complex all three staining patterns coincide.


Assuntos
Aves/fisiologia , Encéfalo/crescimento & desenvolvimento , Proteínas Musculares/metabolismo , Parvalbuminas/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Vias Visuais/crescimento & desenvolvimento , Ácido gama-Aminobutírico/metabolismo , Animais , Aves/metabolismo , Encéfalo/metabolismo , Calbindinas , Imuno-Histoquímica , Parvalbuminas/fisiologia , Proteína G de Ligação ao Cálcio S100/fisiologia , Vias Visuais/metabolismo , Ácido gama-Aminobutírico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA