Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Int ; 176: 105725, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561151

RESUMO

Epilepsy constitutes a global health concern, affecting millions of individuals and approximately one-third of patients exhibit drug resistance. Recent investigations have revealed alterations in cerebral iron content in both epilepsy patients and animal models. However, the extant literature lacks a comprehensive exploration into the ramifications of modulating iron homeostasis as an intervention in epilepsy. This study investigated the impact of deferasirox, a iron ion chelator, on epilepsy. This study unequivocally substantiated the antiepileptic efficacy of deferasirox in a kainic acid-induced epilepsy model. Furthermore, deferasirox administration mitigated seizure susceptibility in a pentylenetetrazol-induced kindling model. Conversely, the augmentation of iron levels through supplementation has emerged as a potential exacerbating factor in the precipitating onset of epilepsy. Intriguingly, our investigation revealed a hitherto unreported discovery: ITPRIP was identified as a pivotal modulator of excitatory synaptic transmission, regulating seizures in response to deferasirox treatment. In summary, our findings indicate that deferasirox exerts its antiepileptic effects through the precise targeting of ITPRIP and amelioration of cerebral iron homeostasis, suggesting that deferasirox is a promising and novel therapeutic avenue for interventions in epilepsy.


Assuntos
Anticonvulsivantes , Encéfalo , Deferasirox , Epilepsia , Quelantes de Ferro , Ferro , Proteínas de Membrana , Animais , Masculino , Camundongos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Deferasirox/farmacologia , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Excitação Neurológica/efeitos dos fármacos , Pentilenotetrazol/toxicidade , Ratos Sprague-Dawley , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo
2.
J Ethnopharmacol ; 327: 117982, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38423411

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cynanchum otophyllum C.K.Schneid.PI.Wilson, commonly referred as ''Qingyangshen'' (QYS), is a traditional folk medicine from Yunnan, renowned for its efficacy in neurological and psychiatric disorders. Glycosides isolated from QYS have shown promise in alleviating epilepsy, however, mechanisms of action and specific molecular targets remain to be elucidated. AIM OF THE STUDY: The study aimed to evaluate the anticonvulsant effects of Qingyangshen glycosides M1 (M1), a C21 steroidal glycoside from QYS, on pentylenetetrazol (PTZ)-induced convulsions in zebrafish (Danio rerio), and its neuroprotective effect on Glutamate (Glu)-induced damage to PC12 cells, and importantly to identify its potential molecular targets. MATERIALS AND METHODS: To evaluate anticonvulsant activity of M1, 7 days-post-fertilization (7-dpf) animals were pretreated (by immersion) and then exposed to PTZ (10 mM) solution. Furthermore, Glu-induced PC12 cell damage was employed to investigate the neuroprotective and anti-apoptotic capacity. Cells were pretreated with various concentrations of M1 (0-10 µM) for 12 h and then co-treated with Glu (15 mM) for an additional 24 h. The cell viability, apoptosis rate and apoptosis-related proteins (p-PI3K, PI3K, Akt, p-Akt, CREB, p-CREB, BDNF, Bax and Bcl-2) were measured using CCK-8, annexin V/PI and Western blot assays. To model the expected interaction between M1 and candidate cannabinoid receptor type 1 (CB1R), ERK phosphorylation, molecular docking, and drug affinity responsive target stability (DARTS) techniques were employed. Finally, CB1R antagonist Rimonabant (Rim) was validated by co-administration in both zebrafish and cells to confirm the requirement of CB1R for M1 efficacy. RESULTS: At a concentration of 400 µM, M1 dramatically reversed PTZ-induced convulsive-like behaviors in zebrafish, as evidenced by a significant reduction in locomotor activity. In the context of Glu-induced cytotoxicity, M1 (10 µM) demonstrated a notable increase in cell viability and suppressed apoptosis through modulation of the Bax/Bcl-2 ratio and activation of the PI3K/Akt/CREB/BDNF signaling axis. These effects were facilitated through CB1R activation. In contrast, Rim dampened the beneficial activities of M1 as a cannabinoid agonist. CONCLUSIONS: These results demonstrated that M1 as a potential CB1R activator, exhibiting anticonvulsive effects in a PTZ-induced zebrafish model and neuroprotective properties via the PI3K/Akt/CREB/BDNF signaling axis in a Glu-induced PC12 cell injury model. Notably, the observed seizure relief attenuated by CB1R chemical antagonism.


Assuntos
Fármacos Neuroprotetores , Proteínas Proto-Oncogênicas c-akt , Humanos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Glicosídeos/química , Peixe-Zebra , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteína X Associada a bcl-2 , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Simulação de Acoplamento Molecular , China , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Proteínas Reguladoras de Apoptose , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Pentilenotetrazol/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
3.
Life Sci ; 336: 122347, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103728

RESUMO

AIMS: The increasing resistance to anti-seizure medications (ASMs) and the ambiguous mechanisms of epilepsy highlight the pressing demand for the discovery of pioneering lead compounds. Berberine (BBR) has received significant attention in recent years within the field of chronic metabolic disorders. However, the reports on the treatment of epilepsy with BBR are not systematic and the mechanism remains unclear. MAIN METHODS: In this study, the seizure behaviors of mice were recorded following subcutaneous injection of pentetrazol (PTZ). Non-targeted metabolomics was used to analyze the serum metabolites based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Meanwhile, multivariate statistical methods were used for metabolite identification and pathway analysis. Furthermore, network pharmacology, molecular docking, and quantitative real-time PCR assay were used for the target identification. KEY FINDINGS: BBR had anti-seizure effects on PTZ-induced seizure mice after long-term treatment. Tryptophan metabolism and phenylalanine metabolism were involved in regulating the therapeutic effects of BBR. SIGNIFICANCE: This study reveals the potential mechanism of BBR for epilepsy treatment based on non-targeted metabolomics and network pharmacology, which provides evidence for uncovering the pathogenesis of epilepsy, suggesting that BBR is a potential lead compound for anti-epileptic treatment.


Assuntos
Berberina , Epilepsia , Camundongos , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Berberina/metabolismo , Farmacologia em Rede , Simulação de Acoplamento Molecular , Metabolômica/métodos , Pentilenotetrazol/toxicidade , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
4.
Pak J Pharm Sci ; 36(2): 565-577, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37530166

RESUMO

Currently, prolong use of standard anti-epileptics may cause tolerance and ineffective for about 30% of epileptic patients. Medicinal plants provide an attractive therapeutic effect in preventing and treating seizures in traditional and folk medicine. In this study, we investigate the antiepileptic effects of PTAT decoction on acute and chronic seizure models in mice and explore the potential mechanisms. PTAT decoction dose-dependently protected mice against MES and PTZ induced seizure. Meanwhile, it decreased the seizure severity and reduced seizure-caused anxious behavior in the PTZ-kindling mice, suggesting a significant antiepileptic activity and anxiolytic/anxiogenic potential. PTAT decoction dose-dependently increased the levels of GSH and the activity SOD and CAT, while decreased the level of MDA in the hippocampi of treated mice. Furthermore, a significant decrease in the proinflammatory cytokine levels, including TNF-α, IL-1ß, IL-6 and MCP-1 was found in treated mice compared with the mice in the vehicle + PTZ group. Moreover, PTAT decoction dose-dependently reversed the alterations induced by PTZ in GABA, GABA-T, L-GAD and glutamate levels in kindling mice, showing an effect on the modulation of the GABA neurotransmission. Thus, PTAT decoction has a promising anticonvulsant activity mediated via multiple mechanisms, which might be used as an up-and-coming phytotherapy strategy in the management of epilepsy and its complications.


Assuntos
Acorus , Epilepsia , Polygala , Camundongos , Animais , Anticonvulsivantes/efeitos adversos , Acorus/metabolismo , Polygala/metabolismo , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Estresse Oxidativo , Ácido gama-Aminobutírico/farmacologia , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Inflamação/tratamento farmacológico
5.
Metab Brain Dis ; 38(7): 2355-2367, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37436587

RESUMO

Epilepsy, a chronic neurological condition, impacts millions of individuals globally and remains a significant contributor to both illness and mortality. Available antiepileptic drugs have serious side effects which warrants to explore different medicinal plants used for the management of epilepsy reported in Traditional Indian Medicinal System (TIMS). Therefore, we explored the antiepileptic potential of the Grewia tiliaefolia (Tiliaeceae) which is known for its neuroprotective properties. Aerial parts of G. tiliaefolia were subjected to extraction with increasing order of polarity viz. hexane, chloroform and methanol. Antioxidant potential of hexane, chloroform and methanol extracts of G. tiliaefolia was evaluated by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay, total antioxidant capacity (TAC) assay, reducing power assay (RPA) and DNA nicking assay. Additionally, quantitative antioxidant assays were also conducted to quantify total phenolic (TPC) and total flavonoid content (TFC). As revealed by in vitro assays, methanol extract was found to contain more phenolic content. Hence, the methanol extract was further explored for its anticonvulsant potential in pentylenetetrazole (PTZ) induced acute seizures in mice. The methanol extract (400 mg/kg) significantly increased the latency to occurrence of myoclonic jerks and generalized tonic clonic seizures (GTCS). Additionally, it also reduced duration and seizure severity score associated with GTCS. The Grewia tiliaefolia methanol extract was further screened by Ultra High-Performance Liquid Chromatography (UHPLC) for presence of polyphenolic compounds, among which gallic acid and kaempferol were present in higher amount and were further analysed by in silico study to predict their possible binding sites and type of interactions these compounds show with gamma amino butyric acid (GABA) receptor and glutamate α amino-3- hydroxyl-5-methyl-4-isoxazolepropionic acid (Glu-AMPA) receptor. It was revealed that gallic acid and kaempferol had shown agonistic interaction for GABA receptor and antagonistic interaction for Glu-AMPA receptor. We concluded that G. tiliaefolia showed anticonvulsant potential possibly because of gallic acid and kaempferol possibly mediated through GABA and Glu-AMPA receptor.


Assuntos
Epilepsia , Grewia , Camundongos , Animais , Anticonvulsivantes/efeitos adversos , Pentilenotetrazol/toxicidade , Grewia/química , Hexanos/efeitos adversos , Quempferóis , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Metanol/efeitos adversos , Clorofórmio/efeitos adversos , Receptores de AMPA , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Ácido Gálico/uso terapêutico , Ácido gama-Aminobutírico
6.
Mar Drugs ; 21(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37367679

RESUMO

The growth and development of the fetus and newborn throughout pregnancy and lactation are directly related to the nutritional status of the mother, which has a significant impact on the health of the offspring. The purpose of this experiment was to investigate the susceptibility of n-3 polyunsaturated fatty acid deficiency in early life to seizures in adulthood. The n-3 PUFAs-deficient mice's offspring were established and then fed with α-LNA diet, DHA-enriched ethyl ester, and DHA-enriched phospholipid-containing diets for 17 days at the age of eight weeks. During this period, animals received intraperitoneal injections of 35 mg/kg of pentylenetetrazol (PTZ) every other day for eight days. The results showed that dietary n-3 PUFA-deficiency in early life could aggravate PTZ-induced epileptic seizures and brain disorders. Notably, nutritional supplementation with n-3 PUFAs in adulthood for 17 days could significantly recover the brain n-3 fatty acid and alleviate the epilepsy susceptibility as well as raise seizure threshold to different levels by mediating the neurotransmitter disturbance and mitochondria-dependent apoptosis, demyelination, and neuroinflammation status of the hippocampus. DHA-enriched phospholipid possessed a superior effect on alleviating the seizure compared to α-LNA and DHA-enriched ethyl ester. Dietary n-3 PUFA deficiency in early life increases the susceptibility to PTZ-induced epilepsy in adult offspring, and nutritional supplementation with n-3 PUFAs enhances the tolerance to the epileptic seizure.


Assuntos
Epilepsia , Ácidos Graxos Ômega-3 , Feminino , Gravidez , Camundongos , Animais , Pentilenotetrazol/toxicidade , Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3/farmacologia , Dieta , Fosfolipídeos , Suplementos Nutricionais , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle
7.
J Ethnopharmacol ; 309: 116347, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36894108

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ferula gummosa Boiss., known in Persian as "Baridje," belongs to the Apiaceae family. All parts of this plant, especially the root, contain galbanum. Galbanum, the oleo-gum resin of F. gummosa, is one of the essential traditional herbal medicines in Iran, which is used as a tonic for epilepsy and chorea, memory enhancement, gastrointestinal diseases, and wound healing. AIM OF THE STUDY: We investigated the toxicity, anticonvulsant effects, and molecular modeling of the essential oil (EO) distilled from the oleo-gum resin of F. gummosa. MATERIALS AND METHODS: Gas chromatography-mass spectrometry was used to identify the EO components. The cytotoxicity of EO on HepG2 cell lines was assessed by the MTT method. Male mice were arranged as follows: negative control groups (sunflower oil (10 ml/kg, i.p.) or saline (10 ml/kg, p.o.)), EO groups (0.5, 1, 1.5, and 2.5 ml/kg, p.o.), and positive control groups (ethosuximide (150 mg/kg, p.o.) or diazepam (1.0 or 2 mg/kg, i.p.)). The motor coordination and neurotoxicity of EO were studied using the rota-rod test. Open-field, novel object recognition, and passive avoidance learning tests were used to investigate the effect of EO on locomotor activity and memory function. An acute pentylenetetrazole-induced seizure model was utilized to evaluate the anticonvulsant properties of the EO. The interaction of the EO main components with the GABAA receptor was investigated by coarse-grained molecular dynamics simulations. RESULTS: ß-pinene, sabinene, α-pinene, and ρ-cymene were the main components of EO. The IC50 of the EO at 24, 48, and 72 h was found to be 59.90, 12.96, and 3.93 µl/ml, respectively. No adverse effects were observed in memory, motor coordination, and locomotor activity in mice treated with EO. Administration of EO (1, 1.5, and 2.5 ml/kg) improved survival rates in mice receiving pentylenetetrazole (PTZ; to induce an epileptic seizure). Sabinene was able to bind to the binding site of benzodiazepines at the GABAA receptor. CONCLUSIONS: Acute treatment with the EO of F. gummosa caused antiepileptic effects and could effectively increase the survival rate in PTZ-treated mice with no significant toxicity.


Assuntos
Ferula , Óleos Voláteis , Camundongos , Animais , Óleos Voláteis/toxicidade , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/toxicidade , Ferula/química , Pentilenotetrazol/toxicidade , Receptores de GABA-A
8.
J Ethnopharmacol ; 303: 115995, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509255

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Different parts of Malvaviscus arboreus Dill. Ex Cav. (M. arboreus) are traditionally used in the West Region of Cameroon to treat many diseases, including epilepsy. AIM OF THE STUDY: To determine which part of M. arboreus offers the best anticonvulsant effect, and to assess the acute and sub-acute toxicity of the part of interest. MATERIALS AND METHODS: the anticonvulsant effect of the aqueous lyophilisate of the decoction of flowers, leaves, stems and roots of M. arboreus at various doses was evaluated and compared on the model of acute epileptic seizures induced by pentylenetetrazole (PTZ) (70 mg/kg), injected 1 h after oral administration of the various extracts. Out of these plant parts, the leaves were then selected to prepare the hydroethanolic extract and its anticonvulsant effect against PTZ at the doses of 122.5, 245 and 490 mg/kg, as well as its acute toxicity were compared with those of the aqueous lyophilisate of the leaves. The anticonvulsant effect of the aqueous lyophilisate of M. arboreus leaves was further evaluated on models of acute epileptic seizures induced by picrotoxin (PIC) (7.5 mg/kg), strychnine (STR) (2.5 mg/kg) and pilocarpine (350 mg/kg). The 28 days sub-acute toxicity, as well as the quantitative phytochemistry and the in vitro antioxidant potential (FRAP, DPPH, ABTS+) of the aqueous lyophilisate of the leaves of M. arboreus were also evaluated. RESULTS: M. arboreus leaves showed the best anticonvulsant effect and the aqueous lyophilisate was the best extract. The latter significantly protected the animals against convulsions induced by PTZ (71.43%) (p < 0.01), PIC (57.14%) (p < 0.05) and STR (42%) and had no effect on pilocarpine-induced seizures. Furthermore, it showed no acute or sub-acute toxicity, and revealed a high content of flavonoids, saponins, tannins and alkaloids, and antioxidant activity in vitro. CONCLUSION: The aqueous lyophilisate of the leaves of M. arboreus offers the best anticonvulsant effect on the extraction solvent used, and it would act mainly via a potentiation of the inhibitory systems of the brain (GABA, Glycine). In addition, its richness in bioactive compounds gives it an antioxidant potential, and it is not toxic in acute and sub-acute toxicity. All this justifies at least in part its empirical uses, and makes M. arboreus a candidate for the alternative treatment of epilepsy.


Assuntos
Anethum graveolens , Epilepsia , Animais , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/toxicidade , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Antioxidantes/uso terapêutico , Pilocarpina/toxicidade , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Picrotoxina/uso terapêutico , Pentilenotetrazol/toxicidade , Epilepsia/tratamento farmacológico , Estricnina/uso terapêutico , Água
9.
Neurochem Res ; 48(1): 273-283, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36074199

RESUMO

Echinops spinosus (ES) is a medicinal plant with a wide range of pharmacological and biological effects. It is a medicinal herb having a variety of therapeutic characteristics, including antioxidant, anti-inflammatory, and antibacterial capabilities. The primary goal of this research is to investigate the neuroprotective and anticonvulsant characteristics of E. spinosa extract (ESE) against pentylenetetrazole (PTZ)-induced acute seizures. Negative control rats, ESE treatment rats, PTZ acute seizure model rats, ESE + PTZ rats, and Diazepam + PTZ rats were used in the study. The rats were given a 7-day treatment. ESE pretreatment elevated the latency to seizure onset and lowered seizure duration after PTZ injection. By reducing Bax levels and enhancing antiapoptotic Bcl-2 production, ESE prevented the release of interleukin-1ß, tumor necrosis factor-α, and cyclooxygenase-2, as well as preventing hippocampal cell death after PTZ injection. ESE corrected the PTZ-induced imbalance in gamma-aminobutyric acid levels and increased the enzyme activity of Na+/K+-ATPase. Echinops spinosus is a potent neuromodulatory, antioxidant, antiinflammatory, and antiapoptotic plant that could be employed as a natural anticonvulsant in the future.


Assuntos
Fármacos Neuroprotetores , Plantas Medicinais , Ratos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Pentilenotetrazol/toxicidade , Fármacos Neuroprotetores/efeitos adversos , Tenrecidae , Antioxidantes/efeitos adversos , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Modelos Animais de Doenças
10.
Eur J Neurol ; 30(11): 3540-3550, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-35429204

RESUMO

BACKGROUND AND PURPOSE: Research on the relationship between the gut microbiome and epilepsy is accumulating. The present study was conducted to evaluate the effect of probiotic supplementation on pentylenetetrazole (PTZ)-induced seizures in rats. METHODS: Twenty-one adult male Wistar albino rats were included. The animals were divided into three groups of seven rats. Group 1 was a control group, whereas Group 2 rats received PTZ treatment and Group 3 rats had PTZ+PB (probiotic) treatment. For 6 weeks, Groups 1 and 2 were given saline (1 ml), whereas Group 3 had probiotic supplement. In the 5th week, tripolar electrodes were attached to the rats. Electrophysiological, behavioral, biochemical, and immunohistochemical evaluations were performed in the 6 weeks after the treatment. RESULTS: PB treatment significantly reduced seizures. In the PTZ group, expression levels of brain-derived neurotrophic factor, nerve growth factor (NGF), and Sox2 (SRY sex-determining region Y-box 2) in rat brains decreased significantly compared to the control group, whereas the expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), total oxidant status (TOS), and nitric oxide (NO) levels increased. In the PTZ+PB group, NGF expression increased significantly compared to the PTZ group, whereas TNF-α, IL-6, TOS, and NO levels decreased. In histopathological examination, an abundance of necrotic neurons was notable in the PTZ group, which was less in the PTZ+PB group. In addition, body weight of the group supplemented with probiotics decreased after the treatment. CONCLUSIONS: Our results suggest that probiotic supplementation may alleviate seizure severity and exert neuroprotective effects by reducing neuroinflammation and oxidative stress and altering the expression of neurotrophins in epileptogenic brains.


Assuntos
Pentilenotetrazol , Probióticos , Ratos , Masculino , Humanos , Animais , Pentilenotetrazol/toxicidade , Pentilenotetrazol/uso terapêutico , Ratos Wistar , Interleucina-6 , Fator de Necrose Tumoral alfa , Fator de Crescimento Neural/efeitos adversos , Convulsões/terapia , Convulsões/tratamento farmacológico , Probióticos/farmacologia , Probióticos/uso terapêutico , Suplementos Nutricionais , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças
11.
Neurochem Res ; 47(12): 3792-3804, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36287300

RESUMO

Hyssopus officinalis L. is one of the most important medicinal plants in traditional medicine used to treat seizures. In this study, we assessed the effects of H. officinalis hydroalcoholic extract against pentylenetetrazol (PTZ)-induced seizures in rat. The anti-seizure activity of the extract was assessed in three doses of 25, 50, and 100 mg/kg. Kindling was induced by intraperitoneal injection of PTZ (35 mg/kg) every 48 h, and H. officinalis extract was administered daily and behavioral tests performed. The possible involvement of GABA receptors in the extract activity was investigated using flumazenil. Tonic seizure threshold and mortality rate were measured following intraperitoneal injection of 60 mg/kg PTZ on the 14th day, following 14 days administration of H. officinalis hydroalcoholic extract. Blood and hippocampus samples were prepared to measure brain and serum antioxidant capacity, malondialdehyde (MDA), and nitric oxide (NO). Finally, the expression of GABA receptor gene in brain tissue was investigated. H. officinalis extract increased tonic seizure threshold and decreased mortality due to PTZ. Flumazenil, as a GABA receptor antagonist, reduced the tonic seizure threshold. Extract treatment significantly improved memory and learning, increased brain antioxidant capacity, decreased brain MDA and NO in kindled rats. It also increased GABA receptor gene expression in pre-treated groups compared to the negative control group. H. officinalis extract probably exerts potential antiepileptic effects through the GABAergic system. Also, H. officinalis extract has a supportive effect against hippocampal neuronal damage and improves memory and learning in kindled rats.


Assuntos
Excitação Neurológica , Pentilenotetrazol , Animais , Ratos , Pentilenotetrazol/toxicidade , Hyssopus , Antioxidantes/farmacologia , Flumazenil/farmacologia , Flumazenil/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Óxido Nítrico/metabolismo , Óleos de Plantas/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Receptores de GABA
12.
BMC Complement Med Ther ; 22(1): 81, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313886

RESUMO

BACKGROUND: Convulsive status epilepticus (CSE) prevention is critical for pediatric patients with epilepsy. Immediate intervention before CSE reduce severity. Despite its wide usage as an anticonvulsant, valproic acid (VPA) results in harmful side effects such as dose-dependent hepatotoxicity. Hence, reducing VPA dosage to minimize side effects while maintaining its efficacy is necessary, and transcranial photobiomodulation (tPBM) add-on therapy could facilitate this. We recently demonstrated for the first time that tPBM at a wavelength of 808 nm attenuated CSE in peripubertal rats. However, the effects of VPA with the add-on therapy of tPBM prior to seizures have not yet been explored. This study investigated whether adding tPBM to VPA exerts synergistic effect for CSE prevention in peripubertal rats. METHODS: A gallium-aluminum-arsenide laser (wavelength of 808 nm with an exposure duration of 100 s and irradiance of 1.333 W/cm2 at the target) was applied transcranially 30 min after VPA injection in Sprague Dawley rats. All the rats received 90 mg/kg of pentylenetetrazole (PTZ). Except for the saline (n = 3), tPBM + saline (n = 3), and PTZ group (n = 6), all the rats received a PTZ injection 30 min after VPA injection. The rats received add-on tPBM with PTZ immediately after tPBM. In the VPA + PTZ group, the rats received low-dose (100 mg/kg, n = 6), medium-dose (200 mg/kg, n = 6), and high-dose (400 mg/kg, n = 7) VPA. In the VPA + tPBM + PTZ group, the rats received low (100 mg/kg, n = 5), medium (200 mg/kg, n = 6), and high (400 mg/kg, n = 3) doses of VPA. Seizures were evaluated according to the revised Racine's scale in a non-blinded manner. RESULTS: Adding tPBM to low-dose VPA reduced the incidence of severe status epilepticus and significantly delayed the latency to stage 2 seizures. However, adding tPBM to high-dose VPA increased the maximum seizure stage, prolonged the duration of stage 4-7 seizures, and shortened the latency to stage 6 seizures. CONCLUSIONS: Adding tPBM to low-dose VPA exerted a synergistic prevention effect on PTZ-induced seizures, whereas adding tPBM to high-dose VPA offset the attenuation effect.


Assuntos
Pentilenotetrazol , Ácido Valproico , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Humanos , Pentilenotetrazol/uso terapêutico , Pentilenotetrazol/toxicidade , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Ácido Valproico/efeitos adversos
13.
Environ Sci Pollut Res Int ; 29(32): 48573-48587, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35194715

RESUMO

Epilepsy is one of the most common serious brain disorders, affecting about 1% of the population all over the world. Ginkgo biloba extract (GbE) and L-carnitine (LC) reportedly possess the antioxidative activity and neuroprotective potential. In this report, we investigated the possible protective and therapeutic effects of GbE and LC against pentylenetetrazol (PTZ)-induced epileptic seizures in rat hippocampus and hypothalamus. Adult male albino rats were equally divided into eight groups: control, GbE (100 mg/kg), LC (300 mg/kg), PTZ (40 mg/kg), protective groups (GbE + PTZ and LC + PTZ), and therapeutic groups (PTZ + GbE and PTZ + LC). The oxidative stress, antioxidant, and neurochemical parameters, viz., malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), acetylcholine esterase (AchE), dopamine (DA), norepinephrine (NE), and serotonin (5-HT), in the hippocampal and hypothalamic regions have been evaluated. PTZ injection leads to an increase in the seizure score, the levels of MDA and NO, and to a decrease in the activity of GSH, SOD, CAT, and GPx. Besides, monoamine neurotransmitters, DA, NE, and 5-HT, were depleted in PTZ-kindled rats. Furthermore, PTZ administration caused a significant elevation in the activity of AchE. Hippocampal and hypothalamic sections from PTZ-treated animals were characterized by severe histopathological alterations and, intensely, increased the ezrin immunolabeled astrocytes. Pre- and post-treatment of PTZ rats with GbE and LC suppressed the kindling acquisition process and remarkably alleviated all the aforementioned PTZ-induced effects. GbE and LC have potent protective and therapeutic effects against PTZ-induced kindling seizures via the amelioration of oxidative/antioxidative imbalance, neuromodulatory, and antiepileptic actions.


Assuntos
Epilepsia , Pentilenotetrazol , Animais , Masculino , Antioxidantes/metabolismo , Carnitina/farmacologia , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/patologia , Ginkgo biloba , Glutationa Peroxidase , Estresse Oxidativo , Pentilenotetrazol/uso terapêutico , Pentilenotetrazol/toxicidade , Extratos Vegetais/uso terapêutico , Serotonina/metabolismo , Superóxido Dismutase/metabolismo , Ratos
14.
J Ethnopharmacol ; 284: 114763, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34688800

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants are used to manage and treat epilepsy in Malawi because of traditional beliefs and barriers to conventional anti-seizure drugs. Among the plants prescribed by traditional medical practitioners are Margaritaria discoidea, Dalbergia boehmii, Dalbergia nitidula, Catunaregam spinosa, and Lannea discolor. Despite the wide use of these plants, there is a lack of scientific evidence to support their anti-seizure efficacy. AIM OF THE STUDY: This study used the pentylenetetrazole (PTZ)-induced larval zebrafish seizure model to screen for anti-seizure effects of a collection of medicinal plants traditionally used in Malawi. MATERIALS AND METHODS: Zebrafish larvae were incubated in decoctions at maximum tolerated concentrations for 18 h and exposed to PTZ. As a primary screen, the effects of the decoctions on seizure-induced locomotor activity were determined. Decoctions that significantly reduced total distance traveled were further checked for effects on seizure latency and frequency, brain activity, immediate early gene expression, and c-fos protein expression. RESULTS: M. discoidea male leaves, D. boehmii roots, and D. nitidula leaves showed significant anti-seizure effects in the primary screen and were selected for further study. Electrophysiological and immediate early gene analyses corroborated anti-seizure effect of D. boehmii and D. nitidula. The results of c-fos protein expression further suggested that the anti-seizure effects in the larval brain may be mediated by the suppression of neurons localized in midbrain regions. CONCLUSIONS: These findings provide pioneering scientific evidence of the presence of anti-seizure activity in M. discoidea, D. boehmii, and D. nitidula, prescribed by traditional Malawian medical practitioners. Further studies are needed to identify and isolate compounds responsible for such biological activities and elucidate the possible mechanisms of action.


Assuntos
Anticonvulsivantes/uso terapêutico , Pentilenotetrazol/toxicidade , Extratos Vegetais/uso terapêutico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Animais , Larva/efeitos dos fármacos , Malaui , Medicinas Tradicionais Africanas , Extratos Vegetais/química , Folhas de Planta/química , Raízes de Plantas/química , Plantas Medicinais , Peixe-Zebra
15.
Neurosci Lett ; 758: 136002, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34090938

RESUMO

BACKGROUND: Epilepsy is a common neurological disease that cannot be well controlled by existing antiepileptic drugs. Studies have implicated oxidative stress and inflammation in the pathophysiology of epilepsy. Rhein has a comprehensive pharmacological function in reducing inflammation and can play a neuroprotective role in many neurological diseases, however little is known about its effects on epilepsy. METHODS: A model of acute epilepsy in mice was established using the Pentylenetetrazol (PTZ) ignition method to evaluate the effects of Rhein on the duration and latency of convulsions, and the number and severity of seizures. Modified Neurological Severity Score (mNSS), Rotarod and open-field behavioral task tests were performed to evaluate the neuroprotective effect of Rhein. TUNEL staining was used to assess neuronal damage, and western blot, qPCR and ELISA kits were utilized to determine the expression of inflammatory signaling protein molecules and levels of inflammatory cytokines. RESULTS: In this study, we demonstrate that Rhein delayed the onset of seizures, decreased their severity, and reduced the duration and frequency of seizures in PTZ-induced epileptic mice. Furthermore, we found that Rhein blocked neurological deficits induced by PTZ. In addition, our results show that Rhein inhibited the activation of the TLR4-NFκB signaling pathway and decreased the secretion of the inflammatory cytokines TNF-α, IL-6, IL-1ß, and IL-18. CONCLUSION: Our results suggest that the anticonvulsant and neuroprotective effects of Rhein are achieved by disrupting the processes involved in PTZ acquisition of epilepsy.


Assuntos
Antraquinonas/farmacologia , Epilepsia/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Antraquinonas/uso terapêutico , Citocinas/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Epilepsia/induzido quimicamente , Epilepsia/diagnóstico , Epilepsia/imunologia , Humanos , Masculino , Camundongos , NF-kappa B/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Pentilenotetrazol/administração & dosagem , Pentilenotetrazol/toxicidade , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Receptor 4 Toll-Like
16.
J Ethnopharmacol ; 275: 114142, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33910044

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cymbopogon citratus (DC.) Stapf (C. citratus) is consumed as an infusion in folk medicine due to its pharmacological properties and action in the central nervous system. Epilepsy is a neurological disorder that affects millions of people. Since the currently available antiepileptic drugs often cause undesirable side effects, new alternative therapeutic strategies based on medicinal plants have been proposed. AIM OF THE STUDY: This study aimed to investigate the anticonvulsant and neuroprotective effects of C. citratus essential oil (EO) and hydroalcoholic extract (E1) from its leaves, as well as of its related compounds citral (CIT) and geraniol (GER) against the effects of pentylenetetrazole (PTZ) induced seizures in zebrafish (Danio rerio). MATERIALS AND METHODS: To evaluate the anticonvulsant properties of the samples, adult animals were pre-treated (by immersion) and subsequently exposed to PTZ solution. The involvement of GABAA receptors in the antiepileptic effects was investigated by the coadministration of flumazenil (FMZ), a known GABAA receptor antagonist. Oxidative stress markers malondialdehyde (MDA), glutathione (GSH), catalase (CAT) and nitric oxide (NO) were assessed in zebrafish brain homogenates after PTZ exposure. RESULTS: All samples increased the latency time for the first seizure, which was reduced when animals were pretreated with FMZ, suggesting the involvement of GABAA receptors in the observed properties. The association between CIT and GER at the lowest concentration studied showed a synergistic effect on the anticonvulsant activity. Decreases in MDA and NO levels and increases in GSH and CAT levels in the brain of treated animals suggested the neuroprotective effect of the compounds investigated. CONCLUSIONS: Our results proved that C. citratus EO, E1, CIT and GER have anticonvulsant effects in zebrafish and could be used as a promising adjuvant therapeutic strategy for epilepsy treatment. Furthermore, zebrafish demonstrated to be an alternative animal model of epilepsy to evaluate the anticonvulsant and neuroprotective effects of C. citratus.


Assuntos
Monoterpenos Acíclicos/farmacologia , Anticonvulsivantes/farmacologia , Cymbopogon/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Convulsões/tratamento farmacológico , Monoterpenos Acíclicos/uso terapêutico , Animais , Anticonvulsivantes/uso terapêutico , Química Encefálica/efeitos dos fármacos , Catalase/metabolismo , Modelos Animais de Doenças , Flumazenil/farmacologia , Flumazenil/uso terapêutico , Glutationa/metabolismo , Malondialdeído/metabolismo , Medicina Tradicional , Fármacos Neuroprotetores/uso terapêutico , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Pentilenotetrazol/toxicidade , Extratos Vegetais/uso terapêutico , Folhas de Planta , Receptores de GABA-A/metabolismo , Convulsões/induzido quimicamente , Peixe-Zebra
17.
J Ethnopharmacol ; 272: 113955, 2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-33610704

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: The decoction from the stem bark of Psychotria camptopus (Rubiaceae) is used in the Cameroonian pharmacopoeia to treat neurological pathologies including epilepsy. AIM: The present work was undertaken to study the anticonvulsant properties of the aqueous (AE) and methanol (ME) extracts from the stem bark of P. camptopus in acute models of epileptic seizures in Wistar rats. METHOD: AE and ME were obtained by decoction and maceration of the stem bark powder in water and methanol, respectively. They were tested orally at the doses of 40, 80 and 120 mg/kg, on the latency of onset and duration of epileptic seizures induced by pentylene tetrazole (PTZ, 70 mg/kg, i.p.). The kinetic effect of both extracts at 120 mg/kg was evaluated. Their effects on diazepam (50 mg/kg) induced sleep and strychnine (STR, 2.5 mg/kg, i.p.) induced seizures were determined. ME was further tested on picrotoxin (PIC, 7.5 mg/kg, i.p.) and thiosemicarbazide (TSC, 50 mg/kg, i.p.) induced seizure models. The phytochemical composition of ME was assessed using LC-MS method, as well as its acute toxicity. RESULTS: AE and ME significantly (p < 0.001) reduced the duration of seizures in both PTZ and STR models. Their maximal effect was observed at 1 h after administration, though their effect at 120 mg/kg was maintained (p < 0.05) up to 24 h post-treatment. Both extracts significantly (p < 0.01) reduced sleep duration. ME significantly (p < 0.001) increased the latency of rat death on PIC-induced convulsions. In TSC rats, ME significantly (p < 0.001) delayed the latency to the first convulsion, and decreased the duration and frequency of convulsions. ME showed no acute toxicity while its phytochemical screening revealed the presence of two flavonoids (Rutin and Butin), two triterpenoid saponins (Psycotrianoside B and Bauerenone) and four alkaloids (10-Hydroxy-antirhine, 10-hydroxy-iso-deppeaninol, Emetine and Hodkinsine). In conclusion, AE and ME from the stem bark of P. camptopus have comparable anticonvulsant properties. The effect of ME is likely due to the presence of flavonoids and alkaloid and the activation of GABA pathway. These results further justify and support the use of P. camptopus in traditional medicine for the treatment of epilepsy.


Assuntos
Anticonvulsivantes/farmacologia , Epilepsia/tratamento farmacológico , Extratos Vegetais/farmacologia , Psychotria/química , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/toxicidade , Comportamento Animal/efeitos dos fármacos , Diazepam/farmacologia , Diazepam/uso terapêutico , Modelos Animais de Doenças , Epilepsia/induzido quimicamente , Metanol/química , Camundongos , Pentilenotetrazol/toxicidade , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Picrotoxina/toxicidade , Casca de Planta/química , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Caules de Planta/química , Ratos Wistar , Convulsões/induzido quimicamente , Semicarbazidas/toxicidade , Sono/efeitos dos fármacos , Latência do Sono/efeitos dos fármacos , Estricnina/toxicidade , Água/química
18.
J Ethnopharmacol ; 271: 113866, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33485978

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ruta chalepensis L. (Rutaceae) is used in traditional medicine to treat a wide variety of disorders such as rheumatism, fever, mental disorders, dropsy, neuralgia, menstrual problems, anxiety, and epilepsy. AIM OF THE STUDY: To evaluate and compare the anticonvulsant properties of an aqueous extract and ethyl acetate (AcOEt) fraction of R. chalepensis on pentylenetetrazole (PTZ)-induced seizures and maximal electroshock (MES) test in mice, by analyzing behavior and electroencephalogram (EEG), as well as GABAA receptors involvement. METHODS: The effect of an acute administration of different dosage of the aqueous extract (300 or 500 mg/kg) or AcOEt fraction (100, 300, 500 or 1000 mg/kg) of R. chalepensis was explored on two different models of acute seizure induction in mice, the PTZ and maximal electroshock (MES) tests. Behavioral and electrographic effects were quantified. Additionally, the possible involvement of the GABAA receptors was explored in the presence of picrotoxin (a non-competitive antagonist of the GABAA receptor). RESULTS: AcOEt fraction of R. chalepensis was more efficient than aqueous extract to reduce the incidence of tonic-clonic seizures and mortality in a significant and dose-dependent manner in both the PTZ and MES tests. This anticonvulsant effect was not abolished in the presence of picrotoxin. The EEG spectral power analysis revealed that aqueous extract decreased alpha and beta power, while AcOEt fraction decreased alpha and gamma power confirming previous findings of its depressant effect in the central nervous system. It is important to mention that the highest dosage of the AcOEt (1000 mg/kg) produced a severe suppression or isoelectric EEG activity (EEG flattening), recognized as a comatose state, suggesting a neurotoxic effect at this dosage. CONCLUSION: Our data reinforce that depressant and anticonvulsant effects of R. chalepensis depend in part on the presence of constituents from medium polarity. We also found that anticonvulsant effect is not mediated by GABAA receptors. In addition, cautious is emphasized when high doses of this natural product are used in traditional medicine since it might produce neurotoxic effects.


Assuntos
Anticonvulsivantes/farmacologia , Anticonvulsivantes/toxicidade , Epilepsia/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Ruta/química , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Eletrochoque/efeitos adversos , Epilepsia/induzido quimicamente , Masculino , Medicina Tradicional , Camundongos , Mortalidade , Pentilenotetrazol/toxicidade , Picrotoxina/farmacologia , Picrotoxina/uso terapêutico , Extratos Vegetais/uso terapêutico , Convulsões/induzido quimicamente
19.
Exp Brain Res ; 239(2): 591-599, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33385251

RESUMO

Recent studies have shown that natural antioxidant compounds have positive effects on the nervous system. Lycopene, the red pigment in tomatoes, is one of the potent natural antioxidants, and is used as supplementation because of its well-known health benefits. However, its effect on epileptic seizures and underlying mechanisms are still unclear. In this study, it was aimed to investigate the effect of lycopene on pentylenetetrazole-induced epileptic seizures in rats and to elucidate the nitric oxide pathway in this effect. In this study, thirty male Wistar albino rats were used. Animals were divided into five groups (n = 6 for each group) as control, saline (1 mL/kg/day serum physiologic), positive control (2 mg/kg/day diazepam), and lycopene (5 and 10 mg/kg/day) for ten days. Pentylenetetrazole (45 mg/kg) was given to induce a seizure in the tenth day except for the control. Passive avoidance test was carried out to evaluate memory function. Inducible nitric oxide synthase (iNOS), neuronal nitric oxide synthase (nNOS), and nitric oxide (NO) levels were measured in the cortex and hippocampal brain regions using the ELISA kits. Lycopene supplementation prolonged epileptic seizure onset times and reduced seizure stages. Besides, lycopene supplementation improved memory impairment after seizures. Moreover, lycopene significantly reduced the level of iNOS, nNOS, and NO in the brain. Lycopene supplementation significantly alleviated seizures and memory impairment. Its anticonvulsive effect could be associated with the nitric oxide pathway. Lycopene supplementation could be useful as a supportive therapeutic agent in epileptic patients.


Assuntos
Anticonvulsivantes , Pentilenotetrazol , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Suplementos Nutricionais , Humanos , Licopeno/uso terapêutico , Masculino , Óxido Nítrico/uso terapêutico , Pentilenotetrazol/uso terapêutico , Pentilenotetrazol/toxicidade , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
20.
J Ethnopharmacol ; 270: 113784, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33429032

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Centella asiatica (CA) is commonly used herbal medicine for treatment of epilepsy. CA has CYP2C9, CYP2D6 and CYP3A4 enzymes inhibition property and used as an adjuvant therapy with conventional antiepileptic drugs (AEDs). That may be responsible for herb-drug interaction. AIM OF THE STUDY: The present study was planned to evaluate interactions profile of hydroalcoholic extract Centella asiatica (HECA) with antiepileptic drugs in experimental models of epilepsy in rats. MATERIALS AND METHODS: Wistar rats (175-200 g) were used. In the pharmacodynamic interaction study, seizures were induced using pentylenetetrazole (PTZ) (60 mg/kg, i.p.) and maximal electroshock seizure (MES) (70 mA for 0.2 s). The therapeutic and sub-therapeutic doses of valproate (VPA) and phenytoin (PHT) were co-administrated with HECA in PTZ and MES model of seizures respectively. Behavioural parameters were assessed using elevated plus maze test and passive avoidance paradigm. Rat brain oxidative stress parameters were also assessed. In the pharmacokinetic interaction study, the serum levels of the VPA and PHT were estimated at different time intervals by HPLC and pharmacokinetic parameters were analyzed by WinNonlin software. RESULTS: The VPA and PHT produced complete protection against seizures in their therapeutic doses but not with sub-therapeutic doses. However, co-administration of HECA with a sub-therapeutic dose of VPA and PHT enhanced the protection of seizures and significantly (p < 0.001) attenuated the seizure induced oxidative stress and cognitive impairment. It also significantly increased (p < 0.001) serum levels of VPA and PHT. The alterations in pharmacokinetic parameters (maximum serum concentration, area under the curve, clearance) of AEDs were also found with co-administration of HECA. CONCLUSION: The results suggested that co-administration of HECA could improve the therapeutic efficacy of VPA and PHT. But, alteration in pharmacokinetic parameters revel that needs critical medical supervision to avoid any toxic reactions.


Assuntos
Anticonvulsivantes/farmacologia , Centella/química , Epilepsia/tratamento farmacológico , Interações Ervas-Drogas , Fenitoína/farmacologia , Extratos Vegetais/farmacologia , Ácido Valproico/farmacologia , Adjuvantes Farmacêuticos/química , Adjuvantes Farmacêuticos/farmacocinética , Adjuvantes Farmacêuticos/farmacologia , Animais , Anticonvulsivantes/sangue , Anticonvulsivantes/farmacocinética , Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Inibidores das Enzimas do Citocromo P-450/farmacologia , Modelos Animais de Doenças , Eletrochoque/efeitos adversos , Epilepsia/induzido quimicamente , Glutationa/metabolismo , Malondialdeído/metabolismo , Ayurveda , Metanol/química , Estresse Oxidativo/efeitos dos fármacos , Pentilenotetrazol/toxicidade , Fenitoína/sangue , Fenitoína/farmacocinética , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Folhas de Planta/química , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Ácido Valproico/sangue , Ácido Valproico/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA