Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 653-660, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621869

RESUMO

Quorum sensing system regulates the expression of genes related to bacterial growth, metabolism and other behaviors by sensing bacterial density, and controls the unified action of the entire bacterial population. This mechanism can ensure the normal secretion of bacterial metabolites and the stability of the biofilm microenvironment, providing protection for the formation of biofilms and the normal growth and reproduction of bacteria. Traditional Chinese medicine, capable of quorum sensing inhibition, can inhibit the formation of bacterial biofilms, reduce bacterial resistance, and enhance the anti-infection ability of antibiotics when combined with antibiotics. In recent years, the combination of traditional Chinese and Western medicine in the treatment of drug-resistant bacterial infections has become a research hotspot. Starting with the associations between quorum sensing, biofilm and drug-resistant bacteria, this paper reviews the relevant studies about the combined application of traditional Chinese medicines as quorum sensing inhibitors with antibiotics in the treatment of drug-resistant bacteria. This review is expected to provide ideas for the development of new clinical treatment methods and novel anti-infection drugs.


Assuntos
Infecções Bacterianas , Percepção de Quorum , Humanos , Percepção de Quorum/genética , Medicina Tradicional Chinesa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Biofilmes , Infecções Bacterianas/tratamento farmacológico
2.
PLoS One ; 19(1): e0297030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285708

RESUMO

Sound has been shown to impact microbial behaviors. However, our understanding of the chemical and molecular mechanisms underlying these microbial responses to acoustic vibration is limited. In this study, we used untargeted metabolomics analysis to investigate the effects of 100-Hz acoustic vibration on the intra- and extracellular hydrophobic metabolites of P. aeruginosa PAO1. Our findings revealed increased levels of fatty acids and their derivatives, quinolones, and N-acylethanolamines upon sound exposure, while rhamnolipids (RLs) showed decreased levels. Further quantitative real-time polymerase chain reaction experiments showed slight downregulation of the rhlA gene (1.3-fold) and upregulation of fabY (1.5-fold), fadE (1.7-fold), and pqsA (1.4-fold) genes, which are associated with RL, fatty acid, and quinolone biosynthesis. However, no alterations in the genes related to the rpoS regulators or quorum-sensing networks were observed. Supplementing sodium oleate to P. aeruginosa cultures to simulate the effects of sound resulted in increased tolerance of P. aeruginosa in the presence of sound at 48 h, suggesting a potential novel response-tolerance correlation. In contrast, adding RL, which went against the response direction, did not affect its growth. Overall, these findings provide potential implications for the control and manipulation of virulence and bacterial characteristics for medical and industrial applications.


Assuntos
Pseudomonas aeruginosa , Vibração , Percepção de Quorum/genética , Virulência , Fatores de Virulência , Ácidos Graxos/farmacologia , Acústica , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Biofilmes
3.
Microbiology (Reading) ; 169(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37204848

RESUMO

Quorum sensing (QS) is a widespread mechanism of environment sensing and behavioural coordination in bacteria. At its core, QS is based on the production, sensing and response to small signalling molecules. Previous work with Pseudomonas aeruginosa shows that QS can be used to achieve quantitative resolution and deliver a dosed response to the bacteria's density environment, implying a sophisticated mechanism of control. To shed light on how the mechanistic signal components contribute to graded responses to density, we assess the impact of genetic (AHL signal synthase deletion) and/or signal supplementation (exogenous AHL addition) perturbations on lasB reaction-norms to changes in density. Our approach condenses data from 2000 timeseries (over 74 000 individual observations) into a comprehensive view of QS-controlled gene expression across variation in genetic, environmental and signal determinants of lasB expression. We first confirm that deleting either (∆lasI, ∆rhlI) or both (∆lasIrhlI) AHL signal synthase gene attenuates QS response to density. In the ∆rhlI background we show persistent yet attenuated density-dependent lasB expression due to native 3-oxo-C12-HSL signalling. We then test if density-independent quantities of AHL signal (3-oxo-C12-HSL, C4-HSL) added to the WT either flatten or increase responsiveness to density and find that the WT response is robust to all tested concentrations of signal, alone or in combination. We then move to progressively supplementing the genetic knockouts and find that cognate signal supplementation of a single AHL signal (∆lasI +3-oxo-C12-HSL, ∆rhlI +C4HSL) is sufficient to restore the ability to respond in a density-dependent manner to increasing density. We also find that dual signal supplementation of the double AHL synthase knockout restores the ability to produce a graded response to increasing density, despite adding a density-independent amount of signal. Only the addition of high concentrations of both AHLs and PQS can force maximal lasB expression and ablate responsiveness to density. Our results show that density-dependent control of lasB expression is robust to multiple combinations of QS gene deletion and density-independent signal supplementation. Our work develops a modular approach to query the robustness and mechanistic bases of the central environmental sensing phenotype of quorum sensing.


Assuntos
Proteínas de Bactérias , Percepção de Quorum , Percepção de Quorum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Homosserina/metabolismo , Pseudomonas aeruginosa/metabolismo , Suplementos Nutricionais
4.
World J Microbiol Biotechnol ; 39(6): 160, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37067647

RESUMO

Secretion of quorum sensing (QS) molecules is important for the effective colonization of host plants by plant growth-promoting rhizobacteria. The current study aims at the isolation and characterization of tea rhizo bacteria, which produce the QS molecules, acyl homoserine lactone (AHLs), along with multiple plant growth-promoting (PGP) activities. Thirty-one isolates were isolated from the tea rhizosphere, and screening for PGP activities resulted in the selection of isolates RTE1 and RTE4 with multiple PGP traits, inhibiting the growth of tea fungal pathogens. Both isolates also showed production of AHL molecules when screened using two biosensor strains, Chromobacterium violaceum CV026 and Escherichia coli MT 102(jb132). The isolates identified as Burkholderia cepacia RTE1 and Pseudomonas aeruginosa RTE4 based on genome-based analysis like phylogeny, dDDH, and fastANI calculation. Detailed characterization of AHLs produced by the isolates using reverse-phase TLC, fluorometry, and LC-MS indicated that the isolate RTE1 produced a short chain, C8, and a long chain C12 AHL, while RTE4 produced short-chain AHLs C4 and C6. Confocal microscopy revealed the formation of thick biofilm by RTE1 and RTE4 (18 and 23 µm, respectively). Additionally, we found several genes involved in QS, and PGP, inducing systemic resistance (ISR) activities such as lasI/R, qscR, pqq, pvd, aldH, acdS, phz, Sod, rml, and Pch, and biosynthetic gene clusters like N-acyl homoserine lactone synthase, terpenes, pyochelin, and pyocyanin. Based on the functional traits like PGP, biofilm formation and production of AHL molecules, and genetic potential of the isolates B. cepacia RTE1 and P. aeruginosa RTE4 appear promising candidates to improve the health and growth of tea plantations.


Assuntos
Acil-Butirolactonas , Percepção de Quorum , Percepção de Quorum/genética , Biofilmes , Pseudomonas aeruginosa/genética , Genômica , Chá
5.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361923

RESUMO

Acinetobacter baumannii expresses various virulence factors to adapt to hostile environments and infect susceptible hosts. This study investigated the regulatory network of the BfmRS two-component and AbaIR quorum sensing (QS) systems in the expression of virulence-associated genes in A. baumannii ATCC 17978. The ΔbfmS mutant exhibited a significant decrease in surface motility, which presumably resulted from the low expression of pilT and A1S_0112-A1S_0119 gene cluster. The ΔbfmR mutant displayed a significant reduction in biofilm and pellicle formation due to the low expression of csu operon. The deletion of abaR did not affect the expression of bfmR or bfmS. However, the expression of abaR and abaI was upregulated in the ΔbfmR mutant. The ΔbfmR mutant also produced more autoinducers than did the wild-type strain, suggesting that BfmR negatively regulates the AbaIR QS system. The ΔbfmS mutant exhibited no autoinducer production in the bioassay system. The expression of the A1S_0112-A1S_0119 gene cluster was downregulated in the ΔabaR mutant, whereas the expression of csu operon was upregulated in this mutant with a high cell density. In conclusion, for the first time, we demonstrated that the BfmRS-AbaIR QS system axis regulated the expression of virulence-associated genes in A. baumannii. This study provides new insights into the complex network system involved in the regulation of virulence-associated genes underlying the pathogenicity of A. baumannii.


Assuntos
Acinetobacter baumannii , Virulência/genética , Percepção de Quorum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica
6.
Sci Rep ; 12(1): 13992, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978046

RESUMO

Proteus mirabilis (P. mirabilis) is a frequent cause of catheter-associated urinary tract infections. This study aims to investigate the anti-infective effect of Alhagi maurorum extract (AME), the traditional medicinal plant in the middle east, on the biofilm-forming P. mirabilis isolates. Hydroalcoholic extract and oil of A. maurorum were characterized by HPLC and GC-MS. The antiproliferative, anti-biofilm, and bactericidal activity of AME at various concentrations were assessed by turbidity, crystal violet binding, and agar well diffusion assays, respectively. The AME's effect on adhesion and quorum sensing (QS) were investigated by in vitro adhesion assay on cell culture and agar overlay assay using Janthinobacterium lividum (ATCC 12472) as a biosensor strain. In addition, the expression level of selected genes involved in QS and biofilm regulation were determined by quantitative Real-Time PCR. Furthermore, the bladder phantom model was created to evaluate the assays and investigate the catheter's calcium deposition. The most effective chemical compounds found in AME were tamarixetin, quercetin, and trans-anethole. Although AME did not inhibit swarming motility, it reduced biofilm production and exerted a concentration-dependent anti-adhesive and anti-QS activity against P. mirabilis. AME also downregulated the expression level of selected genes involved in biofilm formation and QS. This study showed that AME as a natural compound reduced biofilm formation of P. mirabilis by targeting virulence factor genes, quorum sensing, and other strategies that include preventing the adhesion of P. mirabilis to the cells. The results suggest that A. maurorum extract might have the potential to be considered for preventing UTIs caused by P. mirabilis.


Assuntos
Biofilmes , Fabaceae , Extratos Vegetais , Plantas Medicinais , Proteus mirabilis , Percepção de Quorum , Ágar , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Catéteres/efeitos adversos , Catéteres/microbiologia , Fabaceae/química , Humanos , Fitoterapia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Proteus mirabilis/efeitos dos fármacos , Proteus mirabilis/genética , Proteus mirabilis/patogenicidade , Proteus mirabilis/fisiologia , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Infecções Urinárias/microbiologia , Virulência/efeitos dos fármacos , Virulência/genética
7.
World J Microbiol Biotechnol ; 38(11): 184, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35972587

RESUMO

Bacterial intercellular communication mediated by small diffusible molecules, known as quorum sensing (QS), is a common mechanism for regulating bacterial colonisation strategies and survival. Influence on QS by plant-derived molecules is proposed as a strategy for combating phytopathogens by modulating their virulence. This work builds upon other studies that have revealed plant-derived QS inhibitors extracted from oak bark (Quercus sp.). It was found that co-incubation of Pectobacterium carotovorum VKM-B-1247 with oak bark extract (OBE) reduced the production of acyl-HSL. This was accompanied by a dose-dependent decrease in the bacterial cellulolytic and protease activity. At the transcriptomic level, the OBE treatment suppressed the main QS-related genes expR/expI. Potato tubers pre-treated with OBE showed resistance to a manifestation of soft-rot symptoms. Analysis of the component composition of the OBE identified several biologically active molecules, such as n-hexadecanoic acid, 2,6-di-tert-butyl-4-methylphenol, butylated hydroxytoluene (BHT), gamma-sitosterol, lupeol, and others. Molecular docking of the binding energy between identified molecules and homology models of LuxR-LuxI type proteins allow to identify potential inhibitors. Collectively, obtained results figure out great potential of widely distributed oak-derived plant material for bacterial control during storage of potato.


Assuntos
Pectobacterium , Quercus , Solanum tuberosum , Proteínas de Bactérias/metabolismo , Simulação de Acoplamento Molecular , Pectobacterium/genética , Pectobacterium/metabolismo , Pectobacterium carotovorum/metabolismo , Casca de Planta/metabolismo , Percepção de Quorum/genética , Solanum tuberosum/microbiologia , Virulência/genética
8.
PLoS One ; 17(2): e0263124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35192621

RESUMO

Dickeya solani is a pathogen most frequently responsible for infecting potato plants in Europe. As in the case of most plant pathogens, its ability to colonize and invade the host depends on chemotaxis and motility. The coordinated movement of Dickeya over solid surfaces is governed by a quorum sensing mechanism. In D. solani motility is regulated by ExpI-ExpR proteins, homologous to luxI-luxR system from Vibrio fisheri, in which N-acyl-homoserine lactones (AHLs) serve as signaling molecules. Moreover, in many Gram-negative bacteria motility is coupled with central metabolism via carbon catabolite repression. This enables them to reach more nutrient-efficient niches. The aim of this study was to analyze the swarming motility of D. solani depending on the volume of the medium in the cultivation plate and glucose content. We show that the ability of this bacterium to move is strictly dependent on both these factors. Moreover, we analyze the production of AHLs and show that the quorum sensing mechanism in D. solani is also influenced by the availability of glucose in the medium and that the distribution of these signaling molecules are different depending on the volume of the medium in the plate.


Assuntos
Acil-Butirolactonas/farmacologia , Proteínas de Bactérias/genética , Dickeya/efeitos dos fármacos , Glucose/farmacologia , Solanum tuberosum/microbiologia , Fatores de Virulência/genética , Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/metabolismo , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/genética , Meios de Cultura/química , Meios de Cultura/farmacologia , Dickeya/genética , Dickeya/metabolismo , Dickeya/patogenicidade , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Doenças das Plantas/microbiologia , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Virulência/metabolismo
9.
Microbiol Spectr ; 10(1): e0176821, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196792

RESUMO

Carbapenem resistance of Acinetobacter baumannii poses challenges to public health. Biofilm contributes to the persistence of A. baumannii cells. This study was designed to investigate the genetic relationships among carbapenem resistance, polymyxin resistance, multidrug resistance, biofilm formation, and surface-associated motility and evaluate the antibiofilm effect of polymyxin in combination with other antibiotics. A total of 103 clinical A. baumannii strains were used to determine antibiotic susceptibility, biofilm formation capacity, and motility. Enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprinting was used to determine the genetic variation among strains. The distribution of 17 genes related to the resistance-nodulation-cell division (RND)-type efflux, autoinducer-receptor (AbaI/AbaR) quorum sensing, oxacillinases (OXA)-23, and insertion sequence of ISAba1 element was investigated. The representative strains were chosen to evaluate the gene transcription and the antibiofilm activity by polymyxin B (PB) in combination with merapenem, levofloxacin, and ceftazidime, respectively. ERIC-PCR-dependent fingerprints were found to be associated with carbapenem resistance and multidrug resistance. The presence of blaOXA-23 was found to correlate with genes involved in ISAba1 insertion, AbaI/AbaR quorum sensing, and AdeABC efflux. Carbapenem resistance was observed to be negatively correlated with biofilm formation and positively correlated with motility. PB in combination with ceftazidime displayed a synergistic antibiofilm effect against robust biofilm formed by an A. baumannii strain with deficiency in AbaI/AbaR quorum sensing. Our results not only clarify the genetic correlation among carbapenem resistance, biofilm formation, and pathogenicity in a certain level but also provide a theoretical basis for clinical applications of polymyxin-based combination of antibiotics in antibiofilm therapy. IMPORTANCE Deeper explorations of molecular correlation among antibiotic resistance, biofilm formation, and pathogenicity could provide novel insights that would facilitate the development of therapeutics and prevention against A. baumannii biofilm-related infections. The major finding that polymyxin B in combination with ceftazidime displayed a synergistic antibiofilm effect against robust biofilm formed by an A. baumannii strain with genetic deficiency in AbaI/AbaR quorum sensing further provides a theoretical basis for clinical applications of antibiotics in combination with quorum quenching in antibiofilm therapy.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Ceftazidima/uso terapêutico , Polimixina B/uso terapêutico , Percepção de Quorum/genética , Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes/crescimento & desenvolvimento , Ceftazidima/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Quimioterapia Combinada/métodos , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Polimixina B/farmacologia , Percepção de Quorum/efeitos dos fármacos , beta-Lactamases/genética
10.
World J Microbiol Biotechnol ; 38(2): 23, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989882

RESUMO

Quorum sensing (QS)-dependent gene regulation in bacteria performs a vital role in synchronization of cell-density-dependent functions. In Chromobacterium violaceum QS-dependent cviI/R regulatory genes are activated during the mid- or late-exponential phase of growth. However, sufficient evidence is lacking on the role of QS inhibitors on gene regulation at different phases of growth. Hence, we report the role of linalool, a natural monoterpenoid on QS mediated gene regulation at different stages of growth in C. violaceum by performing biosensor, growth kinetic and gene expression studies. In vitro and in vivo studies were performed for establishing role of linalool in reducing the virulence and infection by using HEK-293 T cell lines and Caenorhabditis elegans models respectively. C. violaceum CV026 with C6-HSL was used as control. The results showed linalool to be a QS inhibitor with an estimated IC50 of 63 µg/mL for violacein inhibition. At this concentration the cell density difference (delta OD600) of 0.14 from the compound was observed indicating the quorum concentration. The expression of cviI/R was initiated at mid-log phase (~ 18 h) and reached the maximum at 36 h in control whereas in treatment it remained significantly downregulated at all time points. The expression of violacein biosynthetic genes vioA, vioC, vioD and vioE was also downregulated by linalool. Infection studies with linalool showed higher survival rates in HEK-293T cell lines and C. elegans compared to the infection control. Taken together, this study proves linalool to be a QS inhibitor capable of attenuation of QS by controlling the cell density through cviI/R downregulation at the early phase of growth and hence offering scope for its application for controlling infections.


Assuntos
Monoterpenos Acíclicos/farmacologia , Chromobacterium/efeitos dos fármacos , Chromobacterium/crescimento & desenvolvimento , Monoterpenos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Fatores de Virulência , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Caenorhabditis elegans , Chromobacterium/genética , Chromobacterium/metabolismo , Regulação Bacteriana da Expressão Gênica , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Percepção de Quorum/genética , Virulência/efeitos dos fármacos , Fatores de Virulência/genética
11.
Arch Microbiol ; 203(7): 4663-4675, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34175964

RESUMO

Quorum sensing (QS) represents a major target for reducing bacterial pathogenicity and antibiotic resistance. This study identifies bergamot and aspidosperma as new potential sources of anti-QS agents. We investigated the anti-QS activity of plant materials on both Chromobacterium violaceum and Pseudomonas aeruginosa. Initially, we determined the minimum inhibitory concentrations (MICs) of plant materials using a broth microdilution method. Subsequently, we tested the effect of sub-MIC concentrations on QS-regulated traits and virulence factors production in test bacteria. Results revealed that bergamot and aspidosperma inhibited the ability of C. violaceum to produce violacein. Other QS-controlled phenotypes of C. violaceum, namely chitinolytic activity, motility, and biofilm formation, were also reduced by both plant materials. Moreover, QS-linked traits of P. aeruginosa were also reduced. Bergamot inhibited swarming but not swimming motility, while aspidosperma diminished both motility types in P. aeruginosa. Both plant materials also demonstrated antibiofilm activity and inhibited the production of protease and pyocyanin in P. aeruginosa. Furthermore, we tested the anti-QS effect of plant materials on the transcriptional level using RT-qPCR. Bergamot dramatically downregulated the C. violaceum autoinducer synthase gene cviI and the vioB gene involved in violacein biosynthesis, confirming the phenotypic observation on its anti-QS activity. Aspidosperma also reduced the expression of cviI and vioB but less drastically than bergamot. In P. aeruginosa, downregulation in the transcripts of the QS genes lasI, lasR, rhlI, and rhlR was also achieved by bergamot and aspidosperma. Therefore, data in the present study suggest the usefulness of bergamot and aspidosperma as sources of antivirulence agents.


Assuntos
Aspidosperma , Chromobacterium , Extratos Vegetais , Óleos de Plantas , Pseudomonas aeruginosa , Percepção de Quorum , Antibacterianos/farmacologia , Aspidosperma/química , Biofilmes/efeitos dos fármacos , Chromobacterium/efeitos dos fármacos , Chromobacterium/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Extratos Vegetais/farmacologia , Óleos de Plantas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Fatores de Virulência/genética
12.
Int J Mol Sci ; 21(24)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327584

RESUMO

Quorum sensing is a communication system among bacteria to sense the proper time to express their virulence factors. Quorum sensing inhibition is a therapeutic strategy to block bacterial mechanisms of virulence. The aim of this study was to synthesize and evaluate new bioisosteres of N-acyl homoserine lactones as Quorum sensing inhibitors in Chromobacterium violaceum CV026 by quantifying the specific production of violacein. Five series of compounds with different heterocyclic scaffolds were synthesized in good yields: thiazoles, 16a-c, thiazolines 17a-c, benzimidazoles 18a-c, pyridines 19a-c and imidazolines 32a-c. All 15 compounds showed activity as Quorum sensing inhibitors except 16a. Compounds 16b, 17a-c, 18a, 18c, 19c and 32b exhibited activity at concentrations of 10 µM and 100 µM, highlighting the activity of benzimidazole 18a (IC50 = 36.67 µM) and 32b (IC50 = 85.03 µM). Pyridine 19c displayed the best quorum sensing inhibition activity (IC50 = 9.66 µM). Molecular docking simulations were conducted for all test compounds on the Chromobacterium violaceum CviR protein to gain insight into the process of quorum sensing inhibition. The in-silico data reveal that all 15 the compounds have higher affinity for the protein than the native AHL ligand (1). A strong correlation was found between the theoretical and experimental results.


Assuntos
Percepção de Quorum/fisiologia , Acil-Butirolactonas/metabolismo , Chromobacterium/química , Indóis/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Percepção de Quorum/genética
13.
J Infect Dev Ctries ; 14(6): 580-588, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32683348

RESUMO

INTRODUCTION: With all the challenges super bugs are imposing, biofilm formation opens the door against various more complicated challenges. Such issue may be highlighted with the ability of the latter to render the antibiotics hardly accessible to bacterial cells and sheds the light on the importance of finding antibiofilm formers. Therefore, we assessed the inhibitory effect of natural product extracts (ginger, wild blueberry) and polysorbates (PS20, PS80) on biofilm formation at the molecular level. METHODOLOGY: Growth inhibition assay was performed to test the effect of ginger (Zingiber Officinale), wild blueberry (Vaccinium Angustifolium), and polysorbates on Pseudomonas aeruginosa (PAN14) growth. Transcription levels of biofilm exopolysaccharides encoding genes (ndvB, pelC, algC) and quorum sensing genes (lasI, lasR, rhlI, rhlR) for LasI/LasR and RhlI/ RhlR systems were evaluated by RT qPCR. RESULTS: The polysorbates and the extracts of both ginger and wild blueberry had no effect on the growth of P. aeruginosa. Biofilms' examination has unraveled the effectiveness of treatments used in reducing its formation. Moreover, a significant reduction in the expression of all genes tested for biofilm exopolysaccharides and its quorum sensing system was observed. CONCLUSION: The decrease in the relative gene expression of the exopolysaccharides and quorum sensing encoding genes sheds the light on the mechanism of action of ginger and wild blueberry's constituents as well as polysorbates 20 and 80 on P. aeruginosa biofilm formation. Future studies need to assess the antibiofilm effect of each fraction of herbal extracts separately.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Produtos Biológicos/farmacologia , Polissorbatos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética
14.
Microbiol Res ; 238: 126506, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32540731

RESUMO

Plant growth promoting rhizobacteria are known to improve plant performance by developing healthy and productive interactions with the host plants. These associations may be symbiotic or asymbiotic depending upon the genetic potential of the resident microbe and promiscuity of the host. Present study describes the potential of two Serratia spp. strains for promotion of plant growth in homologous as well as non-homologous hosts. The strains KPS-10 and KPS-14; native to potato rhizosphere belong to genus Serratia based on 16S rRNA gene sequences (accession no. LN831934 and LN831937 respectively) and contain multiple plant growth promoting properties along-with the production of quorum sensing acyl homoserine lactone (AHL) molecules. Both Serratia spp. strains showed solubilization of inorganic tri-calcium phosphate while KPS-14 also exhibited phytase activity (1.98 10-10 kcat). KPS-10 showed higher P-solubilization activity (128.5 µg/mL), IAA production (8.84 µg/mL), antifungal activity and also showed the production of two organic acids i.e., gluconic acid and lactic acid. Both strains produced three common AHLs: C6-HSL, 3oxo-C10-HSL, 3oxo-C12-HSL while some strain-specific AHLs (3OH-C5-HSL, 3OH-C6-HSL, C10-HSL specific to KPS-10 and 3OH-C6-HSL, C8-HSL, 3oxo-C9-HSL, 3OH-C9-HSL specific to KPS-14). Strains showed roots and rhizosphere colonization of potato and other non-homologous hosts up to one month. In planta AHLs-detection confirmed a likely role of AHLs during seedling growth and development where both extracted AHLs or bacteria inoculated roots showed extensive root hair. A significant increase in root/shoot lengths, root/ shoot fresh weights, root/shoot dry weights was observed by inoculation in different hosts. PGP-characteristics along with the AHLs-production signify the potential of both strains as candidate for the development of bio-inoculum for potato crop in specific and other crops in general. This inoculum will not only reduce the input of chemical fertilizer to the environment but also improve soil quality and plant growth.


Assuntos
Acil-Butirolactonas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Serratia/fisiologia , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/microbiologia , DNA Bacteriano , Ácidos Indolacéticos/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Desenvolvimento Vegetal , Percepção de Quorum/genética , RNA Ribossômico 16S , Rizosfera , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Serratia/genética , Microbiologia do Solo , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
15.
World J Microbiol Biotechnol ; 36(5): 70, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32342238

RESUMO

Quorum sensing (QS) in Aeromonas hydrophila is mainly based on the modulation of ahyI/R genes that regulates bacterial virulence determinant phenotypes. The use of QS inhibitors would be of particular interest in inhibiting bacterial pathogenicity and infections. In this study, we aimed to determine the effect of curcumin, a natural component of Curcuma longa, on the expression of QS regulating genes, ahyI and ahyR, as well as some QS regulated virulence characteristics in pathogenic fish isolated A. hydrophila strains. The minimum inhibitory concentration (MIC) of curcumin against bacteria was determined using the broth micro-dilution method and the expression of quorum sensing genes ahyI and ahyR among the bacteria treated with curcumin was determined using quantitative polymerase chain reaction (qPCR). Also, the effect of curcumin on some QS associated traits, including biofilm formation, swarming and swimming motility, proteolytic potential, and bacterial hemolytic activity was investigated. According to the results, curcumin, at a concentration of 32 µg/mL, significantly reduced the expression of both ahyI and ahyR genes among bacterial strains up to 64.2 and 91.0%, respectively. Moreover, curcumin efficiently inhibited bacterial biofilm formation, swimming, and swarming motility. Also, bacterial proteolytic activity was slightly reduced, while hemolytic activity was not significantly affected. This study demonstrated the use of curcumin to attenuate ahyI/R QS genes and several QS associated phenotypes in A. hydrophila. These findings indicate the therapeutic potential of curcumin as an anti-QS agent, to be used against A. hydrophila pathogenesis in aquaculture.


Assuntos
Aeromonas hydrophila/efeitos dos fármacos , Curcumina/farmacologia , Peixes/microbiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Fenótipo , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Aeromonas hydrophila/isolamento & purificação , Animais , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Curcuma/química , Testes de Sensibilidade Microbiana , Extratos Vegetais , Virulência/efeitos dos fármacos , Fatores de Virulência/genética
16.
Microbiologyopen ; 9(5): e1015, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32134563

RESUMO

Listeria monocytogenes is the causative agent of human listeriosis which has high hospitalization and mortality rates for individuals with weakened immune systems. The survival and dissemination of L. monocytogenes in adverse environments can be reinforced by the formation of biofilms. Therefore, this study aimed to understand the mechanisms underlying listerial biofilm development. Given that both nutrient availability and quorum sensing (QS) have been known as the factors influencing biofilm development, we hypothesized that the signal from a sentinel metabolite S-adenosylmethionine (SAM) and Agr-based QS could be synchronous in L. monocytogenes to modulate nutrient availability, the synthesis of extracellular polymeric substances (EPSs), and biofilm formation. We performed biofilm assays and quantitative real-time PCR to investigate how biofilm volumes and the expression of genes for the synthesis of EPS were affected by SAM supplementation, agr deletion, or both. We found that exogenously applied SAM induced biofilm formation and that the expression of genes encoding the EPS synthesis machineries was regulated by SAM and/or Agr QS. Moreover, the gene transcription of components acting in the methyl cycle for SAM synthesis and Agr QS was affected by the signals from the other system. In summary, we reveal an interconnection at the transcriptional level between metabolism and QS in L. monocytogenes and highlight the critical role of metabolite-oriented QS in biofilm development.


Assuntos
Biofilmes/crescimento & desenvolvimento , Matriz Extracelular de Substâncias Poliméricas/genética , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Listeria monocytogenes/fisiologia , Percepção de Quorum/genética , S-Adenosilmetionina/metabolismo , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/genética , Mutação , Peptidoglicano/genética , Peptidoglicano/metabolismo
17.
J Basic Microbiol ; 60(3): 216-230, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31994223

RESUMO

The aim of the present work was to investigate the antibacterial, antibiofilm, and antiquorum sensing activities of phytosynthesized silver nanoparticles (AgNPs) fabricated from Mespilus germanica extract against multidrug-resistant (MDR) Klebsiella pneumoniae strains. Fifty strains of K. pneumoniae were isolated from various clinical specimens. Biofilm-forming strains were identified using Congo red agar and polymerase chain reaction (PCR) techniques. Subsequently, the antibacterial activity of phytosynthesized AgNPs on MDR K. pneumoniae strains was investigated by broth microdilution assay and agar well-diffusion method. Finally (in the last step), the antibiofilm activity of phytosynthesized AgNPs was determined using microtiter plate assay and real-time PCR (RT-PCR) methods for the analysis of type 3 fimbriae (mrkA) and quorum-sensing system (luxS) gene expression. The results of this study showed that the phytosynthesized AgNPs had a spherical nanostructure with the mean size of 17.60 nm. The AgNPs exhibited dose-dependent antibacterial activity. The results of the microtiter plate and RT-PCR methods show that AgNPs inhibited the biofilm formation in MDR K. pneumoniae strains, and the expressions of mrkA and luxS genes were downregulated significantly in MDR strains after treatment with a subminimum inhibitory concentration of AgNPs. In conclusion, AgNPs effectively prevent the formation of biofilms and kill bacteria in established biofilms, which suggests that AgNPs might be a promising candidate for the prevention and treatment of biofilm-related infections caused by MDR K. pneumoniae strains.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Nanopartículas Metálicas/química , Rosaceae/química , Prata/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Química Verde , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/fisiologia , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Percepção de Quorum/genética , Prata/química
18.
PLoS One ; 14(1): e0210874, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30668584

RESUMO

Ochrobactrum spp. are ubiquitous bacteria attracting growing attention as important members of microbiomes of plants and nematodes and as a source of enzymes for biotechnology. Strain Ochrobactrum sp. A44T was isolated from the rhizosphere of a field-grown potato in Gelderland, the Netherlands. The strain can interfere with quorum sensing (QS) of Gram-negative bacteria through inactivation of N-acyl homoserine lactones (AHLs) and protect plant tissue against soft rot pathogens, the virulence of which is governed by QS. Phylogenetic analysis based on 16S rRNA gene alone and concatenation of 16S rRNA gene and MLSA genes (groEL and gyrB) revealed that the closest relatives of A44T are O. grignonense OgA9aT, O. thiophenivorans DSM 7216T, O. pseudogrignonense CCUG 30717T, O. pituitosum CCUG 50899T, and O. rhizosphaerae PR17T. Genomes of all six type strains were sequenced, significantly expanding the possibility of genome-based analyses in Ochrobactrum spp. Average nucleotide identity (ANIb) and genome-to-genome distance (GGDC) values for A44T and the related strains were below the single species thresholds (95% and 70%, respectively), with the highest scores obtained for O. pituitosum CCUG 50899T (87.31%; 35.6%), O. rhizosphaerae PR17T (86.80%; 34.3%), and O. grignonense OgA9aT (86.30%; 33.6%). Distinction of A44T from the related type strains was supported by chemotaxonomic and biochemical analyses. Comparative genomics revealed that the core genome for the newly sequenced strains comprises 2731 genes, constituting 50-66% of each individual genome. Through phenotype-to-genotype study, we found that the non-motile strain O. thiophenivorans DSM 7216T lacks a cluster of genes related to flagella formation. Moreover, we explored the genetic background of distinct urease activity among the strains. Here, we propose to establish a novel species Ochrobactrum quorumnocens, with A44T as the type strain (= LMG 30544T = PCM 2957T).


Assuntos
Ochrobactrum/genética , Solanum tuberosum/microbiologia , Proteínas de Bactérias/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Flagelos/genética , Genoma Bacteriano , Família Multigênica , Países Baixos , Ochrobactrum/classificação , Ochrobactrum/fisiologia , Filogenia , Percepção de Quorum/genética , Percepção de Quorum/fisiologia , RNA Ribossômico 16S/genética , Rizosfera , Especificidade da Espécie , Urease/genética
19.
Sci Rep ; 8(1): 1155, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348452

RESUMO

The threat of antibiotic resistant bacteria has called for alternative antimicrobial strategies that would mitigate the increase of classical resistance mechanism. Many bacteria employ quorum sensing (QS) to govern the production of virulence factors and formation of drug-resistant biofilms. Targeting the mechanism of QS has proven to be a functional alternative to conventional antibiotic control of infections. However, the presence of multiple QS systems in individual bacterial species poses a challenge to this approach. Quorum sensing inhibitors (QSI) and quorum quenching enzymes (QQE) have been both investigated for their QS interfering capabilities. Here, we first simulated the combination effect of QQE and QSI in blocking bacterial QS. The effect was next validated by experiments using AiiA as QQE and G1 as QSI on Pseudomonas aeruginosa LasR/I and RhlR/I QS circuits. Combination of QQE and QSI almost completely blocked the P. aeruginosa las and rhl QS systems. Our findings provide a potential chemical biology application strategy for bacterial QS disruption.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/farmacologia , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Metaloendopeptidases/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Combinação de Medicamentos , Sinergismo Farmacológico , Ligases/antagonistas & inibidores , Ligases/genética , Ligases/metabolismo , Metaloendopeptidases/biossíntese , Metaloendopeptidases/genética , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pirimidinonas/farmacologia , Percepção de Quorum/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Transativadores/antagonistas & inibidores , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triazóis/farmacologia
20.
Mol Plant Pathol ; 19(5): 1238-1251, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28921772

RESUMO

Bacteria from the genus Dickeya cause severe symptoms on numerous economically important plants. Dickeya solani is the Dickeya species most frequently found on infected potato plants in Europe. D. solani strains from different countries show high genetic homogeneity, but significant differences in their virulence level. Dickeya species possess two quorum sensing (QS) mechanisms: the Exp system based on classic N-acyl-homoserine lactone (AHL) signals and a specific system depending on the production and perception of a molecule of unknown structure, Virulence Factor Modulating (VFM). To study the interplay between these two QS systems, five D. solani strains exhibiting different virulence levels were selected. Mutants were constructed by inactivating genes coding for each QS system. Double mutants were obtained by simultaneous inactivation of genes coding for both QS systems. Most of the D. solani mutants showed an attenuation of chicory maceration and a decreased production of plant cell wall-degrading enzymes (PCWDEs) and motility, but to different degrees depending on the strain. The VFM-QS system seems to regulate virulence in both D. solani and Dickeya dadantii, but the AHL-QS system has greater effects in D. solani than in D. dadantii. The inactivation of both QS systems in D. solani did not reveal any additive effect on the tested features. The inactivation of vfm genes generally has a more dominant effect relative to that of exp genes. Thus, VFM- and AHL-QS systems do not work in synergy to modulate the production of diverse virulence factors and the ability to macerate plant tissue.


Assuntos
Enterobacteriaceae/patogenicidade , Percepção de Quorum , Fatores de Virulência/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Cichorium intybus/microbiologia , Enterobacteriaceae/enzimologia , Enterobacteriaceae/genética , Genes Bacterianos , Mutação/genética , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Tubérculos/microbiologia , Percepção de Quorum/genética , Solanum tuberosum/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA