Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurogastroenterol Motil ; 36(5): e14779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488234

RESUMO

BACKGROUND: Gastric motility disorder is an increasingly common problem among people with diabetes. Neurotransmitters have been recognized as critical regulators in the process of gastric motility. Previous study has shown that herb pair huanglian-banxia (HL-BX) can improve gastric motility, but the underlying mechanism is still unclear. The aim of this study was to further investigate the role of HL-BX in modulating brain-gut neurotransmission to promote gastric motility in diabetic rats, and to explore its possible mechanism. METHODS: The diabetic rats were divided into five groups. Gastric emptying rate, intestinal propulsion rate, body weight, and average food intake were determined. Substance P (SP), 5- hydroxytryptamine (5-HT), and glucagon-like peptide -1 (GLP-1) in the serum were measured by enzyme-linked immunosorbent assay. Dopamine (DA) and norepinephrine (NE) in the brain were analyzed by high-pressure liquid chromatography with a fluorescence detector. Protein expression of the tissues in the stomach and brain was determined by Western blot. KEY RESULTS: HL-BX reduced average food intake significantly, increased body weight, and improved gastric emptying rate and intestinal propulsion rate. HL-BX administration caused a significant increase in SP, GLP-1, and 5-HT, but a significant decrease in DA and NE. Interestingly, HL-BX regulated simultaneously the different expressions of MAPK and its downstream p70S6K/S6 signaling pathway in the stomach and brain. Moreover, berberine exhibited a similar effect to HL-BX. CONCLUSIONS: These results indicated that HL-BX promoted gastric motility by regulating brain-gut neurotransmitters through the MAPK signaling pathway. HL-BX and MAPK provide a potential therapeutic option for the treatment of gastroparesis.


Assuntos
Diabetes Mellitus Experimental , Medicamentos de Ervas Chinesas , Motilidade Gastrointestinal , Sistema de Sinalização das MAP Quinases , Animais , Masculino , Ratos , Encéfalo/metabolismo , Eixo Encéfalo-Intestino/fisiologia , Diabetes Mellitus Experimental/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Motilidade Gastrointestinal/fisiologia , Motilidade Gastrointestinal/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Neurotransmissores/metabolismo
2.
Am J Chin Med ; 52(1): 253-274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351702

RESUMO

Berberine (BBR) is a principal component of Rhizoma coptidis known for its therapeutic potential in treating diseases such as type 2 diabetes mellitus (T2DM) and obesity. Despite the trace levels of BBR in plasma, it's believed that its metabolites play a pivotal role in its biological activities. While BBR is recognized to promote GLP-1 production in intestinal L cells, the cytoprotective effects of its metabolites on these cells are yet to be explored. The present study investigates the effects of BBR metabolites on GLP-1 secretion and the underlying mechanisms. Our results revealed that, out of six BBR metabolites, berberrubine (BBB) and palmatine (PMT) significantly increased the production and glucose-stimulated secretion of GLP-1 in GLUTag cells. Notably, both BBB and PMT could facilitate GLP-1 and insulin secretion and enhance glucose tolerance in standard mice. Moreover, a single dose of PMT could markedly increase plasma GLP-1 and improve glucose tolerance in mice with obesity induced by a high-fat diet. In palmitic acid or TNF[Formula: see text]-treated GLUTag cells, BBB and PMT alleviated cell death, oxidative stress, and mitochondrial dysfunction. Furthermore, they could effectively reverse inflammation-induced inhibition of the Akt signaling pathway. In general, these insights suggest that the beneficial effects of orally administered BBR on GLP-1 secretion are largely attributed to the pharmacological activity of BBB and PMT by their above cytoprotective effects on L cells, which provide important ideas for stimulating GLP-1 secretion and the treatment of T2DM.


Assuntos
Berberina , Diabetes Mellitus Tipo 2 , Doenças Mitocondriais , Camundongos , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Glucose , Obesidade/metabolismo , Estresse Oxidativo , Doenças Mitocondriais/tratamento farmacológico
3.
Br J Nutr ; 131(10): 1730-1739, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38287700

RESUMO

The aim of this study was to assess whether adding Ca2+ to aggregate or native forms of ß-lactoglobulin alters gut hormone secretion, gastric emptying rates and energy intake in healthy men and women. Fifteen healthy adults (mean ± sd: 9M/6F, age: 24 ± 5 years) completed four trials in a randomised, double-blind, crossover design. Participants consumed test drinks consisting of 30 g of ß-lactoglobulin in a native form with (NATIVE + MINERALS) and without (NATIVE) a Ca2+-rich mineral supplement and in an aggregated form both with (AGGREG + MINERALS) and without the mineral supplement (AGGREG). Arterialised blood was sampled for 120 min postprandially to determine gut hormone concentrations. Gastric emptying was determined using 13C-acetate and 13C-octanoate, and energy intake was assessed with an ad libitum meal at 120 min. A protein × mineral interaction effect was observed for total glucagon-like peptide-1 (GLP-1TOTAL) incremental AUC (iAUC; P < 0·01), whereby MINERALS + AGGREG increased GLP-1TOTAL iAUC to a greater extent than AGGREG (1882 ± 603 v. 1550 ± 456 pmol·l-1·120 min, P < 0·01), but MINERALS + NATIVE did not meaningfully alter the GLP-1 iAUC compared with NATIVE (1669 ± 547 v. 1844 ± 550 pmol·l-1·120 min, P = 0·09). A protein × minerals interaction effect was also observed for gastric emptying half-life (P < 0·01) whereby MINERALS + NATIVE increased gastric emptying half-life compared with NATIVE (83 ± 14 v. 71 ± 8 min, P < 0·01), whereas no meaningful differences were observed between MINERALS + AGGREG v. AGGREG (P = 0·70). These did not result in any meaningful changes in energy intake (protein × minerals interaction, P = 0·06). These data suggest that the potential for Ca2+ to stimulate GLP-1 secretion at moderate protein doses may depend on protein form. This study was registered at clinicaltrials.gov (NCT04659902).


Assuntos
Cálcio da Dieta , Estudos Cross-Over , Ingestão de Energia , Esvaziamento Gástrico , Peptídeo 1 Semelhante ao Glucagon , Lactoglobulinas , Humanos , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Masculino , Feminino , Adulto , Método Duplo-Cego , Adulto Jovem , Lactoglobulinas/metabolismo , Cálcio da Dieta/administração & dosagem , Suplementos Nutricionais , Período Pós-Prandial , Cálcio/metabolismo
4.
Peptides ; 173: 171138, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147963

RESUMO

The hypothalamic neuropeptides linked to appetite and satiety were investigated in obese mice treated with cotadutide (a dual receptor agonist of glucagon-like peptide 1 (GLP-1R)/Glucagon (GCGR)). Twelve-week-old male C57BL/6 mice were fed a control diet (C group, n = 20) or a high-fat diet (HF group, n = 20) for ten weeks. Each group was further divided, adding cotadutide treatment and forming groups C, CC, HF, and HFC for four additional weeks. The hypothalamic arcuate neurons were labeled by immunofluorescence, and protein expressions (Western blotting) for neuropeptide Y (NPY), proopiomelanocortin (POMC), agouti-related protein (AgRP), and cocaine- and amphetamine-regulated transcript (CART). Cotadutide enhanced POMC and CART neuropeptides and depressed NPY and AGRP neuropeptides. In addition, gene expressions (RT-qPCR) determined that Lepr (leptin receptor) and Calcr (calcitonin receptor) were diminished in HF compared to C but enhanced in CC compared to C and HFC compared to HF. Besides, Socs3 (suppressor of cytokine signaling 3) was decreased in HFC compared to HF, while Sst (somatostatin) was higher in HFC compared to HF; Tac1 (tachykinin 1) and Mc4r (melanocortin-4-receptor) were lower in HF compared to C but increased in HFC compared to HF. Also, Glp1r and Gcgr were higher in HFC compared to HF. In conclusion, the findings are compelling, demonstrating the effects of cotadutide on hypothalamic neuropeptides and hormone receptors of obese mice. Cotadutide modulates energy balance through the gut-brain axis and its associated signaling pathways. The study provides insights into the mechanisms underlying cotadutide's anti-obesity effects and its possible implications for obesity treatment.


Assuntos
Glucagon , Neuropeptídeos , Peptídeos , Camundongos , Animais , Masculino , Proteína Relacionada com Agouti , Glucagon/metabolismo , Camundongos Obesos , Pró-Opiomelanocortina/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Camundongos Endogâmicos C57BL , Neuropeptídeos/genética , Hipotálamo/metabolismo , Neuropeptídeo Y/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo
5.
J Agric Food Chem ; 71(43): 16125-16136, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857386

RESUMO

Wheat alkylresorcinols (ARs) consumption has been evidenced to improve obesity and its associated insulin resistance. However, the effect of ARs on glucagon-like peptide 1 (GLP-1) secretion and the underlying mechanism of action are still unclear. In this study, C57BL/6J mice were fed low-fat diet (LFD), high-fat diet (HFD), and HFD supplemented with 0.4% (w/w) ARs separately for 9 weeks. The results showed that ARs intervention significantly improved glucose homeostasis and restored the serum level of GLP-1 compared with the HFD control group. Moreover, ARs treatment alleviated HFD-induced ileal epithelium damage according to TUNEL staining, immunofluorescence, and transmission electron microscopy observation. The alleviative effect was further verified by apoptosis analysis and mitochondrial function evaluation. Furthermore, palmitic acid (PA) was administered to the intestinal secretin tumor cell line (STC-1) to clarify the protective effect of ARs on GLP-1 secretion in vitro. In consistence with the results of animal studies, ARs treatment could significantly improve GLP-1 secretion in STC-1 cells compared with PA treatment alone in a dose-dependent manner, accompanied by a reduction in apoptosis and mitochondrial dysfunction. In addition, ARs treatment notably enhanced the abundance of SCFA (short-chain fatty acid)-producing bacteria, such as Bacteroides, Bifidobacterium, and Akkermansia. The increased levels of intestinal SCFAs, such as acetic acid, propionic acid, and butyric acid, improved the expression of short-chain fatty acid receptors (FFAR3) and glucagon-like peptide-1 receptor (GLP-1R), enhancing the secretion of the intestinal hormones GLP-1. Thus, this study provides potential clinical implications of whole wheat as a dietary strategy to improve glucose homeostasis for obese populations.


Assuntos
Dieta Hiperlipídica , Hormônios Gastrointestinais , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Camundongos Obesos , Triticum/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/etiologia , Ácidos Graxos Voláteis/metabolismo , Ácido Palmítico/farmacologia , Glucose/metabolismo , Homeostase
6.
Zhen Ci Yan Jiu ; 48(8): 727-35, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37614130

RESUMO

OBJECTIVE: To observe the effect of electroacupuncture (EA) on white adipose tissue (WAT) browning by regulating central glucagon-like peptide-1 (GLP-1), so as to explore the possible central mechanisms of EA in improving obesity. METHODS: Thirty male Wistar rats were randomly divided into normal group, model group, EA group, HM3D group, and EA+HM4D group, with 6 rats in each group. The obesity rat model was obtained by feeding with high-fat diet for 8 weeks. Adeno-associated virus combined with DREADDs was injected into bilateral nucleus of solitary tract (NTS), with rAAV-GLP-1+rAAV-4D applied to the EA+HM4D group, rAAV-GLP-1+rAAV-3D applied to the HM3D group, and rAAV-GLP-1+rAAV-GFP applied to other 3 groups. After modeling, rats in the EA and EA+HM4D groups received EA treatment at bilateral "Zusanli"(ST36), "Fenglong"(ST40), "Guanyuan"(CV4) and "Zhongwan"(CV12), with successive waves (2 Hz, 1 mA) for 10 minutes, 3 times a week, for a total of 8 weeks. Body mass of rats in each group were measured before and 2, 4, 6, and 8 weeks after intervention. Abdominal and perirenal WAT mass was weighed, serum triglyceride (TG) and total cholesterol (TC) contents were detected by using automatic analyzer, and nonestesterified fatty acid (NEFA) content was detected by using colorimetric assay kit. The morphology of abdominal WAT lipid droplets was observed by HE staining. The mRNA expressions of GLP-1 in NTS, AMPK in ventromedial nucleus of hypothalamus(VMH), UCP1 and PGC-1α in subcutaneous fat were detected by real-time PCR. The protein expression levels of GLP-1, AMPK, phosphorylated-AMPK, UCP1 and PGC-1α were detected by Western blot. The activation level of GLP-1 neurons in NTS was observed by immunofluorescence. RESULTS: Compared with the normal group, abdominal WAT lipid droplets were enlarged, body weight, serum TG, TC, NEFA contents, abdominal and perirenal WAT mass, mRNA and protein expression levels of AMPK were significantly increased(P<0.01, P<0.05), while GLP-1 neurons activation level, mRNA and protein expression levels of GLP-1, UCP1 and PGC-1α, and AMPK protein phosphorylation were decreased (P<0.01) in the model group. After EA intervention, body weight at 6 and 8 weeks after intervention and other indexes mentioned above were all significantly reversed (P<0.01, P<0.05) in the EA group in comparison with those of the model group. Compared with the EA group, the HM3D group had reduced abdominal WAT lipid droplets size, decreased serum TG, TC, and NEFA contents, and protein expression level of AMPK(P<0.01, P<0.05), with increased mRNA and protein expression levels of GLP-1, UCP1 and PGC-1α, and phosphorylation level of AMPK protein(P<0.01, P<0.05), while the EA+HM4D group had enlarged abdominal WAT lipid droplets, increased body weight 6 and 8 weeks after intervention, abdominal and renal WAT mass, and NEFA content (P<0.01, P<0.05), with decreased serum TG content, activation level of GLP-1 neurons in the NTS, mRNA and protein expression levels of GLP-1, UCP1 and PGC-1α (P<0.01, P<0.05), as well as down-regulated phosphorylation of AMPK protein and mRNA (P<0.01, P<0.05). CONCLUSION: EA can effectively promote the browning of WAT, which may be related to the activation of GLP-1 neurons in the NTS, as well as the promotion of the phosphorylation of AMPK in the VMH and up-regulation of UCP1.


Assuntos
Proteínas Quinases Ativadas por AMP , Eletroacupuntura , Animais , Masculino , Ratos , Tecido Adiposo Branco , Peso Corporal , Ácidos Graxos não Esterificados , Obesidade/genética , Obesidade/terapia , Ratos Wistar , Peptídeo 1 Semelhante ao Glucagon/metabolismo
7.
Phytomedicine ; 119: 154982, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37531904

RESUMO

BACKGROUND: Obesity has emerged as a worldwide metabolic disease, given its rapid growth in global prevalence. Red ginseng extracts (RGS), one of the traditional processed products of ginseng, show the potential to improve the metabolic phenotype of obesity. However, the RGS mechanism for regulating obesity and late insulin resistance remains to be clarified. PURPOSE: This study aimed to emphasize the potential use of RGS in treatment of obesity and insulin resistance (IR) and explore the underlying mechanism affecting glucose and lipid metabolism improvements. METHODS: The role of RGS was evaluated in a high-fat diet (HFD) rodent model. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed to characterize the glucose metabolism level. The expression of lipolysis proteins and uncoupling protein-1 (UCP-1) were investigated by western blot. Glucagon-like peptide-1 (GLP-1) and apical sodium-dependent bile acid transporter (ASBT) protein expression in the intestine were determined via immunofluorescence. UPLC-Q-TOF-MS were used to detect the alterations in bile acids (BAs) levels in serum, ileum, and inguinal white adipose tissue (iWAT). In addition, intestine-specific Tgr5 knockout mice were employed to verify the efficacy of RGS in improving obesity. RESULTS: RGS treatment alleviated dietary-induced dyslipidemia and IR in obese mice in a dose-dependent manner and improved glucose and insulin tolerance, and energy expenditure. RGS treatment significantly reduced lipid deposition and induced GLP-1 secretion in the intestine of wild-type mice but not in Tgr5ΔIN obese mice. Furthermore, RGS intervention increased BA levels in serum, ileum, and iWAT. The increase of circulating BAs in mice was related to the activation of ileal TGR5 and the promotion of ASBT translocation to the plasma membrane, thus affecting BA transport. Next, the increased level of circulating BAs entered the periphery, which might facilitate lipolysis and energy consumption by activating TGR5 in iWAT. CONCLUSION: Our results demonstrated that RGS significantly alleviated HFD-induced obesity and insulin resistance in mice. RGS intervention improved glucose metabolism, promoted lipolysis, and energy metabolism by activating TGR5 in the intestine. In addition, we found that activating intestinal TGR5 facilitated the localization of ASBT to the plasma membrane, which ultimately promoted the transport of BAs to regulate metabolic phenotype.


Assuntos
Resistência à Insulina , Insulinas , Camundongos , Animais , Receptores Acoplados a Proteínas G/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Obesos , Transdução de Sinais , Obesidade/tratamento farmacológico , Glucose/metabolismo , Intestinos , Ácidos e Sais Biliares , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL
8.
Tissue Cell ; 82: 102108, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37229936

RESUMO

BACKGROUND: Glucagon-like peptide-1 (GLP-1) is an intestinally produced hormone released by the L-cells to stimulate glucose-dependent insulin release. Vine tea, a traditional Chinese medicine made from the delicate stem and leaves of Ampelopsis grossedentata, has been reported to exert antidiabetic effects; however, the role and mechanism of dihydromyricetin, the main active ingredient of vine tea, remain unclear. METHODS AND RESULTS: MTT assay was applied to detect cell viability. GLP-1 levels in the culture medium using a mouse GLP-1 ELISA kit. The level of GLP-1 in cells was examined using IF staining. NBDG assay was performed to evaluate the glucose uptake by STC-1 cells. The in vivo roles of dihydromyricetin in the diabetes mellitus mouse model were investigated. In this study, 25 µM dihydromyricetin, was found to cause no significant suppression of STC-1 cell viability. Dihydromyricetin markedly elevated GLP-1 secretion and glucose uptake by STC-1 cells. Although metformin increased GLP-1 release and glucose uptake by STC-1 cells more, dihydromyricetin further enhanced the effects of metformin. Moreover, dihydromyricetin or metformin alone significantly promoted the phosphorylation of AMPK, increased GLUT4 levels, inhibited ERK1/2 and IRS-1 phosphorylation, and decreased NF-κB levels, and dihydromyricetin also enhanced the effects of metformin on these factors. The in vivo results further confirmed the antidiabetic function of dihydromyricetin. CONCLUSION: Dihydromyricetin promotes GLP-1 release and glucose uptake by STC-1 cells and enhances the effects of metformin upon STC-1 cells and diabetic mice, which might ameliorate diabetes through improving L cell functions. The Erk1/2 and AMPK signaling pathways might be involved.


Assuntos
Diabetes Mellitus Experimental , Metformina , Animais , Metformina/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas Quinases Ativadas por AMP , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Glucose , Chá , Insulina/metabolismo
9.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175514

RESUMO

The impact that healthy aging can have on society has raised great interest in understanding aging mechanisms. However, the effects this biological process may have on the gastrointestinal tract (GIT) have not yet been fully described. Results in relation to changes observed in the enteroendocrine system along the GIT are controversial. Grape seed proanthocyanidin extracts (GSPE) have been shown to protect against several pathologies associated with aging. Based on previous results, we hypothesized that a GSPE pre-treatment could prevent the aging processes that affect the enteroendocrine system. To test this hypothesis, we treated 21-month-old female rats with GSPE for 10 days. Eleven weeks after the treatment, we analyzed the effects of GSPE by comparing these aged animals with young animals. Aging induced a greater endocrine response to stimulation in the upper GIT segments (cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1)), a decrease in the mRNA abundance of GLP-1, peptide YY (PYY) and chromogranin A (ChgA) in the colon, and an increase in colonic butyrate. GSPE-treated rats were protected against a decrease in enterohormone expression in the colon. This effect is not directly related to the abundance of microbiome or short-chain fatty acids (SCFA) at this location. GSPE may therefore be effective in preventing a decrease in the colonic abundance of enterohormone expression induced by aging.


Assuntos
Extrato de Sementes de Uva , Proantocianidinas , Ratos , Feminino , Animais , Extrato de Sementes de Uva/farmacologia , Proantocianidinas/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Colecistocinina , Ácidos Graxos Voláteis/metabolismo , Colo/metabolismo
10.
Phytomedicine ; 113: 154733, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36870307

RESUMO

BACKGROUND: Jiang-Tang-San-Huang (JTSH) pill, a traditional Chinese medicine (TCM) prescription, has long been applied to clinically treat type 2 diabetes mellitus (T2DM), while the underlying antidiabetic mechanism remains unclarified. Currently, it is believed that the interaction between intestinal microbiota and bile acids (BAs) metabolism mediates host metabolism and promotes T2DM. PURPOSE: To elucidate the underlying mechanisms of JTSH for treating T2DM with animal models. METHODS: In this study, male SD rats received high-fat diet (HFD) and streptozotocin (STZ) injection to induce T2DM and were treated with different dosages (0.27, 0.54 and 1.08 g/kg) of JTSH pill for 4 weeks; metformin was given as a positive control. Alterations of gut microbiota and BA profiles in the distal ileum were assessed by 16S ribosomal RNA gene sequencing and ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), respectively. Additionally, we conducted quantitative Real Time-PCR and western blotting to determine the mRNA and protein expression levels of intestinal farnesoid X receptor (FXR), fibroblast growth factor 15 (FGF15), Takeda G-protein-coupled receptor 5 (TGR5) and glucagon-like peptide 1 (GLP-1) as well as hepatic cytochrome P450, family 7, subfamily a, poly-peptide 1 (CYP7A1) and cytochrome P450, family 8, subfamily b, poly-peptide 1 (CYP8B1), which are involved in BAs metabolism and enterohepatic circulation. RESULTS: Here, the results revealed that JTSH treatment significantly ameliorated hyperglycaemia, insulin resistance (IR), hyperlipidaemia, and pathological changes in the pancreas, liver, kidney and intestine and reduced the serum levels of pro-inflammatory cytokines in T2DM model rats. 16S rRNA sequencing and UPLC-MS/MS showed that JTSH treatment could modulate gut microbiota dysbiosis by preferentially increasing bacteria (e.g., Bacteroides, Lactobacillus, Bifidobacterium) with bile-salt hydrolase (BSH) activity, which might in turn lead to the accumulation of ileal unconjugated BAs (e.g., CDCA, DCA) and further upregulate the intestinal FXR/FGF15 and TGR5/GLP-1 signaling pathways. CONCLUSION: The study demonstrated that JTSH treatment could alleviate T2DM by modulating the interaction between gut microbiota and BAs metabolism. These findings suggest that JTSH pill may serve as a promising oral therapeutic agent for T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Ratos , Masculino , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Cromatografia Líquida , RNA Ribossômico 16S , Ácidos e Sais Biliares/metabolismo , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Fígado/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo
11.
Int J Biol Macromol ; 224: 908-918, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283558

RESUMO

Several studies showed the efficacy of Lycium barbarum polysaccharide (LBP) in diabetic animals and patients with type 2 diabetes mellitus (T2DM). However, the mechanism of LBP in alleviating T2DM based on glucagon-like peptide 1 (GLP1) has not been suitably elucidated. GLP1 is an important peptide that plays a role in blood glucose homeostasis. Inhibition of sodium/glucose cotransporter 1 (SGLT1) can result in a net increase in GLP1 release. We found that LBP could reduce SGLT1 expression. Thus, the effects of LBP on the first- and second-phase secretion of GLP1 were systematically assessed in vitro using STC1 cells and in vivo using diabetic KKAy mice. LBP could induce the first-phase secretion of GLP1 by stimulating calcium ion influx in vitro and by inhibiting alpha-glucosidase activity in vivo. Regulation of Gcg gene expression by modulating the Wnt/ß-catenin and cAMP/Epac pathways, as well as inhibition of alpha-glucosidase activity, was responsible for the second-phase secretion of GLP1. LBP could stimulate GLP1 secretion; however, dipeptidyl peptidase 4 (DPP4) activated by LBP might offset the second-phase secretion of GLP1. Thus, we suggest considering the simultaneous use of LBP and a DPP4 inhibitor to stimulate slow, continuous GLP1 secretion. Further studies are warranted for in-depth mechanistic information.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Lycium , Camundongos , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , alfa-Glucosidases , Hipoglicemiantes/farmacologia , Lycium/metabolismo
13.
Chin J Nat Med ; 20(11): 863-872, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36427920

RESUMO

Peptide dual agonists toward both glucagon-like peptide 1 receptor (GLP-1R) and glucagon receptor (GCGR) are emerging as novel therapeutics for the treatment of type 2 diabetes mellitus (T2DM) patients with obesity. Our previous work identified a Xenopus GLP-1-based dual GLP-1R/GCGR agonist termed xGLP/GCG-13, which showed decent hypoglycemic and body weight lowering activity. However, the clinical utility of xGLP/GCG-13 is limited due to its short in vivo half-life. Inspired by the fact that O-GlcNAcylation of intracellular proteins leads to increased stability of secreted proteins, we rationally designed a panel of O-GlcNAcylated xGLP/GCG-13 analogs as potential long-acting GLP-1R/ GCGR dual agonists. One of the synthesized glycopeptides 1f was found to be equipotent to xGLP/GCG-13 in cell-based receptor activation assays. As expected, O-GlcNAcylation effectively improved the stability of xGLP/GCG-13 in vivo. Importantly, chronic administration of 1f potently induced body weight loss and hypoglycemic effects, improved glucose tolerance, and normalized lipid metabolism and adiposity in both db/db and diet induced obesity (DIO) mice models. These results supported the hypothesis that glycosylation is a useful strategy for improving the in vivo stability of GLP-1-based peptides and promoted the development of dual GLP-1R/GCGR agonists as antidiabetic/antiobesity drugs.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeo 1 Semelhante ao Glucagon , Camundongos , Animais , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores de Glucagon/agonistas , Receptores de Glucagon/uso terapêutico , Xenopus laevis/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicopeptídeos/uso terapêutico , Obesidade/tratamento farmacológico , Hipoglicemiantes/farmacologia , Peptídeos/farmacologia
14.
Life Sci ; 311(Pt A): 121141, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36341914

RESUMO

BACKGROUND AND AIMS: Although oral berberine, a natural compound extracted from the Chinese herbal medicine curcumin, has low bioavailability, it is still effective in suppressing obesity; however, the underlying mechanism is unclear. Berberine can bind to bitter-taste receptors (TAS2Rs) in intestinal endocrine secretin tumor (STC-1) cells to promote glucagon-like peptide-1 (GLP-1) secretion. Notably, TAS2Rs also exist in the tuft cells of the gut. Therefore, this study aimed to explore whether the beneficial effect of oral berberine on obesity is dependent on bitter-taste signaling in the tuft cells of the gut. METHODS AND RESULTS: Standard chow diet (SCD) or high-fat diet (HFD) was administered to C57BL/6 mice, with or without berberine (100 mg/kg, 200 mg/kg, p. o.). The PLCß2 inhibitor U73122 was used to verify whether the anti-obesity effect of berberine was dependent on the bitter-taste signaling pathway. In this study, we observed that the oral administration of berberine alleviated HFD-induced obesity in mice that U73122 partially inhibited. Both in vivo and ex vivo, berberine upregulated the release of GLP-1, promoted the proliferation of tuft cells and secretion of IL-25 in obesity via the TAS2R signaling pathway. CONCLUSIONS: Oral berberine ameliorated HFD-induced obesity through the TAS2R-IL-25 signaling pathway in tuft cells in the gut. SIGNIFICANCE: We identified and functionally characterized the TAS2Rs and Gα-gustducin/Gß1γ13 signaling pathway utilized by tuft cells in response to oral berberine in obese mice and proposed a new mechanism underlying the anti-obesity effect of berberine.


Assuntos
Berberina , Células Endócrinas , Animais , Camundongos , Berberina/farmacologia , Dieta Hiperlipídica , Células Endócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
15.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233056

RESUMO

Recent work has demonstrated the ability of the gut microbiota (GM) to alter the expression and release of gut peptides that control appetite and regulate energy homeostasis. However, little is known about the neuronal response of these hormones in germ-free (GF) animals, especially leptin, which is strikingly low in these animals. Therefore, we aimed to determine the response to exogenous leptin in GF mice as compared to conventionally raised (CONV-R) mice. Specifically, we injected and measured serum leptin in both GF and CONV-R mice and measured expression of orexigenic and anorexigenic peptides NPY, AgRP, POMC, and CART in the hypothalamus and hindbrain to examine whether the GM has an impact on central nervous system regulation of energy homeostasis. We found that GF mice had a significant increase in hypothalamic NPY and AgRP mRNA expression and a decrease in hindbrain NPY and AgRP mRNA, while mRNA expression of POMC and CART remained unchanged. Administration of leptin normalized circulating levels of leptin, GLP-1, PYY, and ghrelin, all of which were significantly decreased in GF mice. Finally, brief conventionalization of GF mice for 10 days restored the deficits in hypothalamic and hindbrain neuropeptides present in GF animals. Taken together, these results show that the GM regulates hypothalamic and hindbrain orexigenic/anorexigenic neuropeptide expression. This is in line with the role of gut microbiota in lipid metabolism and fat deposition that may contribute to excess fat in conventionalized animals under high feeding condition.


Assuntos
Microbioma Gastrointestinal , Neuropeptídeos , Proteína Relacionada com Agouti/genética , Animais , Grelina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/metabolismo
16.
Front Endocrinol (Lausanne) ; 13: 956203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187096

RESUMO

The non-absorbable disaccharide lactulose is mostly used in the treatment of various gastrointestinal disorders such as chronic constipation and hepatic encephalopathy. The mechanism of action of lactulose remains unclear, but it elicits more than osmotic laxative effects. As a prebiotic, lactulose may act as a bifidogenic factor with positive effects in preventing and controlling diabetes. In this review, we summarized the current evidence for the effect of lactulose on gut metabolism and type 2 diabetes (T2D) prevention. Similar to acarbose, lactulose can also increase the abundance of the short-chain fatty acid (SCFA)-producing bacteria Lactobacillus and Bifidobacterium as well as suppress the potentially pathogenic bacteria Escherichia coli. These bacterial activities have anti-inflammatory effects, nourishing the gut epithelial cells and providing a protective barrier from microorganism infection. Activation of peptide tyrosine tyrosine (PYY) and glucagon-like peptide 1 (GLP1) can influence secondary bile acids and reduce lipopolysaccharide (LPS) endotoxins. A low dose of lactulose with food delayed gastric emptying and increased the whole gut transit times, attenuating the hyperglycemic response without adverse gastrointestinal events. These findings suggest that lactulose may have a role as a pharmacotherapeutic agent in the management and prevention of type 2 diabetes via actions on the gut microbiota.


Assuntos
Diabetes Mellitus Tipo 2 , Lactulose , Acarbose , Anti-Inflamatórios/metabolismo , Bactérias , Ácidos e Sais Biliares , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Graxos Voláteis , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Lactulose/metabolismo , Lactulose/uso terapêutico , Laxantes/metabolismo , Lipopolissacarídeos , Peptídeos/metabolismo , Tirosina/metabolismo
17.
Mol Neurobiol ; 59(11): 6834-6856, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36048341

RESUMO

Parkinson's disease (PD) is a chronic motor disorder, characterized by progressive loss of dopaminergic neurons. Numerous studies suggest that glucagon-like peptide-1 (GLP-1) secretagogue has a neuroprotective role in PD models. The present study evaluated potential of coffee bioactive compounds in terms of their ability to bind GPR-40/43 and tested the neuroprotective effect of best candidate on rotenone-induced PD mice acting via GLP-1 release. In silico molecular docking followed by binding free energy calculation revealed that chlorogenic acid (CGA) has a strong binding affinity for GPR-40/43 in comparison to other bioactive polyphenols. Molecular dynamics simulation studies revealed stable nature of GPR40-CGA and GPR43-CGA interaction and also provided information about the amino acid residues involved in binding. Subsequently, in vitro studies demonstrated that CGA-induced secretion of GLP-1 via enhancing cAMP levels in GLUTag cells. Furthermore, in vivo experiments utilizing rotenone-induced mouse model of PD revealed a significant rise in plasma GLP-1 after CGA administration (50 mg/kg, orally for 13 weeks) with concomitant increase in colonic GPR-40 and GPR-43 mRNA expression. CGA treatment also prevented rotenone-induced motor and cognitive impairments and significantly restored the rotenone-induced oxidative stress. Meanwhile, western blot results confirmed that CGA treatment downregulated rotenone-induced phosphorylated alpha-synuclein levels by upregulating PI3K/AKT signaling and inactivating GSK-3ß through the release of GLP-1. CGA treatment ameliorated rotenone-induced dopaminergic nerve degeneration and alpha-synuclein accumulation in substantia nigra and augmented mean density of dopaminergic nerve fibers in striatum. These findings demonstrated novel biological function of CGA as a GLP-1 secretagogue. An increase in endogenous GLP-1 may render neuroprotection against a rotenone mouse model of PD and has the potential to be used as a neuroprotective agent in management of PD.


Assuntos
Ácido Clorogênico , Peptídeo 1 Semelhante ao Glucagon , Fármacos Neuroprotetores , Doença de Parkinson , Aminoácidos , Animais , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Café/química , Neurônios Dopaminérgicos/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro , Rotenona/toxicidade , Secretagogos/farmacologia , alfa-Sinucleína/metabolismo
18.
Phytomedicine ; 107: 154444, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36155217

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a major clinical and public health burden worldwide with no established pharmacological therapy. Changes in the intestinal flora and associated metabolite bile acids (BAs) have been described in NAFLD. Astragaloside IV (AS-IV) is a low drug permeability saponin with protective effects against multiple diseases. However, the specific mechanism underlying the involvement of AS-IV in the regulation of NAFLD is yet to be clarified. PURPOSE: This study aimed to investigate the effect of AS-IV on NAFLD and explore whether intestinal flora was involved. METHODS: The effect of AS-IV was evaluated on high-fat diet-fed mice. Real-time PCR, immunohistochemistry, immunofluorescence, and biochemical analyses were performed. 16S rRNA gene sequencing and UPLC-TQMS were used to determine the alterations in the intestinal flora and concentration of BAs. Fecal microbiota transplantation (FMT) and intestine-specific farnesoid X receptor (FXR) knockout were also performed. RESULTS: AS-IV treatment alleviated diet-induced metabolic impairments, particularly hepatic steatosis. These changes occurred in the setting of decreased intestinal bile salt hydrolase (BSH)-expressing flora. Further analysis showed that the reduced BSH activity increased intestinal tauro-ß-muricholic acid levels, an inhibitor of intestinal FXR. Inhibition of intestinal FXR signaling by AS-IV was accompanied by decreased expression of intestinal fibroblast growth factor 15 and subsequent hepatic FXR activation as well as increased glucagon-like peptide-1 and decreased ceramide production, all of which contribute to the inhibition of sterol regulatory element-binding protein-1c-mediated hepatic steatosis. Furthermore, intestine-specific Fxr knockout and FMT further demonstrated an FXR- and intestinal flora-dependent preventive effect of AS-IV on hepatic steatosis. CONCLUSION: These results show that the changes in intestinal flora and BAs serve an essential role in the remission of hepatic steatosis by AS-IV, thereby suggesting that AS-IV may be used as a prebiotic agent to provide viable treatment for NAFLD.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Saponinas , Animais , Ácidos e Sais Biliares/metabolismo , Ceramidas/metabolismo , Ceramidas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Fatores de Crescimento de Fibroblastos/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Intestinos , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Ribossômico 16S , Receptores Citoplasmáticos e Nucleares/metabolismo , Saponinas/metabolismo , Saponinas/farmacologia , Esteróis/metabolismo , Triterpenos
19.
Biochem Biophys Res Commun ; 629: 112-120, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116373

RESUMO

OBJECTIVE: This study intended to explore the hypoglycemic and cardioprotective effects of 8-week aerobic interval training combined with liraglutide and elucidate the underlying mechanisms. METHOD: Male Wistar rats were randomly divided into 5 groups - normal control group (CON), diabetic cardiomyopathy group (DCM), high-dose liraglutide group (DH), low-dose liraglutide group (DL), and aerobic interval training combined with liraglutide group (DLE). High-fat diet and streptozotocin (STZ) were used to induce the DCM model, and both the liraglutide administration group and combination therapy group allocated to 8 weeks of either liraglutide or liraglutide and exercise intervention. Cardiac functions were analyzed by electrocardiography. Blood biochemical parameters were measured to judge glycemic control conditions. Hematoxylin and eosin (HE) staining and Sirus red staining was used to identify cardiac morphology and collagen accumulation, respectively. Advanced glycation end products (AGEs) were determined by enzymatic methods. The mRNA expression of myocardial remodeling genes (BNP, GSK3ß, α-MHC, ß-MHC and PPARα) and the protein expression of GLP-1, GLP-1R were analyzed. RESULTS: DCM rats developed hyperglycemia, impaired cardiac function with accumulation of AGEs and collagen (P < 0.05). The development of hyperglycemia and cardiac dysfunction was significantly attenuated with all interventions, as reduced cardiac fibrosis and improved cardiac function (P < 0.05). Cardiac remodeling genes were normalized after all interventions, these positive modifications were due to increased GLP-1 and GLP-1R expression in DCM heart (P < 0.05). Liraglutide combined with AIT significantly increased the diameters of cardiomyocytes, increased the α-MHC expressionx, reduced PPARαexpression and reduced the fluctuation of blood glucose level, which showed the safety and effective of medicine combined with exercise. CONCLUSION: Liraglutide combined with AIT intervention normalized blood glucose alleviates myocardial fibrosis and improves cardiac contractile function in DCM rats, supporting the efficacy and safety of the combination therapy.


Assuntos
Cardiomiopatias Diabéticas , Hiperglicemia , Animais , Glicemia/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Amarelo de Eosina-(YS)/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Controle Glicêmico , Glicogênio Sintase Quinase 3 beta/metabolismo , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Hematoxilina/uso terapêutico , Hiperglicemia/tratamento farmacológico , Hiperglicemia/terapia , Hipoglicemiantes/farmacologia , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Masculino , Miócitos Cardíacos/metabolismo , PPAR alfa/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Estreptozocina
20.
Small ; 18(41): e2202566, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084222

RESUMO

Biopharmaceutical manufacturing requires specialized facilities and a long-range cold supply chain for the delivery of the therapeutics to patients. In order to produce biopharmaceuticals in locations lacking such infrastructure, a production process is designed that utilizes the trigger-inducible release of large quantities of a stored therapeutic protein from engineered endocrine cells within minutes to generate a directly injectable saline solution of the protein. To illustrate the versatility of this approach, it is shown that not only insulin, but also glucagon-like peptide 1 (GLP-1), nanoluciferase (NLuc), and the model biopharmaceutical erythropoietin (EPO) can be trigger-inducibly released, even when using biologically inactive insulin as a carrier. The facilitating beta cells are engineered with a controllable TRPV1-mediated Ca2+ influx that induces the fusion of cytoplasmic storage vesicles with the membrane, leading to the release of the stored protein. When required, the growth medium is exchanged for saline solution, and the system is stimulated with the small molecule capsaicin, with a hand-warming pack, or simply by using sunlight. Injection of insulin saline solution obtained in this way into a type-1 diabetes mouse model results in the regulation of blood glucose levels. It is believed that this system will be readily adaptable to deliver various biopharmaceutical proteins at remote locations.


Assuntos
Produtos Biológicos , Eritropoetina , Animais , Glicemia/metabolismo , Capsaicina , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina , Camundongos , Fragmentos de Peptídeos , Solução Salina , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA