Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Chromatogr ; 35(11): e5196, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34115393

RESUMO

In this work we developed a rapid and straightforward technique in which biosynthesized silver nanoparticles (Ag-NPs) were coated on a porous membrane utilizing electrical potential to extract perchlorate from seafood samples. The biosynthesized Ag-NPs were well characterized using UV-Vis. spectrophotometry, X-ray diffraction, and scanning electron microscopy. After extraction, analyses were performed using ion chromatography. The Ag-NP-coated porous polypropylene membrane shows higher extraction efficiency due to the high electrical conductivity of the Ag-NPs. The performance of this efficient technique was compared with those previously reported in the literature. The extraction variables that affect extraction of the target analyte and influence percentage recovery, such as pH of the sample solution, extraction time, and applied voltage, were investigated and optimized. The results demonstrated optimum conditions to achieve low detection limits [LODs (limits of detection)]: sample solution (pH = 6), short extraction time (10 min), and applied voltage (5 V). The developed method shows excellent linearity for perchlorate ion in the range from 0.001 to 350 µg L-1 with a coefficient of determination (r2 ) of 0.9991. The detection limit (LODs) and quantification limits (limits of quantification) were found to be 0.04 and 0.1225 µg kg-1 , respectively. The mean recovery percentages for three replicates of 10 different spiked fish samples by 3 µg g-1 of perchlorate were between 92.2 and 106.2%, with an observed relative standard deviation in the range of 0.8-3.7%. The proposed method is rapid, sensitive, inexpensive, environmentally friendly, and highly effective in extracting perchlorate from different seafood samples.


Assuntos
Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Percloratos , Alimentos Marinhos/análise , Prata/química , Animais , Cromatografia por Troca Iônica , Peixes , Limite de Detecção , Modelos Lineares , Ocimum basilicum/metabolismo , Percloratos/análise , Percloratos/isolamento & purificação , Extratos Vegetais/metabolismo , Reprodutibilidade dos Testes , Prata/metabolismo
2.
Curr Opin Biotechnol ; 27: 1-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24863890

RESUMO

Contamination of the vadose zone with various pollutants is a world-wide problem, and often technical or economic constraints impose remediation without excavation. In situ bioremediation in the vadose zone by bioventing has become a standard remediation technology for light spilled petroleum products. In this review, focus is given on new in situ bioremediation strategies in the vadose zone targeting a variety of other pollutants such as perchlorate, nitrate, uranium, chromium, halogenated solvents, explosives and pesticides. The techniques for biostimulation of either oxidative or reductive degradation pathways are presented, and biotransformations to immobile pollutants are discussed in cases of non-degradable pollutants. Furthermore, research on natural attenuation in the vadose zone is presented.


Assuntos
Biodegradação Ambiental , Poluentes Ambientais/isolamento & purificação , Poluentes Ambientais/metabolismo , Solo/química , Aerobiose , Anaerobiose , Cromo/isolamento & purificação , Cromo/metabolismo , Difusão , Poluentes Ambientais/análise , Substâncias Explosivas/isolamento & purificação , Substâncias Explosivas/metabolismo , Gases/química , Gases/isolamento & purificação , Nitratos/isolamento & purificação , Nitratos/metabolismo , Oxigênio/química , Percloratos/isolamento & purificação , Percloratos/metabolismo , Praguicidas/isolamento & purificação , Praguicidas/metabolismo , Urânio/isolamento & purificação , Urânio/metabolismo
3.
J Contam Hydrol ; 94(1-2): 13-33, 2007 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17614158

RESUMO

A detailed field pilot test was conducted to evaluate the use of edible oil emulsions for enhanced in situ biodegradation of perchlorate and chlorinated solvents in groundwater. Edible oil substrate (EOS) was injected into a line of ten direct push injection wells over a 2-day period to form a 15-m-long biologically active permeable reactive barrier (bio-barrier). Field monitoring results over a 2.5-year period indicate the oil injection generated strongly reducing conditions in the oil-treated zone with depletion of dissolved oxygen, nitrate, and sulfate, and increases in dissolved iron, manganese and methane. Perchlorate was degraded from 3100 to 20,000 microg/L to below detection (<4 microg/L) in the injection and nearby monitor wells within 5 days following the injection. Two years after the single emulsion injection, perchlorate was less than 6 microg/L in every downgradient well compared to an average upgradient concentration of 13,100 microg/L. Immediately after emulsion injection, there were large shifts in concentrations of chlorinated solvents and degradation products due to injection of clean water, sorption to the oil and adaptation of the in situ microbial community. Approximately 4 months after emulsion injection, concentrations of 1,1,1-trichloroethane (TCA), perchloroethene (PCE), trichloroethene (TCE) and their degradation products appeared to reach a quasi steady-state condition. During the period from 4 to 18 months, TCA was reduced from 30-70 microM to 0.2-4 microM during passage through the bio-barrier. However, 1-9 microM 1,1-dichloroethane (DCA) and 8-14 microM of chloroethane (CA) remained indicating significant amounts of incompletely degraded TCA were discharging from the oil-treated zone. During this same period, PCE and TCE were reduced with concurrent production of 1,2-cis-dichloroethene (cis-DCE). However, very little VC or ethene was produced indicating reductive dechlorination slowed or stopped at cis-DCE. The incomplete removal of TCA, PCE and TCE is likely associated with the short (5-20 days) hydraulic retention time of contaminants in the oil-treated zone. The permeability of the injection wells declined by 39-91% (average=68%) presumably due to biomass growth and/or gas production. However, non-reactive tracer tests and detailed monitoring of the perchlorate plume demonstrated that the permeability loss did not result in excessive flow bypassing around the bio-barrier. Contaminant transport and degradation within the bio-barrier was simulated using an advection-dispersion-reaction model where biodegradation rate was assumed to be linearly proportional to the residual oil concentration (Soil) and the contaminant concentration. Using this approach, the calibrated model was able to closely match the observed contaminant distribution. The calibrated model was then used to design a full-scale barrier to treat both ClO4 and chlorinated solvents.


Assuntos
Percloratos/metabolismo , Óleos de Plantas/química , Poluentes do Solo/metabolismo , Tricloroetanos/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Anaerobiose , Biodegradação Ambiental , Emulsões/química , Percloratos/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Óleo de Soja/química , Fatores de Tempo , Tricloroetanos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação
4.
Sci Total Environ ; 347(1-3): 35-45, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16084965

RESUMO

The cost of carbon substrates for microbial reduction of perchlorate (ClO(4)(-)) is central to the success and competitiveness of a sustainable bioremediation strategy for ClO(4)(-). This study explored the potential application of starch in combination with an amylolytic bacterial consortia and potato peel waste for ClO(4)(-) bioreduction. We obtained a potent amylolytic bacterial consortium that consisted of a Citrobacter sp. S4, Streptomyces sp. S2, Flavobacterium sp. S6, Pseudoxanthomonas sp. S5, Streptomyces sp. S7, and an Aeromonas sp. S8 identified by 16S rDNA sequencing. ClO(4)(-) concentration substantially decreased in purified starch medium inoculated with the amylolytic bacterial consortium and Dechlorosoma sp. perclace. Potato peel waste supported ClO(4)(-) reduction by perclace with the rate of ClO(4)(-) reduction being dependent on the amount of potato peels. Over 90% ClO(4)(-) removal was achieved in 4 days in a single time point experiment with 2% (w/v) potato peels waste. ClO(4)(-) reduction in a non-sterile 0.5% potato peel media inoculated with perclace occurred with an initial concentration of 10.14+/-0.04 mg L(-1) to 2.87+/-0.4 mg L(-1) (71.7% reduction) within 5 days. ClO(4)(-) was not detected in the cultures in 6 days. In a non-sterile 0.5% potato media without perclace, ClO(4)(-) depletion occurred slowly from an initial value of 9.99+/-0.15 mg L(-1) to 6.33+/-0.43 mg L(-1) (36.63% reduction) in 5 days. Thereafter, ClO(4)(-) was rapidly degraded achieving 77.1% reduction in 7 days and not detected in 9 days. No susbstantial reduction of ClO(4)(-) was observed in the sterile potato peel media without perclace in 7 days. Redox potential of the potato peel cultures was favorable for ClO(4)(-) reduction, decreasing to as low as -294 mV in 24 h. Sugar levels remained very low in cultures effectively reducing ClO(4)(-) and was substantially higher in sterilized controls. Our results indicate that potato peel waste in combination with amylolytic microorganisms and Dechlorosoma sp. perclace can be economically used to achieve complete ClO(4)(-) removal from water.


Assuntos
Percloratos/isolamento & purificação , Solanum tuberosum/metabolismo , Amido/metabolismo , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Bactérias/metabolismo , Biodegradação Ambiental , Resíduos de Alimentos , Oxirredução , Percloratos/metabolismo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA