Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.451
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Am J Chin Med ; 52(1): 161-181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328829

RESUMO

Ferroptosis, an iron-dependent cell death mechanism driven by an accumulation of lipid peroxides on cellular membranes, has emerged as a promising strategy to treat various diseases, including cancer. Ferroptosis inducers not only exhibit cytotoxic effects on multiple cancer cells, including drug-resistant cancer variants, but also hold potential as adjuncts to enhance the efficacy of other anti-cancer therapies, such as immunotherapy. In addition to synthetic inducers, natural compounds, such as artemisinin, can be considered ferroptosis inducers. Artemisinin, extracted from Artemisia annua L., is a poorly water-soluble antimalarial drug. For clinical applications, researchers have synthesized various water-soluble artemisinin derivatives such as dihydroartemisinin, artesunate, and artemether. Artemisinin and artemisinin derivatives (ARTEs) upregulate intracellular free iron levels and promote the accumulation of intracellular lipid peroxides to induce cancer cell ferroptosis, alleviating cancer development and resulting in strong anti-cancer effects in vitro and in vivo. In this review, we introduce the mechanisms of ferroptosis, summarize the research on ARTEs-induced ferroptosis in cancer cells, and discuss the clinical research progress and current challenges of ARTEs in anti-cancer treatment. This review deepens the current understanding of the relationship between ARTEs and ferroptosis and provides a theoretical basis for the clinical anti-cancer application of ARTEs in the future.


Assuntos
Artemisininas , Ferroptose , Neoplasias , Humanos , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Ferro , Peróxidos Lipídicos , Neoplasias/tratamento farmacológico , Água
2.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4803-4811, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802820

RESUMO

Chronic heart failure is the end stage of heart diseases caused by multiple causes. Myocardial cell injury is the key cause of cardiac function deterioration. Ferroptosis, an iron-dependent programmed death mode, is characterized by iron overload and excessive accumulation of lipid peroxides. Studies have demonstrated that inhibiting ferroptosis has a protective effect on myocardial cells. The theory of "harmful hyperactivity and responding inhibition" is an important rule developed by physicians to explain the generation and restriction of the five elements and the pathological imbalance of the human body, and can guide medication. Correlating with the nature, humans need to rely on the law of responding inhibition to maintain the harmony of five Zang-organs and the steady state of Fu-organs. The pathogenesis of ferroptosis in chronic heart failure highly coincides with the process of failing to "inhibition and hyperactivity becoming harmful". The initial factor of ferroptosis is the deficiency of heart Qi, which results in the inability to maintain the balance of cardiomyocyte redox system. The involvement of the five Zang-organs leads to the loss of distribution of body fluid and blood. As a result, the phlegm turbidity, blood stasis, and water retention in the meridians occur, which are manifested as the accumulation of iron and lipid peroxides, which is the aggravating factor of ferroptosis. The two factors interact with each other, leading to the spiral development and thus aggravating heart failure. According to the traditional Chinese medicine(TCM) pathogenesis of ferroptosis, the authors try to treat the chronic heart failure by stages in accordance with the general principle of restraining excess and alleviating hyperactivity. The early-stage treatment should "nourish heart Qi, regulate the five Zang-organs, so as to restrain excess". The middle-stage treatment should "active blood, resolve phlegm, dispel pathogen, and eliminate turbidity", so as to alleviate hyperactivity. The late-stage treatment should "warm Yang, replenish Qi, active blood, and excrete water". Following the characteristics of pathogenesis, the TCM intervention can reduce iron accumulation and promote the clearance of lipid peroxide, thus inhibiting ferroptosis and improving cardiac function.


Assuntos
Ferroptose , Insuficiência Cardíaca , Humanos , Peróxidos Lipídicos , Medicina Tradicional Chinesa , Insuficiência Cardíaca/tratamento farmacológico , Doença Crônica , Ferro , Água
3.
Adv Healthc Mater ; 12(28): e2301292, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37458333

RESUMO

As a distinctly different way from apoptosis, ferroptosis can cause cell death through excessive accumulation of lipid peroxide (LPO) and show great potential for cancer therapy. However, efficient strategies for ferroptosis therapy are still facing great challenges, mainly due to insufficient endogenous H2 O2 or relatively high pH value for Fenton reaction-dependent ferroptosis, and the high redox level of tumor cells attenuates the oxidation therapy. Herein, an efficient lipid-based delivery system to load oxidation catalyst and glutathione peroxidase 4 (Gpx4) inhibitor is orchestrated, intending to amplify Fenton reaction-independent ferroptosis by bidirectional regulation of LPO accumulation. Ferric ammonium citrate (FAC), Gpx4 inhibitor sorafenib (SF), and unsaturated lipids are constructed into mPEG2K -DSPE-modified liposomes (Lip@SF&FAC). Influenced by the high level of intratumoral glutathione, FAC can be converted into Fe2+ , and subsequently the formed iron redox pair (Fe2+ /Fe3+ ) catalyzes unsaturated phospholipids of liposomes into LPO via a Fenton reaction-independent manner. Meanwhile, SF can downregulate LPO reduction by inhibiting Gpx4 activation. In vitro and in vivo antitumor experiments show that Lip@SF&FAC induces massive LPO accumulation in tumor cells and ultimately exhibits strong tumor-killing ability with negligible side effect. Consequently, this two-pronged approach provides a new ferroptosis strategy for predominant LPO accumulation and enhanced cancer therapy.


Assuntos
Ferroptose , Neoplasias , Humanos , Lipossomos/farmacologia , Oxirredução , Apoptose , Peróxidos Lipídicos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
4.
Biomaterials ; 300: 122205, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348324

RESUMO

The use of overwhelming reactive oxygen species (ROS) attack has shown great potential for treating aggressive malignancies; however, targeting this process for further applications is greatly hindered by inefficiency and low selectivity. Here, a novel strategy for ROS explosion induced by tumor microenvironment-initiated lipid redox cycling was proposed, which was developed by using soybean phosphatidylcholine (SPC) to encapsulate lactate oxidase (LOX) and sorafenib (SRF) self-assembled nanoparticles (NPs), named LOX/SRF@Lip. SPC is not only the delivery carrier but an unsaturated lipid supplement for ROS explosion. And LOX catalyzes excessive intratumoral lactate to promote the accumulation of large amounts of H2O2. Then, H2O2 reacts with excessive endogenous iron ions to generate amounts of hydroxyl radical for the initiation of SPC peroxidation. Once started, the reaction will proceed via propagation to form new lipid peroxides (LPO), resulting to devastating LPO explosion and widespread oxidative damage in tumor cells. Furthermore, SRF makes contribution to mass LPO accumulation by inhibiting LPO elimination. Compared to normal tissue, tumor tissue has higher levels of lactate and iron ions. Therefore, LOX/SRF@Lip shows low toxicity in normal tissues, but generates efficient inhibition on tumor proliferation and metastasis, enabling excellent and safe tumor-specific therapy. This work offers new ideas on how to magnify anticancer effect of ROS through rational nanosystem design and tumor-specific microenvironment utilization.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral , Oxirredução , Peróxidos Lipídicos , Sorafenibe , Ferro , Linhagem Celular Tumoral
5.
Curr Opin Chem Biol ; 75: 102328, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236134

RESUMO

Selenium is connected to three small molecule antioxidant compounds, ascorbate, α-tocopherol, and ergothioneine. Ascorbate and α-tocopherol are true vitamins, while ergothioneine is a "vitamin-like" compound. Here we review how selenium is connected to all three. Selenium and vitamin E work together as a team to prevent lipid peroxidation. Vitamin E quenches lipid hydroperoxyl radicals and the resulting lipid hydroperoxide is then converted to the lipid alcohol by selenocysteine-containing glutathione peroxidase. Ascorbate reduces the resulting α-tocopheroxyl radical in this reaction back to α-tocopherol with concomitant production of the ascorbyl radical. The ascorbyl radical can be reduced back to ascorbate by selenocysteine-containing thioredoxin reductase. Ergothioneine and ascorbate are both water soluble, small molecule reductants that can reduce free radicals and redox-active metals. Thioredoxin reductase can reduce oxidized forms of ergothioneine. While the biological significance of this is not yet realized, this discovery underscores the centrality of selenium to all three antioxidants.


Assuntos
Ergotioneína , Selênio , Ácido Ascórbico , alfa-Tocoferol , Selenocisteína , Tiorredoxina Dissulfeto Redutase , Vitamina E , Antioxidantes , Vitaminas , Oxirredução , Radicais Livres , Peróxidos Lipídicos
6.
Oxid Med Cell Longev ; 2022: 4578381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193068

RESUMO

Traditional Chinese medicine (TCM) has significantly contributed to protecting human health and promoting the progress of world civilization. A total of 2,711 TCMs are included in the 2020 version of the Chinese Pharmacopoeia, which is an integral part of the world's medical resources. Tu Youyou and her team discovered and purified artemisinin. And their contributions made the values and advantageous effects of TCM more and more recognized by the international community. There has been a lot of studies on TCM to treat diseases through antioxidant mechanisms, the reports on the new mechanisms beyond antioxidants of TCM has also increased year by year. Recently, many TCMs appear to have significant effects in regulating ferroptosis. Ferroptosis is an iron-dependent, non-apoptotic, regulated cell death characterized by intracellular lipid peroxide accumulation and oxidative membrane damage. Recently, accumulating studies have demonstrated that numerous organ injuries and pathophysiological process of many diseases are companied with ferroptosis, such as cancer, neurodegenerative disease, acute renal injury, arteriosclerosis, diabetes, and ischemia-reperfusion injury. This work mainly introduces dozens of TCMs that can regulate ferroptosis and their possible mechanisms and targets.


Assuntos
Artemisininas , Ferroptose , Doenças Neurodegenerativas , Antioxidantes , Feminino , Humanos , Ferro/metabolismo , Peróxidos Lipídicos , Medicina Tradicional Chinesa
7.
Br J Radiol ; 95(1140): 20220825, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314903

RESUMO

Ferroptosis is a non-apoptotic form of cell death dependent on iron and lipid peroxides. It has been recently described to have a role on cell death after radiation (RT) through a DNA damage independent mechanism. While the modification of ferroptosis pathways is suggested to enhance radiosensitisation, normal tissue toxicity may limit the combined treatment of RT and ferroptosis inducers. FLASH RT is given at ultra-high dose rates to reduce normal tissue toxicities, which contributes to the RT effect on the tumour. Although several hypotheses including oxygen depletion, reduced ROS, and immune responses are suggested to explain the FLASH effect, the underlying mechanisms of normal tissue sparing effects are still not well understood. Previous studies highlighting the inverse effect of RT dose rates and lipid peroxidation, along with the hypothesis by Spitz et al, suggest that oxygen depletion from the chain reaction of lipid peroxidation and differences in labile pool between normal and tumour tissues may be related to the normal tissue sparing effect of FLASH. Therefore, the role of ferroptosis in ultra-high dose rate FLASH RT needs to be investigated further as it might be the key to increase the therapeutic window of FLASH RT.


Assuntos
Ferroptose , Neoplasias , Humanos , Peroxidação de Lipídeos , Peróxidos Lipídicos , Neoplasias/terapia , Oxigênio
8.
Int Immunopharmacol ; 112: 109257, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36174419

RESUMO

Accumulating evidence has highlighted the role of ferroptosis, a novel type of programmed cell death involved in the pathological process of myocardial infarction (MI). However, the underlying mechanism of ferroptosis in mediating MI is complicated that needs to be further investigated. Salvianolic acid B (Sal B) extracted from the traditional Chinese medicine (TCM) herb Salvia miltiorrhiza possesses pharmacological function against MI, which provides us with a new direction to explore the effect of Sal B on ferroptosis after myocardial ischemic injury. In the present study, iron accumulation and expression levels of ferroptosis-related proteins in MI rats altered in a time-dependent manner. Importantly, treatment of ferroptosis inhibitors ferrostatin-1 (Fer-1) or deferoxamine (DFO) reversed typical changes of ferroptosis, including iron overload, lipid peroxide accumulation, mitochondrial damage, and specific expression levels of ferroptosis-related proteins, thereby alleviating myocardial injury in rats. Similar results were observed in Sal B-treated MI rats in a dose-dependent manner. In addition, NFE2-related factor 2 (Nrf2) was strongly activated by the treatment of Sal B. In vivo knockdown of Nrf2 in MI rats enhanced ferroptosis and damaged the protective effect of Sal B on MI. Furthermore, Sal B administration was unable to significantly reverse expression levels of target genes of Nrf2 that were associated with iron homeostasis and oxidative stress (e.g., HO-1, xCT, Gpx4, Fth1, and Fpn1) in MI rats after knockdown of Nrf2. Taken together, Sal B contributed to protecting MI by inhibiting ferroptosis via activating the Nrf2 signaling pathway.


Assuntos
Ferroptose , Infarto do Miocárdio , Ratos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Desferroxamina , Peróxidos Lipídicos/farmacologia , Transdução de Sinais , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Ferro
9.
Langmuir ; 38(40): 12307-12315, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36154182

RESUMO

Chemodynamic therapy (CDT) is a promising hydroxyl radical (•OH)-mediated tumor therapeutic method with desirable tumor specificity and minimal side effects. However, the efficiency of CDT is restricted by the pH condition, insufficient H2O2 level, and overexpressed reductive glutathione (GSH), making it challenging to solve these problems simultaneously to improve the efficacy of CDT. Herein, a kind of polyvinylpyrrolidone-stabilized, sorafenib-loaded copper peroxide (CuO2-PVP-SRF) nanoparticle (NPs) was designed and developed for enhanced CDT against tumor cells through the synergetic pH-independent Fenton-like, H2O2 self-supplying, and GSH depletion strategy. The prepared CuO2-PVP-SRF NPs can be uptaken by 4T1 cells to specifically release Cu2+, H2O2, and SRF under acidic conditions. The intracellular GSH can be depleted by SRF-induced system xc- dysfunction and Cu2+-participated redox reaction, causing the inactivation of GPX4 and generating Cu+. A great amount of •OH was produced in this reducing capacity-disrupted condition by the Cu+-mediated Fenton-like reaction, causing cell apoptosis and lipid hydroperoxide accumulation-induced ferroptosis. They display an excellent 4T1 cell killing outcome through the improved •OH production capacity. The CuO2-PVP-SRF NPs display elevated therapeutic efficiency of CDT and show good promise in further tumor treatment applications.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Cobre/farmacologia , Glutationa , Humanos , Peróxido de Hidrogênio , Radical Hidroxila , Peróxidos Lipídicos/farmacologia , Neoplasias/tratamento farmacológico , Oxirredução , Peróxidos/farmacologia , Peróxidos/uso terapêutico , Povidona , Sorafenibe/farmacologia , Microambiente Tumoral
10.
J Med Chem ; 65(19): 13041-13051, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36134739

RESUMO

The curative effect of sorafenib in hepatocellular carcinoma (HCC) is limited and sorafenib resistance remains a major obstacle for HCC. To overcome this obstacle, a new photoactive sorafenib-Ru(II) complex Ru-Sora has been designed. Upon irradiation (λ = 465 nm), Ru-Sora rapidly releases sorafenib and generates reactive oxygen species, which can oxidize intracellular substances such as GSH. Cellular experiments show that irradiated Ru-Sora is highly cytotoxic toward Hep-G2 cells, including sorafenib-resistant Hep-G2-SR cells. Compared to sorafenib, Ru-Sora has a significant photoactivated chemotherapeutic effect against Hep-G2-SR cancer cells and 3D Hep-G2 multicellular tumor spheroids. Furthermore, Ru-Sora inducing apoptosis and ferroptosis is proved by GSH depletion, GPX4 downregulation, and lipid peroxide accumulation. Metabolomics results suggest that Ru-Sora exerts photocytotoxicity by disrupting the purine metabolism, which is expected to inhibit tumor development. This study provides a promising strategy for enhancing chemotherapy and combating drug-resistant HCC disease.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Pró-Fármacos , Rutênio , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Células Hep G2 , Humanos , Peróxidos Lipídicos/farmacologia , Neoplasias Hepáticas/patologia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Purinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Rutênio/farmacologia , Rutênio/uso terapêutico , Sorafenibe/farmacologia
11.
J Biochem Mol Toxicol ; 36(9): e23143, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35815753

RESUMO

Bergapten (BeG) is explored for its anti-inflammatory and antioxidant properties. Myocardial infarction (MI) is reported to be one of the leading cardiovascular diseases characterized by mitochondrial dysfunction and apoptosis. The main purpose of this study is to assess the cardiopreventive effects of BeG (50 mg/kg) in isoproterenol (ISO)-induced MI in Wistar rats. The increased infarct size after ISO induction was reduced simultaneously on treatment with BeG. Similarly, augmented levels of cardiac biomarkers, namely cardiac troponin T, creatine kinase (CK), cardiac troponin I, and CK-MB were also suppressed by BeG. The increased rate of lipid hydroperoxides and thiobarbituric acid reactive substances owing to the oxidative stress caused by free radical generation in ISO-induced rats were also inhibited by BeG. Antioxidants reduce oxidative stress by scavenging free radicals. ISO induction reduces these antioxidant enzymes glutathione peroxidase, catalase, superoxide dismutase, and glutathione, and levels causing oxidative cardiac damage to the heart tissue. BeG supplementation improved these enzymes synthesis preventing potential damage to the myocardium. Inflammation caused by ISO pretreatment increased the secretion of proinflammatory cytokines in ISO-induced rats. Pretreatment with BeG suppressed these inflammatory cytokines to a normal level in ISO + BeG-treated rats. The histopathological examination of the morphological characteristics showed that the intensity of cardiac damage caused by ISO induction was less in BeG pretreated rats with less inflammatory cells and no necrosis. BeG also showed promising results in the molecular alteration of AMP-activated protein kinase/endothelial nitric oxide synthase/protein kinase B signaling molecules. These observations emphasize the cardioprotective effects of BeG and its potential use as a drug in the near future.


Assuntos
Proteínas Quinases Ativadas por AMP , Infarto do Miocárdio , 5-Metoxipsoraleno/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Apoptose , Biomarcadores/metabolismo , Catalase/metabolismo , Creatina Quinase Forma MB , Citocinas/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Isoproterenol/toxicidade , Peróxidos Lipídicos/metabolismo , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Troponina I/efeitos adversos , Troponina I/metabolismo , Troponina T/metabolismo , Troponina T/farmacologia
12.
Molecules ; 27(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889375

RESUMO

Anti-aging is a challenging and necessary research topic. Momordica charantia L. is a common edible medicinal plant that has various pharmacological activities and is often employed in daily health care. However, its anti-aging effect on mice and the underlying mechanism thereof remain unclear. Our current study mainly focused on the effect of Momordica charantia L. on d-galactose-induced subacute aging in mice and explored the underlying mechanism. UHPLC-Q-Exactive Orbitrap MS was applied to qualitatively analyze the chemical components of Momordica charantia L. ethanol extract (MCE). A subacute aging mice model induced by d-galactose (d-gal) was established to investigate the anti-aging effect and potential mechanism of MCE. The learning and memory ability of aging mice was evaluated using behavioral tests. The biochemical parameters, including antioxidant enzyme activity and the accumulation of lipid peroxides in serum, were measured to explore the effect of MCE on the redox imbalance caused by aging. Pathological changes in the hippocampus were observed using hematoxylin and eosin (H&E) staining, and the levels of aging-related proteins in the PI3K/AKT signaling pathway were assessed using Western blotting. The experimental results demonstrated that a total of 14 triterpenoids were simultaneously identified in MCE. The behavioral assessments results showed that MCE can improve the learning and memory ability of subacute mice. The biochemical parameters determination results showed that MCE can improve the activity of antioxidant enzymes and decrease the accumulation of lipid peroxides in aging mice significantly. Furthermore, aging and injury in the hippocampus were ameliorated. Mechanistically, the results showed a significant upregulation in the protein expression of P-PI3K/PI3K and P-AKT/AKT (p < 0.01), as well as a significant reduction in cleaved caspase-3/caspase-3, Bax and P-mTOR/mTOR (p < 0.01). Our results confirm that MCE could restore the antioxidant status and improve cognitive impairment in aging mice, inhibit d-gal-induced apoptosis by regulating the PI3K/AKT signaling pathway, and rescue the impaired autophagy caused by mTOR overexpression, thereby exerting an anti-aging effect.


Assuntos
Momordica charantia , Envelhecimento , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Caspase 3/metabolismo , Galactose/efeitos adversos , Peróxidos Lipídicos , Camundongos , Momordica charantia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
13.
Food Funct ; 13(6): 3271-3282, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35237775

RESUMO

Reports concerning the characteristics of soybean oil bodies (SOBs) isolated from high protein genotypes and high oil genotypes of soybeans available in the literature are insufficient and limiting. In this study, fatty acid compositions, total phenol and tocopherol contents, antioxidant capacity, and physicochemical stability of SOB emulsions recovered from three high-protein and three high-oil genotype soybeans were comparatively investigated. Principal component analysis showed that all six SOB samples could be easily discriminated based on the cultivar characteristics. Overall, the SOBs derived from the high-protein soybeans exhibited higher polyunsaturated fatty acid (PUFA) contents, while the SOBs derived from the high-oil soybeans had higher extraction yields and tocopherol contents; the tocopherol content was also positively correlated with the antioxidant capacity of the lipophilic fraction, but the difference in the total phenolic content between the two genotypes was not significant. The SOBs derived from the high-protein soybeans were more easily oxidized during storage, with 1.38- and 4-fold higher accumulation rates of lipid hydroperoxides (LPO) and thiobarbituric acid reactive substances (TBARS), respectively, in the high-protein-derived SOBs than in the high-oil-derived SOBs. In addition, the SOBs from the high-protein soybeans exhibited pronounced coalescence during storage, which was corroborated by focused confocal microscopy. These results confirmed that SOBs obtained from high-oil soybean genotypes are more suitable to manufacture OB-based products due to their superior physicochemical stability.


Assuntos
Glycine max/química , Gotículas Lipídicas/química , Óleo de Soja/química , Proteínas de Soja/análise , Antioxidantes/análise , Emulsões/química , Ácidos Graxos , Ácidos Graxos Ômega-3/análise , Peróxidos Lipídicos/análise , Microscopia Confocal , Oxirredução , Tamanho da Partícula , Fenóis/análise , Análise de Componente Principal , Sementes/química , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Tocoferóis/análise
14.
Biochim Biophys Acta Mol Basis Dis ; 1868(1): 166287, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626772

RESUMO

Oxidative stress and lipid peroxidation are major causes of skin injury induced by ultraviolet (UV) irradiation. Ferroptosis is a form of regulated necrosis driven by iron-dependent peroxidation of phospholipids and contributes to kinds of tissue injuries. However, it remains unclear whether the accumulation of lipid peroxides in UV irradiation-induced skin injury could lead to ferroptosis. We generated UV irradiation-induced skin injury mice model to examine the accumulation of the lipid peroxides and iron. Lipid peroxides 4-HNE, the oxidative enzyme COX2, the oxidative DNA damage biomarker 8-OHdG, and the iron level were increased in UV irradiation-induced skin. The accumulation of iron and lipid peroxidation was also observed in UVB-irradiated epidermal keratinocytes without actual ongoing ferroptotic cell death. Ferroptosis was triggered in UV-irradiated keratinocytes stimulated with ferric ammonium citrate (FAC) to mimic the iron overload. Although GPX4 protected UVB-injured keratinocytes against ferroptotic cell death resulted from dysregulation of iron metabolism and the subsequent increase of lipid ROS, keratinocytes enduring constant UVB treatment were markedly sensitized to ferroptosis. Nicotinamide mononucleotide (NMN) which is a direct and potent NAD+ precursor supplement, rescued the imbalanced NAD+/NADH ratio, recruited the production of GSH and promoted resistance to lipid peroxidation in a GPX4-dependent manner. Taken together, our data suggest that NMN recruits GSH to enhance GPX4-mediated ferroptosis defense in UV irradiation-induced skin injury and inhibits oxidative skin damage. NMN or ferroptosis inhibitor might become promising therapeutic approaches for treating oxidative stress-induced skin diseases or disorders.


Assuntos
Glutationa/genética , Ferro/metabolismo , Estresse Oxidativo/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Pele/metabolismo , 8-Hidroxi-2'-Desoxiguanosina/farmacologia , Aldeídos/farmacologia , Animais , Ciclo-Oxigenase 2/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Compostos Férricos/farmacologia , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Peróxidos Lipídicos/farmacologia , Camundongos , Mononucleotídeo de Nicotinamida/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Compostos de Amônio Quaternário/farmacologia , Pele/efeitos dos fármacos , Pele/lesões , Pele/patologia , Raios Ultravioleta/efeitos adversos
15.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613691

RESUMO

Cancer cells may acquire resistance to stress signals and reprogram metabolism to meet the energetic demands to support their high proliferation rate and avoid death. Hence, targeting nutrient dependencies of cancer cells has been suggested as a promising anti-cancer strategy. We explored the possibility of killing breast cancer (BC) cells by modifying nutrient availability. We used in vitro models of BC (MCF7 and MDA-MB-231) that were maintained with a low amount of sulfur amino acids (SAAs) and a high amount of oxidizable polyunsatured fatty acids (PUFAs). Treatment with anti-apoptotic, anti-ferroptotic and antioxidant drugs were used to determine the modality of cell death. We reproduced these conditions in vivo by feeding BC-bearing mice with a diet poor in proteins and SAAs and rich in PUFAs (LSAA/HPUFA). Western blot analysis, qPCR and histological analyses were used to assess the anti-cancer effects and the molecular pathways involved. We found that BC cells underwent oxidative damage to DNA and proteins and both apoptosis and ferroptosis were induced. Along with caspases-mediated PARP1 cleavage, we found a lowering of the GSH-GPX4 system and an increase of lipid peroxides. A LSAA/HPUFA diet reduced tumor mass and its vascularization and immune cell infiltration, and induced apoptosis and ferroptotic hallmarks. Furthermore, mitochondrial mass was found to be increased, and the buffering of mitochondrial reactive oxygen species limited GPX4 reduction and DNA damage. Our results suggest that administration of custom diets, targeting the dependency of cancer cells on certain nutrients, can represent a promising complementary option for anti-cancer therapy.


Assuntos
Apoptose , Neoplasias da Mama , Dieta , Animais , Camundongos , Morte Celular , Ácidos Graxos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Peroxidação de Lipídeos , Peróxidos Lipídicos , Células MCF-7 , Células MDA-MB-231 , Humanos , Neoplasias da Mama/patologia
16.
Nutrients ; 13(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34959876

RESUMO

Breast cancer (Bca) is the most common type of cancer among women worldwide, and oxidative stress caused by adjuvant treatment may be decreased by antioxidant intake. The aim of this study is to investigate the associations between Dietary antioxidant Capacity (DaC) and oxidation and antioxidant biomarkers in women undergoing adjuvant treatment (AT) for Bca. This prospective study had a sample of 70 women (52.2 ± 10.7 y). DaC (mmol/g) was calculated using nutritional data obtained from a Food Frequency Questionnaire, and blood was collected to measure the oxidation and antioxidant biomarkers at baseline (T0), and after AT (T1). Carbonylated protein levels were inversely associated with DaC at T1 (p = 0.004); women showed an increased risk of having increment on lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS), and decrement on ferric reducing antioxidant power (FRAP) and reduced glutathione after AT, in response to lowered DaC (p < 0.05). Carbonylated proteins, TBARS and FRAP levels remained stable between the periods for women at the 3rd DaC tertile at T1, differentiating them from those at the 1st tertile, who showed negative changes in these biomarkers (p < 0.04). DaC may be beneficial for women undergoing AT for Bca, since it promoted a reduction in oxidative stress.


Assuntos
Antioxidantes/administração & dosagem , Neoplasias da Mama/sangue , Dieta/métodos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Biomarcadores/sangue , Neoplasias da Mama/terapia , Quimioterapia Adjuvante/efeitos adversos , Inquéritos sobre Dietas , Ingestão de Alimentos/fisiologia , Feminino , Glutationa/sangue , Humanos , Peróxidos Lipídicos/metabolismo , Pessoa de Meia-Idade , Estudos Prospectivos , Carbonilação Proteica/efeitos dos fármacos , Radioterapia Adjuvante/efeitos adversos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
17.
Essays Biochem ; 65(7): 925-940, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34623415

RESUMO

Ferroptosis is an iron- and lipid peroxidation-dependent cell death modality and emerging evidence indicates that ferroptosis has great explanatory potential for neuronal loss and associated CNS dysfunction in a range of neurodegenerative diseases (e.g., Alzheimer's, Parkinson's and Huntington's diseases, Motor neuron disease, Friedreich ataxia (FRDA)). Ferroptotic death results from lethal levels of phospholipid hydroperoxides that are generated by iron-dependent peroxidation of polyunsaturated fatty acids (PUFAs), such as arachidonic and adrenic acids, which are conjugated to specific phospholipids (e.g., phosphatidylethanolamines (PEs)). The major cellular protector against ferroptosis is glutathione peroxidase 4 (GPX4), a membrane-associated selenoenzyme that reduces deleterious phospholipid hydroperoxides to their corresponding benign phospholipid alcohols in a glutathione-dependent manner. Other complementary protective systems have also been identified that act to bolster cellular defences against ferroptosis. Many pharmacological modulators of the ferroptosis pathway have been identified, targeting proteins involved in iron homoeostasis and autophagy; the production and detoxification of lipid peroxides, and cyst(e)ine/glutathione metabolism. While a growing number of cell signalling pathways converge to regulate the ferroptosis cascade, an emerging understanding of ferroptosis regulation suggests that the ferroptotic 'tone' of cells can be set by the transcription factor, nuclear factor erythroid 2-related factor 2 (NRF2), which transcriptionally controls many key components of the ferroptosis pathway. In this review, we provide a critical overview of the relationship between ferroptosis and NRF2 signalling. With a focus on the role of ferroptosis in Alzheimer's disease (AD), we discuss how therapeutic modulation of the NRF2 pathway is a viable strategy to explore in the treatment of ferroptosis-driven neurodegeneration.


Assuntos
Doença de Alzheimer , Ferroptose , Doença de Alzheimer/metabolismo , Humanos , Peroxidação de Lipídeos , Peróxidos Lipídicos , Fator 2 Relacionado a NF-E2/metabolismo
18.
J Chromatogr A ; 1649: 462236, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34038777

RESUMO

The widespread presence of lipid hydroperoxides in foodstuffs and biological samples has aroused great attentions in recent years, while it remains challenging for analysis of the fragility of O - O bond linkage of peroxides. In this present study, we explored the utility of electrospray ionization mass spectrometry (ESI-MS) for characterization of two fatty acid hydroperoxides from oxidation of linoleic acid and α-linolenic acid, which are the essential fatty acids abundant in many seeds and vegetable oils. The results indicated that in-source fragmentation occurred in the detection of the two fatty acid hydroperoxides in both positive and negative ion modes, which yielded characteristic fragments for ESI-MS analysis. In addition, the genotoxicity of fatty acid hydroperoxides for generation of nucleoside adducts was investigated. It was found that a variety of nucleoside adducts were formed from the reactions of fatty acid hydroperoxides and nucleosides. Furthermore, the decomposition products of the fatty acid hydroperoxides were determined, which provided evidence to elucidate the reaction mechanism for formation of nucleoside adducts.


Assuntos
Ácidos Graxos/química , Ácidos Linoleicos/química , Ácidos Linolênicos/química , Peróxidos Lipídicos/química , Nucleosídeos/química , Cromatografia Líquida de Alta Pressão/métodos , Oxirredução , Óleos de Plantas/química , Espectrometria de Massas por Ionização por Electrospray/métodos
19.
Lipids ; 56(3): 313-325, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33596340

RESUMO

Partially hydrogenated oils (PHO) have been removed from the food supply due to adverse effects on risk for coronary heart disease (CHD). High-oleic soybean oils (HOSBO) are alternatives that provide functionality for different food applications. The objective of this study was to determine how consumption of diets containing HOSBO compared to other alternative oils, with similar functional properties, modifies LDL cholesterol (LDLc) and other risk factors and biomarkers of CHD. A triple-blind, crossover, randomized controlled trial was conducted in humans (n = 60) with four highly-controlled diets containing (1) HOSBO, (2) 80:20 blend of HOSBO and fully hydrogenated soybean oil (HOSBO+FHSBO), (3) soybean oil (SBO), and (4) 50:50 blend of palm oil and palm kernel oil (PO + PKO). Before and after 29 days of feeding, lipids/lipoproteins, blood pressure, body composition, and markers of inflammation, oxidation, and hemostasis were measured. LDLc, apolipoprotein B (apoB), NonHDL-cholesterol (HDLc), ratios of total cholesterol (TC)-to-HDLc and LDLc-to-HDL cholesterol, and LDL particle number and small LDL particles concentration were lower after HOSBO and HOSBO+FHSBO compared to PO (specific comparisons p < 0.05). Other than TC:HDL, there were no differences in lipid/lipoprotein markers when comparing HOSBO+FHSBO with HOSBO. LDLc and apoB were higher after HOSBO compared to SBO (p < 0.05). PO + PKO increased HDLc (p < 0.001) and apolipoprotein AI (p < 0.03) compared to HOSBO and HOSBO+FHSBO. With the exception of lipid hydroperoxides, dietary treatments did not affect other CHD markers. HOSBO, and blends thereof, is a PHO replacement that results in more favorable lipid/lipoprotein profiles compared to PO + PKO (an alternative fat with similar functional properties).


Assuntos
LDL-Colesterol/sangue , Óleo de Palmeira/administração & dosagem , Óleo de Soja/administração & dosagem , Apolipoproteína A-I/metabolismo , Estudos Cross-Over , Voluntários Saudáveis , Humanos , Hidrogenação , Peróxidos Lipídicos/sangue , Pessoa de Meia-Idade , Óleo de Palmeira/química , Óleo de Palmeira/farmacologia , Óleo de Soja/química , Óleo de Soja/farmacologia
20.
Food Chem ; 346: 128885, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33429298

RESUMO

The antioxidant cut-off theory details the importance of fine-tuning antioxidant hydrophobicity to optimize antioxidant effectiveness for a given food system; however, previous research has utilized synthetic antioxidant homologues which fail to align with the food industry's demand for natural ingredients. Alkylresorcinols represent a natural homologous series of phenolipid antioxidants. The antioxidant activities of individual alkylresorcinol homologues were investigated in bulk oils and oil-in-water emulsions. In oils, antioxidant activity decreased as alkyl chain length increased and there was no effect on rate of loss. In emulsions, optimum antioxidant activity was observed at intermediate alkyl chain length (C21:0) and longer homologues were lost more rapidly. Radical scavenging capacity decreased as alkyl chain length increased but alkylresorcinols were unable to chelate iron. This suggests that intrinsic properties (e.g. radical scavenging capacity) are responsible for the antioxidant activity of alkylresorcinols in oils while physicochemical phenomena (e.g. partitioning) drive antioxidant activity of alkylresorcinols in emulsions.


Assuntos
Antioxidantes/química , Emulsões/química , Óleos de Plantas/química , Resorcinóis/química , Quelantes de Ferro/química , Peróxidos Lipídicos/análise , Óleos/química , Resorcinóis/isolamento & purificação , Secale/química , Secale/metabolismo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA