Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 66(11): 2117-2138, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37584728

RESUMO

AIMS/HYPOTHESIS: Modulation of gut microbiota has emerged as a promising strategy to treat or prevent the development of different metabolic diseases, including type 2 diabetes and obesity. Previous data from our group suggest that the strain Pediococcus acidilactici CECT9879 (pA1c) could be an effective probiotic for regulating glucose metabolism. Hence, the objectives of this study were to verify the effectiveness of pA1c on glycaemic regulation in diet-induced obese mice and to evaluate whether the combination of pA1c with other normoglycaemic ingredients, such as chromium picolinate (PC) and oat ß-glucans (BGC), could increase the efficacy of this probiotic on the regulation of glucose and lipid metabolism. METHODS: Caenorhabditis elegans was used as a screening model to describe the potential synbiotic activities, together with the underlying mechanisms of action. In addition, 4-week-old male C57BL/6J mice were fed with a high-fat/high-sucrose diet (HFS) for 6 weeks to induce hyperglycaemia and obesity. Mice were then divided into eight groups (n=12 mice/group) according to dietary supplementation: control-diet group; HFS group; pA1c group (1010 colony-forming units/day); PC; BGC; pA1c+PC+BGC; pA1c+PC; and pA1c+BGC. Supplementations were maintained for 10 weeks. Fasting blood glucose was determined and an IPGTT was performed prior to euthanasia. Fat depots, liver and other organs were weighed, and serum biochemical variables were analysed. Gene expression analyses were conducted by real-time quantitative PCR. Sequencing of the V3-V4 region of the 16S rRNA gene from faecal samples of each group was performed, and differential abundance for family, genera and species was analysed by ALDEx2R package. RESULTS: Supplementation with the synbiotic (pA1c+PC+BGC) counteracted the effect of the high glucose by modulating the insulin-IGF-1 signalling pathway in C. elegans, through the reversal of the glucose nuclear localisation of daf-16. In diet-induced obese mice, all groups supplemented with the probiotic significantly ameliorated glucose tolerance after an IPGTT, demonstrating the glycaemia-regulating effect of pA1c. Further, mice supplemented with pA1c+PC+BGC exhibited lower fasting blood glucose, a reduced proportion of visceral adiposity and a higher proportion of muscle tissue, together with an improvement in the brown adipose tissue in comparison with the HFS group. Besides, the effect of the HFS diet on steatosis and liver damage was normalised by the synbiotic. Gene expression analyses demonstrated that the synbiotic activity was mediated not only by modulation of the insulin-IGF-1 signalling pathway, through the overexpression of GLUT-1 and GLUT-4 mediators, but also by a decreased expression of proinflammatory cytokines such as monocyte chemotactic protein-1. 16S metagenomics demonstrated that the synbiotic combinations allowed an increase in the concentration of P. acidilactici, together with improvements in the intestinal microbiota such as a reduction in Prevotella and an increase in Akkermansia muciniphila. CONCLUSIONS/INTERPRETATION: Our data suggest that the combination of pA1c with PC and BGC could be a potential synbiotic for blood glucose regulation and may help to fight insulin resistance, diabetes and obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Pediococcus acidilactici , Simbióticos , Animais , Camundongos , Masculino , Caenorhabditis elegans/metabolismo , Pediococcus acidilactici/metabolismo , Glicemia/metabolismo , Camundongos Obesos , RNA Ribossômico 16S , Fator de Crescimento Insulin-Like I , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Insulina , Glucose
2.
Molecules ; 28(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175203

RESUMO

Selenium (Se) is in great demand as a health supplement due to its superior reactivity and excellent bioavailability, despite selenium nanoparticles (SeNPs) having signs of minor toxicity. At present, the efficiency of preparing SeNPs using lactic acid bacteria is unsatisfactory. Therefore, a probiotic bacterial strain that is highly efficient at converting selenite to elemental selenium is needed. In our work, four selenite-reducing bacteria were isolated from soil samples. Strain LAB-Se2, identified as Pediococcus acidilactici DSM20284, had a reduction rate of up to 98% at ambient temperature. This strain could reduce 100 mg L-1 of selenite to elemental Se within 48 h at pH 4.5-6.0, a temperature of 30-40 °C, and a salinity of 1.0-6.5%. The produced SeNPs were purified, freeze-dried, and subsequently systematically characterised using FTIR, DSL, SEM-EDS, and TEM techniques. SEM-EDS analysis proved the presence of selenium as the foremost constituent of SeNPs. The strain was able to form spherical SeNPs, as determined by TEM. In addition, DLS analysis confirmed that SeNPs were negatively charged (-26.9 mV) with an average particle size of 239.6 nm. FTIR analysis of the SeNPs indicated proteins and polysaccharides as capping agents on the SeNPs. The SeNPs synthesised by P. acidilactici showed remarkable antibacterial activity against E. coli, B. subtilis, S. aureus, and K. pneumoniae with inhibition zones of 17.5 mm, 13.4 mm, 27.9 mm, and 16.2 mm, respectively; they also showed varied MIC values in the range of 15-120 µg mL-1. The DPPH, ABTS, and hydroxyl, and superoxide scavenging activities of the SeNPs were 70.3%, 72.8%, 95.2%, and 85.7%, respectively. The SeNPs synthesised by the probiotic Lactococcus lactis have the potential for safe use in biomedical and nutritional applications.


Assuntos
Nanopartículas , Pediococcus acidilactici , Selênio , Selênio/química , Ácido Selenioso/química , Pediococcus acidilactici/metabolismo , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Nanopartículas/química
3.
J Agric Food Chem ; 70(47): 14877-14885, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36382709

RESUMO

Lactic acid bacteria can convert selenium (Se) from inorganic to organic and elemental forms, but the distribution and existence form of organic Se in the bacteria are not clear after Se enrichment, and the effects of selenization on the growth and nutritional value of strains also need to be studied. In this study, Pediococcus acidilactici MRS-7 could absorb up to 67% of inorganic Se and convert most of it into organic Se; about 75% of organic Se was selenoprotein, 2.7% was Se-polysaccharide, and 4.6% was Se-nucleic acid. Additionally, Se-enriched treatment increased the levels of amino acids and essential elements in P. acidilactici MRS-7. Finally, after Se enrichment, Se nanoparticles (SeNPs) were found on the surface of P. acidilactici MRS-7, but they had no harmful effect on its morphology, and its survival during gastrointestinal digestion was not affected, indicating that SeP has potential probiotic value in the food industry.


Assuntos
Lactobacillales , Pediococcus acidilactici , Probióticos , Selênio , Pediococcus acidilactici/metabolismo , Selênio/metabolismo , Lactobacillales/metabolismo , Trato Gastrointestinal , Pediococcus/metabolismo
4.
J Agric Food Chem ; 70(15): 4755-4764, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35394776

RESUMO

Patulin (PAT) is a common mycotoxin. Oral ingestion of PAT could damage the intestinal mucosa. Both selenium and probiotics can alleviate intestinal damage, but there are few reports on selenium-enriched probiotics. Here, we studied the protective effects of a new selenium-enriched Pediococcus acidilactici MRS-7 (SeP) on PAT-induced jejunum injuries in mice. Results show that PAT induced jejunum injuries such as loss of crypts, ulceration of the mucosa, and intestinal epithelial barrier function impairment. However, SeP could protect against PAT-induced jejunum injuries and significantly inhibit the reduction of goblet cell numbers. SeP could not only alleviate PAT-induced oxidative stress by decreasing malondialdehyde (MDA) and increasing superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) levels in the jejunum tissues but also alleviate the inflammatory response caused by PAT by reducing the levels of inflammatory factors (interleukin (IL)-6 snd IL-1ß and tumor necrosis factor-α (TNF-α)) in the serum and jejunum tissues. In addition, SeP also inhibited the expression of nuclear factor-κB (NF-κB) and Toll-like receptor 4 (TLR-4), increased the expression of tight junction proteins (occludin, ZO-1, and claudin-1), and increased the selenium content in the jejunum, thereby antagonizing the jejunum injuries caused by PAT exposure. Finally, SeP rebalanced the intestinal microbiota and improved probiotic abundance such as Turicibacter, Bifidobacterium, Ileibacterium, and Pediococcus in PAT-treated mice. These results support the possibility of SeP as a novel protective agent to mitigate the toxicity of PAT.


Assuntos
Patulina , Pediococcus acidilactici , Selênio , Animais , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Camundongos , Estresse Oxidativo , Patulina/toxicidade , Pediococcus acidilactici/metabolismo , Selênio/metabolismo
5.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163199

RESUMO

In the present study, thirty two lactic acid bacteria (LAB) were isolated from fermented Indian herbal medicine. In comparison to other strains, MNL5 had stronger bile salt hydrolase (BSH) and cholesterol-lowering properties. Furthermore, it can withstand the extreme conditions found in the GI tract, due to, e.g., pepsin, bile salts, pancreatin, and acids. Pediococcus acidilactici MNL5 was identified as a probiotic candidate after sequencing the 16S rRNA gene. The antibacterial activity of P. acidilactici MNL5 cell-free supernatants (CFS) against Escherichia coli, Staphylococcus aureus, Helicobacter pylori, Bacillus cereus, and Candida albicans was moderate. A Caenorhabditis elegans experiment was also performed to assess the effectiveness of P. acidilactici MNL5 supplementation to increase life span compared to E. coli supplementation (DAF-2 and LIU1 models) (p < 0.05). An immense reduction of the lipid droplets of C. elegans was identified through a fluorescent microscope. The drastic alteration of the expression of fat genes is related to obesity phenotypes. Hence, several paths are evolutionary for C. elegans; the results of our work highlight the nematode as an important model for obesity.


Assuntos
Fármacos Antiobesidade/farmacologia , Pediococcus acidilactici/metabolismo , Probióticos/farmacologia , Animais , Antibacterianos/metabolismo , Ácidos e Sais Biliares/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fermentação , Medicina Herbária/métodos , Lactobacillales/genética , Lactobacillales/metabolismo , Obesidade/microbiologia , Pediococcus acidilactici/fisiologia , RNA Ribossômico 16S/genética
6.
Sci Rep ; 11(1): 12028, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103574

RESUMO

The lactic acid bacteria (LAB) Lactobacillus plantarum (strains 22F and 25F) and Pediococcus acidilactici (strain 72N) have appeared promising as replacements for antibiotics in in vitro studies. Microencapsulation, especially by the spray-drying method, has been used to preserve their numbers and characteristics during storage and digestion. This study compared the efficacy of these strains and their microencapsulated form with antibiotic usage on growth performance, faecal microbial counts, and intestinal morphology in nursing-finishing pigs. A total of 240 healthy neonatal pigs were treated on days 0, 3, 6, 9, and 12 after cross-fostering. Sterile peptone water was delivered orally to the control and antibiotic groups. Spray-dried Lactobacillus plantarum strain 22F stored for 6-months was administered to piglets in the spraydry group. Three ml of each the three fresh strains (109 CFU/mL) were orally administered to piglets in each group. All pigs received the basal diets, but these were supplemented with routine antibiotic for the antibiotic group. Pigs in all the probiotic supplemented groups exhibited a better average daily gain and feed conversion ratio than those of the controls in the nursery and grower phases. Probiotic supplementation increased viable lactobacilli and decreased enterobacterial counts. Antibiotic additives reduced both enterobacterial and lactobacilli counts. Villous height and villous height:crypt depth ratio were greater in probiotic and antibiotic supplemented pigs comparing to the controls, especially in the jejunum. The results demonstrated the feasibility of using these strains as a substitute for antibiotics and the practicality of the microencapsulation protocol for use in swine farms.


Assuntos
Antibacterianos/administração & dosagem , Fezes/microbiologia , Lactobacillales/metabolismo , Lactobacillus plantarum/metabolismo , Pediococcus acidilactici/metabolismo , Probióticos/administração & dosagem , Ração Animal/análise , Animais , Animais Recém-Nascidos , Peso Corporal , Dieta/veterinária , Suplementos Nutricionais , Esquema de Medicação , Feminino , Masculino , Suínos
7.
PLoS One ; 14(11): e0223503, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31738752

RESUMO

The aim of this research was to isolate bacteria capable of biotransforming daidzein from fresh feces from pregnant horses. A Hungate anaerobic roller tube was used for anaerobic culture. Single colonies were picked at random and incubated with daidzein. High performance liquid chromatography was used to detect whether the isolated bacteria were able to biotransform the substrate. A strain capable of reducing daidzein was selected and characterized using sequence analysis of 16S rDNA, and a phylogenetic tree was constructed. The morphological physiological and biochemical characteristics of the strain were investigated. A facultative anaerobic, Gram-positive bacterium capable of converting daidzein to dihydrodaidzein was isolated and named HXBM408 (MF992210). A BLAST search of HXBM408's 16S rDNA sequence against the GenBank database suggested that the strain has 99% similarity with Pediococcus acidilactici strain DSM (NR042057). The morphological, physiological, and biochemical characteristics of HXBM408 are very similar to those of Pediococcus. Based on these characteristics, the strain was identified as Pediococcus acidilactici. The bacterial strain HXBM408 isolated from the feces of pregnant horses was able to reduce the isoflavone daidzein to dihydrodaidzein.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Cavalos/metabolismo , Cavalos/microbiologia , Isoflavonas/metabolismo , Pediococcus acidilactici/isolamento & purificação , Pediococcus acidilactici/metabolismo , Animais , Bactérias/genética , Biotransformação , DNA Bacteriano/genética , DNA Ribossômico/genética , Fezes/microbiologia , Feminino , Pediococcus acidilactici/genética , Filogenia , Fitoestrógenos/metabolismo , Gravidez , RNA Ribossômico 16S/genética , Glycine max/química
8.
J Agric Food Chem ; 67(25): 7082-7086, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31199642

RESUMO

Vitamins are important nutrients for many fermentations, but they are generally costly. Agricultural lignocellulose biomass contains considerable amounts of vitamin B compounds, but these water-soluble vitamins are easily lost into wastewater discharge during pretreatment or detoxification of lignocellulose in biorefinery processes. Here, we showed that the dry acid pretreatment and biodetoxification process allowed the preservation of significant amounts of vitamin B, which promoted l-lactic acid fermentation efficiency significantly. Supplementation with specific vitamin B compounds, VB3 and VB5, into corn stover hydrolysate led to further increases of cellulosic l-lactic acid yield and fermentation rates. This study provided a new solution for the enhancement of biorefinery fermentation efficiency by using vitamin B compounds in lignocellulose biomass.


Assuntos
Ácido Láctico/metabolismo , Lignina/metabolismo , Pediococcus acidilactici/metabolismo , Complexo Vitamínico B/metabolismo , Fermentação , Hidrólise , Lignina/química , Pediococcus acidilactici/crescimento & desenvolvimento , Caules de Planta/química , Caules de Planta/metabolismo , Caules de Planta/microbiologia , Resíduos/análise , Zea mays/química , Zea mays/metabolismo , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA