Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Math Methods Med ; 2021: 8238833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745328

RESUMO

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality worldwide due to its asymptomatic onset and poor survival rate. This highlights the urgent need for developing novel diagnostic markers for early HCC detection. The circadian clock is important for maintaining cellular homeostasis and is tightly associated with key tumorigenesis-associated molecular events, suggesting the so-called chronotherapy. An analysis of these core circadian genes may lead to the discovery of biological markers signaling the onset of the disease. In this study, the possible functions of 13 core circadian clock genes (CCGs) in HCC were systematically analyzed with the aim of identifying ideal biomarkers and therapeutic targets. Profiles of HCC patients with clinical and gene expression data were downloaded from The Cancer Genome Atlas and International Cancer Genome Consortium. Various bioinformatics methods were used to investigate the roles of circadian clock genes in HCC tumorigenesis. We found that patients with high TIMELESS expression or low CRY2, PER1, and RORA expressions have poor survival. Besides, a prediction model consisting of these four CCGs, the tumor-node-metastasis (TNM) stage, and sex was constructed, demonstrating higher predictive accuracy than the traditional TNM-based model. In addition, pathway analysis showed that these four CCGs are involved in the cell cycle, PI3K/AKT pathway, and fatty acid metabolism. Furthermore, the network of these four CCGs-related coexpressed genes and immune infiltration was analyzed, which revealed the close association with B cells and nTreg cells. Notably, TIMELESS exhibited contrasting effects against CRY2, PER1, and RORA in most situations. In sum, our works revealed that these circadian clock genes TIMELESS, CRY2, PER1, and RORA can serve as potential diagnostic and prognostic biomarkers, as well as therapeutic targets, for HCC patients, which may promote HCC chronotherapy by rhythmically regulating drug sensitivity and key cellular signaling pathways.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , Relógios Circadianos/genética , Redes Reguladoras de Genes , Neoplasias Hepáticas/genética , Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Biologia Computacional , Criptocromos/genética , Feminino , Perfilação da Expressão Gênica/estatística & dados numéricos , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Pessoa de Meia-Idade , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Proteínas Circadianas Period/genética , Prognóstico
2.
Oxid Med Cell Longev ; 2021: 4044606, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34697563

RESUMO

Hepatocellular carcinoma (HCC) is among the most common and lethal form of cancer worldwide. However, its diagnosis and treatment are still dissatisfactory, due to limitations in the understanding of its pathogenic mechanism. Therefore, it is important to elucidate the molecular mechanisms and identify novel therapeutic targets for HCC. Circadian rhythm-related genes control a variety of biological processes. These genes play pivotal roles in the initiation and progression of HCC and are potential diagnostic markers and therapeutic targets. This review gives an update on the research progress of circadian rhythms, their effects on the initiation, progression, and prognosis of HCC, in a bid to provide new insights for the research and treatment of HCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano , Neoplasias Hepáticas/metabolismo , Animais , Antineoplásicos/administração & dosagem , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Cronofarmacoterapia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Prognóstico , Transdução de Sinais , Fatores de Tempo
3.
J Cell Mol Med ; 24(18): 11024-11029, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32767644

RESUMO

The chronopharmacology refers to the utilization of physiological circadian rhythms to optimize the administration time of drugs, thus increasing their efficacy and safety, or reducing adverse effects. Simvastatin is one of the most widely prescribed drugs for the treatment of hypercholesterolaemia, hyperlipidemia and coronary artery disease. There are conflicting statements regarding the timing of simvastatin administration, and convincing experimental evidence remains unavailable. Thus, we aimed to examine whether different administration times would influence the efficacy of simvastatin. High-fat diet-fed mice were treated with simvastatin at zeitgeber time 1 (ZT1) or ZT13, respectively, for nine weeks. Simvastatin showed robust anti-hypercholesterolaemia and anti-hyperlipidemia effects on these obese mice, regardless of administration time. However, simvastatin administrated at ZT13, compared to ZT1, was more functional for decreasing serum levels of total cholesterol, triglycerides, non-esterified free fatty acids and LDL cholesterol, as well as improving liver pathological characteristics. In terms of possible mechanisms, we found that simvastatin did not alter the expression of hepatic circadian clock gene in vivo, although it failed to change the period, phase and amplitude of oscillation patterns in Per2::Luc U2OS and Bmal1::Luc U2OS cells in vitro. In contrast, simvastatin regulated the expression of Hmgcr, Mdr1 and Slco2b1 in a circadian manner, which potentially contributed to the chronopharmacological function of the drug. Taken together, we provide solid evidence to suggest that different administration times affect the lipid-lowering effects of simvastatin.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/fisiologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Hiperlipidemias/tratamento farmacológico , Sinvastatina/farmacocinética , Animais , Cronofarmacocinética , Relógios Circadianos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/biossíntese , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Dieta Hiperlipídica/efeitos adversos , Cronofarmacoterapia , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Obesos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Distribuição Aleatória , Sinvastatina/administração & dosagem , Sinvastatina/uso terapêutico
4.
Artigo em Inglês | MEDLINE | ID: mdl-30047896

RESUMO

Biological systems are extremely dynamic and many aspects of cellular processes show rhythmic circadian patterns. Extracting such information from large expression data is challenging. In this work, we present a modified application of the Empirical Bayes periodicity test to identify genes with diurnal rhythmic behavior in two brain regions. The hypothalamus and amygdala gene expression data were generated from 100 BXD recombinant inbred mice during the day hours. Brain samples were collected over the course of two days. We first filtered the transcripts based on rank correlation at matched time points between day-1 and day-2. We then applied the proposed test of periodicity to identify diurnal rhythm genes in the full cohort and gender-specific sub-cohorts. In hypothalamus, at a Benjamini-Hochberg false discovery rate (BH-FDR) of 0.01, we identified 15 transcripts with cyclic behavior in the full cohort, none, and 53 transcripts in the female and male cohort, respectively. Similarly, in amygdala, we identified 58 diurnal rhythm genes in the full cohort, and 1 and 28 in the female and male cohorts, respectively. In conclusion, we present a modified version of the empirical Bayes periodicity test to detect periodic expression patterns. Our results demonstrate that this approach can capture cyclic patterns from relatively noisy expression data sets.


Assuntos
Encéfalo/metabolismo , Ritmo Circadiano/genética , Transcriptoma/genética , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Teorema de Bayes , Encéfalo/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/análise , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Feminino , Perfilação da Expressão Gênica , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Masculino , Camundongos
5.
Endocr J ; 67(1): 73-80, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31611477

RESUMO

Those who smoke nicotine-based cigarettes have elevated plasma levels of ghrelin, a hormone secreted from the stomach. Ghrelin has various physiological functions and has recently been shown to be involved in regulating biological rhythms. Therefore, in this study, in order to clarify the significance of the plasma ghrelin increase in smokers, we sought to clarify how nicotine and ghrelin affect the expression dynamics of clock genes using a mouse model. A single dose of nicotine administered intraperitoneally increased plasma ghrelin concentrations transiently, whereas continuous administration of nicotine with an osmotic minipump did not induce any change in the plasma ghrelin concentration. Single administration of nicotine resulted in a transient increase in ghrelin gene expression in the pancreas but not in the stomach, which is the major producer of ghrelin. In addition, in the pancreas, the expression of clock genes was also increased temporarily. Therefore, in order to clarify the interaction between nicotine-induced ghrelin gene expression and clock gene expression in the pancreas, nicotine was administered to ghrelin gene-deficient mice. Administration of nicotine to ghrelin-gene deficient mice increased clock gene expression in the pancreas. However, upon nicotine administration to mice pretreated with octanoate to upregulate ghrelin activity, expression levels of nicotine-inducible clock genes in the pancreas were virtually the same as those in mice not administered nicotine. Thus, our findings indicate that pancreatic ghrelin may suppress nicotine-induced clock gene expression in the pancreas.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/efeitos dos fármacos , Grelina/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Pâncreas/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Estômago/efeitos dos fármacos , Fatores de Transcrição ARNTL/efeitos dos fármacos , Fatores de Transcrição ARNTL/genética , Animais , Proteínas CLOCK/efeitos dos fármacos , Proteínas CLOCK/genética , Caprilatos/farmacologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Criptocromos/efeitos dos fármacos , Criptocromos/genética , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Regulação da Expressão Gênica , Grelina/genética , Grelina/metabolismo , Transportador de Glucose Tipo 2/efeitos dos fármacos , Transportador de Glucose Tipo 2/genética , Hipotálamo/metabolismo , Camundongos , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Pâncreas/metabolismo , Proteínas Circadianas Period/efeitos dos fármacos , Proteínas Circadianas Period/genética
6.
BMC Genomics ; 20(1): 879, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747875

RESUMO

BACKGROUND: Circadian rhythm, regulated by both internal and external environment of the body, is a multi-scale biological oscillator of great complexity. On the molecular level, thousands of genes exhibit rhythmic transcription, which is both organ- and species-specific, but it remains a mystery whether some common factors could potentially explain their rhythmicity in different organs. In this study we address this question by analyzing the transcriptome data in 12 mouse organs to determine such major impacting factors. RESULTS: We found a strong positive correlation between the transcriptional level and rhythmic amplitude of circadian rhythmic genes in mouse organs. Further, transcriptional level could explain over 70% of the variation in amplitude. In addition, the functionality and tissue specificity were not strong predictors of amplitude, and the expression level of rhythmic genes was linked to the energy consumption associated with transcription. CONCLUSION: Expression level is a single major factor impacts the behavior of rhythmic genes in mouse organs. This single determinant implicates the importance of rhythmic expression itself on the design of the transcriptional system. So, rhythmic regulation of highly expressed genes can effectively reduce the energetic cost of transcription, facilitating the long-term adaptive evolution of the entire genetic system.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Ritmo Circadiano/genética , Metabolismo Energético/genética , Regulação da Expressão Gênica , Transcriptoma , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Glândulas Suprarrenais/metabolismo , Animais , Aorta/metabolismo , Atlas como Assunto , Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/classificação , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Hipotálamo/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Especificidade de Órgãos
7.
Expert Rev Gastroenterol Hepatol ; 13(5): 411-424, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30874451

RESUMO

INTRODUCTION: Circadian rhythms regulate much of gastrointestinal physiology including cell proliferation, motility, digestion, absorption, and electrolyte balance. Disruption of circadian rhythms can have adverse consequences including the promotion of and/or exacerbation of a wide variety of gastrointestinal disorders and diseases. Areas covered: In this review, we evaluate some of the many gastrointestinal functions that are regulated by circadian rhythms and how dysregulation of these functions may contribute to disease. This review also discusses some common gastrointestinal disorders that are known to be influenced by circadian rhythms as well as speculation about the mechanisms by which circadian rhythm disruption promotes dysfunction and disease pathogenesis. We discuss how knowledge of circadian rhythms and the advent of chrono-nutrition, chrono-pharmacology, and chrono-therapeutics might influence clinical practice. Expert opinion: As our knowledge of circadian biology increases, it may be possible to incorporate strategies that take advantage of circadian rhythms and chronotherapy to prevent and/or treat disease.


Assuntos
Ritmo Circadiano , Gastroenteropatias/fisiopatologia , Trato Gastrointestinal/fisiopatologia , Animais , Cronoterapia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Gastroenteropatias/genética , Gastroenteropatias/metabolismo , Gastroenteropatias/terapia , Trato Gastrointestinal/metabolismo , Regulação da Expressão Gênica , Humanos , Transdução de Sinais
8.
IUBMB Life ; 71(7): 771-780, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30674076

RESUMO

The circadian clock and the ~24 h rhythms it generates are essential in maintaining regular tissue functioning. At the molecular level, the circadian clock comprises a core set of rhythmically expressed genes and gene products that are able to drive rhythmic expression of other genes to generate overt circadian rhythms. It has recently come to light that perturbations of circadian rhythms contribute to the development of pathological states such as cancer, and altered expression and/or regulation of circadian clock genes has been identified in multiple tumour types. This review summarises the important role the circadian system plays in regulating cellular processes, including the cell cycle, apoptosis, DNA repair, the epithelial-to-mesenchymal transition, metabolism and immunity and how its dysregulation has widespread implications and could be a critical player in the development of cancer. Understanding its role in cancer development is important for the field chronotherapy, where the timing of chemotherapy administration is optimised based on differences in circadian clock functioning in normal and cancer cells. This has been found to influence the patient response, minimising the side effects commonly associated with chemotherapy. © 2019 IUBMB Life, 2019.


Assuntos
Antineoplásicos/uso terapêutico , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano/fisiologia , Neoplasias/prevenção & controle , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo
9.
Chronobiol Int ; 36(1): 110-121, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30365349

RESUMO

Almost all organisms live in a fluctuating environment. To achieve synchrony with the fluctuating environment, organisms have evolved with time-tracking mechanism commonly known as biological clocks. This circadian clock machinery has been identified in almost all cells of vertebrates and categorized as central and peripheral clocks. In birds, three independent circadian clocks reside within the nervous tissues in the hypothalamus, pineal and retina, which interact with each other and produce circadian time at a functional level. There is limited knowledge available of the molecular clockwork, and of integration between central and peripheral clocks in birds. Here, we studied daily expression of canonical clock genes (Bmal1, Clock, Per2, Per3, Cry1 and Cry2) and clock-controlled gene (Npas2) in all three central tissues (hypothalamus, pineal and retina) and in peripheral tissues (liver, intestine and muscle). Wild caught adult male tree sparrows were exposed to equinox photoperiod (12L:12D) for 2 weeks and after that birds were sacrificed (N = 5 per time point) at six time points (ZT1, ZT5, ZT9, ZT13, ZT17 and ZT21; ZT0 is lights on). Daily expression of clock genes was studied using qPCR. Bmal1, Clock, Per2, Per3, Cry1, Cry2 and Npas2 showed daily oscillation in all tissues except Cry2 in hypothalamus, pineal and intestine. We observed tissue-specific expression pattern for all clock and clock-controlled genes. Bmal1 transcripts expressed during early phase of night. Clock acrophase was observed during middle or late day time in the central clock while during early-to-middle phase of night in peripheral tissues. Npas2 expression pattern was similar to Bmal1. Per genes peaked either late at night or early during day time. However, Cry genes were peaked either at late day time (Cry1in retina, liver and intestine; Cry2 in liver and intestine) or at early night phase (Cry1 in hypothalamus, pineal and muscle; Cry2 in hypothalamus, pineal, retina and muscle). Our results are consistent with the autoregulatory circadian feedback loop, and suggest a conserved tissue-level circadian time generation in tree sparrows. Change in peak expression timing of these genes in different tissues implicates tissue-specific contribution of individual clock genes in the circadian time generation.


Assuntos
Proteínas Aviárias/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Ritmo Circadiano/genética , Pardais/genética , Animais , Proteínas Aviárias/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Intestinos , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Fotoperíodo , Glândula Pineal/metabolismo , Retina/metabolismo , Transdução de Sinais , Pardais/metabolismo , Fatores de Tempo
10.
Nutrients ; 10(11)2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30423963

RESUMO

The aim of the current study was to elucidate the effects of long-term supplementation with dietary ursolic acid (UR) on obesity and associated comorbidities by analyzing transcriptional and metabolic responses, focusing on the role of UR in the modulation of the circadian rhythm pathway in particular. C57BL/6J mice were divided into three groups and fed a normal diet, high-fat diet, or high-fat + 0.05% (w/w) UR diet for 16 weeks. Oligonucleotide microarray profiling revealed that UR is an effective regulator of the liver transcriptome, and canonical pathways associated with the "circadian rhythm" and "extracellular matrix (ECM)⁻receptor interactions" were effectively regulated by UR in the liver. UR altered the expression of various clock and clock-controlled genes (CCGs), which may be linked to the improvement of hepatic steatosis and fibrosis via lipid metabolism control and detoxification enhancement. UR reduced excessive reactive oxygen species production, adipokine/cytokine dysregulation, and ECM accumulation in the liver, which also contributed to improve hepatic lipotoxicity and fibrosis. Moreover, UR improved pancreatic islet dysfunction, and suppressed hepatic gluconeogenesis, thereby reducing obesity-associated insulin resistance. Therapeutic approaches targeting hepatic circadian clock and CCGs using UR may ameliorate the deleterious effects of diet-induced obesity and associated complications such as hepatic fibrosis.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/tratamento farmacológico , Resistência à Insulina , Cirrose Hepática/tratamento farmacológico , Obesidade/tratamento farmacológico , Triterpenos/uso terapêutico , Adipocinas/metabolismo , Animais , Relógios Circadianos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/uso terapêutico , Citocinas/metabolismo , Fígado Gorduroso/metabolismo , Gluconeogênese/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Obesidade/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Receptores de Superfície Celular/metabolismo , Triterpenos/metabolismo , Triterpenos/farmacologia , Ácido Ursólico
12.
Chronobiol Int ; 35(8): 1122-1141, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29737878

RESUMO

Stress is conditioning animal welfare by negatively affecting a wide range of physiological and behavioral functions. This may be applied to circadian physiology and food intake. Cortisol, the stress-related hormone, may mediate such effect of stress, but other indirect mediators might be considered, such as sirtuin1. Then, either the independent modulatory effect or the existence of any interaction between mediators may be responsible. The circadian system is the main modulator of several integrative mechanisms at both central and peripheral levels that are rhythmically presented, thus influencing different processes such as food intake. In this way, food intake is controlled by the circadian system, as demonstrated by the persistence of such rhythms of food intake in the absence of environmental external cues. Our study aimed to evaluate the daily profile of hypothalamic mRNA abundance of circadian clock genes (clock1a, bmal1, per1 and rev-erbß-like), and food intake regulators (crf, pomc-a1, cart, and npy) in rainbow trout (Oncorhynchus mykiss), the impact of stress on such rhythms, and the involvement of cortisol and sirtuin1 as mediators. Four cohorts of trout were subjected to 1) normal stocking density (control group), 2) high stocking density for 72 hours (stress group), 3) normal stocking density and implanted with mifepristone, a glucocorticoid receptors antagonist, and 4) mifepristone administered and stressed for 72 hours. Fish from each group were sampled every 4-h along the 24-h LD cycle, and cortisol, glucose and lactate plasma levels were evaluated. Hypothalamic mRNA abundance of clock genes, food intake regulators, glucocorticoid receptors and sirtuin1 were qPCR assayed. Our results reveal the impact of stress on most of the genes assayed, but different mechanisms appear to be involved. The rhythm of clock genes displayed decreased amplitude and averaged levels in stressed trout, with no changes of the acrophase being observed. This effect was not prevented by mifepristone. On the contrary, the effect of stress on the daily profile of crf, pomc-a1, and npy was totally prevented by mifepristone administration. Accordingly, cortisol appears to mainly mediate the effect of stress on food intake regulators through binding to specific glucocorticoid receptors within trout hypothalamus, whereas sirtuin1 is apparently mediating such effects on the circadian system in the same brain region. Further research must be performed to clarify those mechanisms through which stress influences food intake and the circadian oscillator within the same brain region, hypothalamus, in rainbow trout, and the interaction among them all.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano , Ingestão de Alimentos , Proteínas de Peixes/metabolismo , Hidrocortisona/metabolismo , Hipotálamo/metabolismo , Oncorhynchus mykiss/metabolismo , Sirtuína 1/metabolismo , Estresse Psicológico/metabolismo , Animais , Comportamento Animal , Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Ingestão de Alimentos/genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Hipotálamo/fisiopatologia , Oncorhynchus mykiss/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , Fatores de Tempo
13.
Vascul Pharmacol ; 108: 1-7, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29778521

RESUMO

The master mammalian circadian clock (i.e. central clock), located in the suprachiasmatic nucleus of the hypothalamus, orchestrates the synchronization of the daily behavioural and physiological rhythms to better adapt the organism to the external environment in an anticipatory manner. This central clock is entrained by a variety of signals, the best established being light and food. However, circadian cycles are not simply the consequences of these two cues but are generated by endogenous circadian clocks. Indeed, clock machinery is found in mainly all tissues and cell types, including cells of the vascular system such as endothelial cells, fibroblasts, smooth muscle cells and stem cells. This machinery physiologically contributes to modulate the daily vascular function, and its disturbance therefore plays a major role in the pathophysiology of vascular dysfunction. Therapies targeting the circadian rhythm may therefore be of benefit against vascular disease.


Assuntos
Vasos Sanguíneos/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano , Hemodinâmica , Núcleo Supraquiasmático/metabolismo , Doenças Vasculares/metabolismo , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/fisiopatologia , Fármacos Cardiovasculares/administração & dosagem , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Cronofarmacoterapia , Regulação da Expressão Gênica , Hemodinâmica/efeitos dos fármacos , Humanos , Transdução de Sinais , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/fisiopatologia , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/genética , Doenças Vasculares/fisiopatologia
14.
Chronobiol Int ; 35(5): 617-632, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29370529

RESUMO

We investigated if the duration and/or frequency of the light period affect 24-h rhythm of circadian clock genes in central and peripheral tissues of a non-photoperiodic songbird, the spotted munia (Lonchura punctulata), in which a circannual rhythm regulates the reproductive cycle. We monitored activity-rest pattern and measured 24-h mRNA oscillation of core clock (Bmal1, Clock, Per2, Cry1 and Cry2) and clock-controlled (E4bp4, Rorα and Rev-erbα) genes in the hypothalamus, retina, liver and gut of spotted munia subjected to an aberrant light-dark (LD) cycle (3.5L:3.5D; T7, T = period length of LD cycle) and continuous light (LL, 24L:0D), with controls on 24-h LD cycle (T24, 12L:12D). Munia exhibited rhythmic activity-rest pattern with period matched to T7 or T24 under an LD cycle and were arrhythmic with a scattered activity pattern and higher activity duration under LL. At the transcriptional level, both clock and clock-controlled genes showed a significant 24-h rhythm in all four tissues (except Clock in the liver) under 12L:12D, suggesting a conserved tissue-level circadian time generation in spotted munia. An exposure to 3.5L:3.5D or LL induced arrhythmicity in transcriptional oscillation of all eight genes in the hypothalamus (except Rev-erbα) and liver (except Bmal1 and Rev-erbα under T7 and Cry1 under LL). In the retina, however, all genes showed arrhythmic 24-h mRNA expression under LL, but not under T7 (except in E4bp4 and Rorα). Interestingly, unlike in the liver, Bmal1, Per2, Cry1, Rorα and Rev-erbα mRNA expressions were rhythmic in the gut under both T7 (except Rorα) and LL conditions. These results showed variable relationship of internal circadian clocks with the external light environment and suggested a weak coupling of circadian clocks between the central (hypothalamus and retina) and peripheral (liver and gut) tissues. We suggest tissue-level circadian clock regulation of daily physiology and behavior in the spotted munia.


Assuntos
Ciclos de Atividade/genética , Proteínas Aviárias/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Ritmo Circadiano/genética , Fotoperíodo , Aves Canoras/genética , Animais , Proteínas Aviárias/metabolismo , Comportamento Animal , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Trato Gastrointestinal/metabolismo , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Fígado/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/metabolismo , Aves Canoras/metabolismo , Fatores de Tempo
15.
J Photochem Photobiol B ; 169: 13-20, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28254568

RESUMO

The avian circadian pacemaker system is comprised of independent clocks in the retina, pineal and hypothalamus, as shown by daily and circadian oscillations of core clock genes (Per2, Cry1, Bmal1 and Clock) in several birds including migratory blackheaded buntings (Emberiza melanocephala). This study investigated the extra-hypothalamic brain circadian clocks in blackheaded buntings, and measured Per2, Cry1, Cry2, Bmal1 and Clock mRNA expressions at 4h intervals over 24h beginning 1h after light-on in the left and right telencephalon, optic tectum and cerebellum, the brain regions involved in several physiological and cognitive functions. Because of seasonal alterations in the circadian clock dependent brain functions, we measured daily clock gene oscillations in buntings photoperiod-induced with the non-migratory state under short days (SDnM), and the pre-migratory (LDpM), migratory (LDM) and post-migratory (refractory, LDR) states under long days. Daily Per2 oscillations were not altered with changes in the photoperiodic states, except for about 2-3h phase difference in the optic tectum between the SDnM and LDpM states. However, there were about 3-5h differences in the phase and 2 to 4 fold change in the amplitude of daily Bmal1 and Cry1 mRNA oscillations between the photoperiod-induced states. Further, Cry2 and Clock genes lacked a significant oscillation, except in Cb (Cry2) and TeO and Rt (Clock) under LDR state. Overall, these results show the presence of circadian clocks in extra-hypothalamic brain regions of blackheaded buntings, and suggest tissue-dependent alterations in the waveforms of mRNA oscillations with transitions in the photoperiod-induced seasonal states in a long-day species.


Assuntos
Encéfalo/fisiologia , Proteínas CLOCK/genética , Relógios Circadianos/genética , Fotoperíodo , Aves Canoras/fisiologia , Migração Animal/fisiologia , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Hipotálamo/fisiologia , Periodicidade , Glândula Pineal , RNA Mensageiro , Retina/fisiologia , Estações do Ano
16.
PLoS One ; 10(6): e0129738, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26061962

RESUMO

Onset of the rapid gonad growth is a milestone in sexual development that comprises many genes and regulatory factors. The observations in model organisms and mammals including humans have shown a potential link between miRNAs and development timing. To determine whether miRNAs play roles in this process in the chicken (Gallus gallus), the Solexa deep sequencing was performed to analyze the profiles of miRNA expression in the hypothalamus of hens from two different pubertal stages, before onset of the rapid gonad development (BO) and after onset of the rapid gonad development (AO). 374 conserved and 46 novel miRNAs were identified as hypothalamus-expressed miRNAs in the chicken. 144 conserved miRNAs were showed to be differentially expressed (reads > 10, P < 0.05) during the transition from BO to AO. Five differentially expressed miRNAs were validated by real-time quantitative RT-PCR (qRT-PCR) method. 2013 putative genes were predicted as the targets of the 15 most differentially expressed miRNAs (fold-change > 4.0, P < 0.01). Of these genes, 7 putative circadian clock genes, Per2, Bmal1/2, Clock, Cry1/2, and Star were found to be targeted multiple times by the miRNAs. qRT-PCR revealed the basic transcription levels of these clock genes were much higher (P < 0.01) in AO than in BO. Further functional analysis suggested that these 15 miRNAs play important roles in transcriptional regulation and signal transduction pathways. The results provide new insights into miRNAs functions in timing the rapid development of chicken gonads. Considering the characteristics of miRNA functional conservation, the results will contribute to the research on puberty onset in humans.


Assuntos
Gônadas/crescimento & desenvolvimento , Hipotálamo/metabolismo , MicroRNAs/metabolismo , Animais , Galinhas , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Feminino , Gônadas/metabolismo , Masculino , Desenvolvimento Sexual/genética
17.
J Neurol Sci ; 341(1-2): 58-63, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24746025

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) is a cation channel that serves as a polymodal detector of noxious stimuli such as capsaicin. Therefore, capsaicin treatment has been used to investigate the physiological function of TRPV1. Here, we report physiological changes induced by treating neonatal rats with capsaicin. Capsaicin (50mg/kg) (cap-treated) or vehicle (vehicle-treated) was systemically administered to newborn SD rat pups within 48 h after birth. TRPV1 expression, intake volume of capsaicin water, and noxious heat sensation were measured 6 weeks after capsaicin treatment. Circadian body temperature and locomotion were recorded by biotelemetry. Expression of Per1, Per2, Bmal1 and Hsf1 (clock genes) was also investigated. Neonatal capsaicin treatment not only decreased TRPV1 expression but also induced desensitization to noxious heat stimuli. Circadian body temperature of cap-treated rats increased significantly compared with that of vehicle-treated rats. Additionally, the amplitude of the circadian body temperature was reversed in cap-treated rats. Expression of the hypothalamic Hsf1 and liver Per2 clock genes followed a similar trend. Therefore, we suggest that these findings will be useful in studying various physiological mechanisms related to TRPV1.


Assuntos
Temperatura Corporal/efeitos dos fármacos , Capsaicina/farmacologia , Ritmo Circadiano/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Animais , Animais Recém-Nascidos , Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Gânglios Espinais/efeitos dos fármacos , Fatores de Transcrição de Choque Térmico , Temperatura Alta , Masculino , Atividade Motora/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Canais de Cátion TRPV/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Plant Cell Environ ; 37(2): 439-50, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23889235

RESUMO

Although significant work has been undertaken regarding the response of model and crop plants to heat shock during the acclimatory phase, few studies have examined the steady-state response to the mild heat stress encountered in temperate agriculture. In the present work, we therefore exposed tuberizing potato plants to mildly elevated temperatures (30/20 °C, day/night) for up to 5 weeks and compared tuber yield, physiological and biochemical responses, and leaf and tuber metabolomes and transcriptomes with plants grown under optimal conditions (22/16 °C). Growth at elevated temperature reduced tuber yield despite an increase in net foliar photosynthesis. This was associated with major shifts in leaf and tuber metabolite profiles, a significant decrease in leaf glutathione redox state and decreased starch synthesis in tubers. Furthermore, growth at elevated temperature had a profound impact on leaf and tuber transcript expression with large numbers of transcripts displaying a rhythmic oscillation at the higher growth temperature. RT-PCR revealed perturbation in the expression of circadian clock transcripts including StSP6A, previously identified as a tuberization signal. Our data indicate that potato plants grown at moderately elevated temperatures do not exhibit classic symptoms of abiotic stress but that tuber development responds via a diversity of biochemical and molecular signals.


Assuntos
Resposta ao Choque Térmico , Solanum tuberosum/metabolismo , Temperatura , Processamento Alternativo , Carbono/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Regulação da Expressão Gênica de Plantas , Metaboloma , Oxirredução , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/fisiologia
19.
Curr Biol ; 23(23): 2365-74, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24210617

RESUMO

BACKGROUND: The cyanobacterial circadian program exerts genome-wide control of gene expression. KaiC undergoes rhythms of phosphorylation that are regulated by interactions with KaiA and KaiB. The phosphorylation status of KaiC is thought to mediate global transcription via output factors SasA, CikA, LabA, RpaA, and RpaB. Overexpression of kaiC has been reported to globally repress gene expression. RESULTS: Here, we show that the positive circadian component KaiA upregulates "subjective dusk" genes and that its overexpression deactivates rhythmic gene expression without significantly affecting growth rates in constant light. We analyze the global patterns of expression that are regulated by KaiA versus KaiC and find in contrast to the previous report of KaiC repression that there is a "yin-yang" regulation of gene expression whereby kaiA overexpression activates "dusk genes" and represses "dawn genes," whereas kaiC overexpression complementarily activates dawn genes and represses dusk genes. Moreover, continuous induction of kaiA latched KaiABC-regulated gene expression to provide constitutively increased transcript levels of diverse endogenous and heterologous genes that are expressed in the predominant subjective dusk phase. In addition to analyzing KaiA regulation of endogenous gene expression, we apply these insights to the expression of heterologous proteins whose products are of potential value, namely human proinsulin, foreign luciferase, and exogenous hydrogenase. CONCLUSIONS: Both KaiC and KaiA complementarily contribute to the regulation of circadian gene expression via yin-yang switching. Circadian patterns can be reprogrammed by overexpression of kaiA or kaiC to constitutively enhance gene expression, and this reprogramming can improve 24/7 production of heterologous proteins that are useful as pharmaceuticals or biofuels.


Assuntos
Proteínas de Bactérias/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Ritmo Circadiano/genética , Regulação Bacteriana da Expressão Gênica , Hidrogenase/metabolismo , Synechococcus/fisiologia , Proteínas CLOCK/genética , Expressão Gênica , Perfilação da Expressão Gênica , Hidrogênio/química , Hidrogenase/genética , Família Multigênica/genética , Fosforilação , Regiões Promotoras Genéticas , Synechococcus/genética , Transcrição Gênica
20.
Rev Neurol ; 57(2): 71-8, 2013 Jul 16.
Artigo em Espanhol | MEDLINE | ID: mdl-23836337

RESUMO

The incidence of obesity worldwide has become a serious, constantly growing public health issue that reaches alarming proportions in some countries. To date none of the strategies developed to combat obesity have proved to be decisive, and hence there is an urgent need to address the problem with new approaches. Today, studies in the field of chronobiology have shown that our physiology continually adapts itself to the cyclical changes in the environment, regard-less of whether they are daily or seasonal. This is possible thanks to the existence of a biological clock in our hypothalamus which regulates the expression and/or activity of enzymes and hormones involved in regulating our metabolism, as well as all the homeostatic functions. It has been observed that this clock can be upset as a result of today's modern lifestyle, which involves a drop in physical activity during the day and the abundant ingestion of food during the night, among other factors, which together promote metabolic syndrome and obesity. Hence, the aim of this review is to summarise the recent findings that show the effect that altering the circadian rhythms has on the metabolism and how this can play a part in the development of metabolic diseases.


TITLE: La alteracion de los ritmos biologicos causa enfermedades metabolicas y obesidad.La incidencia de la obesidad a escala mundial se ha convertido en un grave y creciente problema de salud publica, que alcanza en algunos paises proporciones alarmantes, y hasta el momento ninguna de las estrategias desarrolladas para combatir la obesidad se ha demostrado resolutiva, por lo que es urgente abordar el problema con nuevos enfoques. Actualmente, en el estudio de la cronobiologia se ha demostrado que nuestra fisiologia se adapta continuamente a los cambios ciclicos del ambiente, sean estos diarios o estacionales, debido a la presencia de un reloj biologico en nuestro hipotalamo que regula la expresion y actividad de enzimas y hormonas implicadas en la regulacion del metabolismo, asi como de todas las funciones homeostaticas. Se ha observado que este reloj puede alterarse debido al estilo de vida moderno, que implica una baja actividad fisica durante el dia e ingesta abundante de comida durante la noche, entre otros factores, que promueven todos ellos el sindrome metabolico y la obesidad. Por lo tanto, el objetivo de esta revision es resumir los hallazgos recientes que demuestran el efecto de la alteracion circadiana sobre el metabolismo y como esta puede participar en el desarrollo de enfermedades metabolicas.


Assuntos
Transtornos Cronobiológicos/complicações , Síndrome Metabólica/etiologia , Obesidade/etiologia , Animais , Relógios Biológicos/fisiologia , Transtornos Cronobiológicos/metabolismo , Transtornos Cronobiológicos/fisiopatologia , Ritmo Circadiano/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/biossíntese , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/fisiologia , Modelos Animais de Doenças , Comportamento Alimentar/fisiologia , Regulação da Expressão Gênica/efeitos da radiação , Glucose/metabolismo , Homeostase/fisiologia , Hormônios/metabolismo , Humanos , Hipotálamo/fisiopatologia , Incidência , Estilo de Vida , Luz , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/fisiopatologia , Camundongos , Obesidade/epidemiologia , Obesidade/fisiopatologia , Ratos , Taxa Secretória , Transtornos do Sono do Ritmo Circadiano/etiologia , Transtornos do Sono do Ritmo Circadiano/fisiopatologia , Tolerância ao Trabalho Programado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA