Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(8): e2303175, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37985358

RESUMO

As prospective phototheranostic agents for cancer imaging and therapy, semiconducting organic molecule-based nanomedicines are developed. However, near-infrared (NIR) emission, and tunable type I (O2 • -) and type II (1O2) photoinduced reactive oxygen species (ROS) generation to boost cancer photoimmunotherapy remains a big challenge. Herein, a series of D-π-A structures, NIR absorbing perylene diimides (PDIs) with heavy atom bromide modification at the bay position of PDIs are prepared for investigating the optimal photoinduced type I/II ROS generation. The heavy atom effect has demonstrated a reduction of molecular ∆EST and promotion of the intersystem crossing processes of PDIs, enhancing the photodynamic therapy (PDT) efficacy. The modification of three bromides and one pyrrolidine at the bay position of PDI (TBDT) has demonstrated the best type I/II PDT performance by batch experiments and theoretical calculations. TBDT based nanoplatforms (TBDT NPs) enable type I/II PDT in the hypoxic tumor microenvironment as a strong immunogenic cell death (ICD) inducer. Moreover, TBDT NPs showing NIR emission allow in vivo bioimaging guided phototherapy of tumor. This work uses novel PDIs with adjustable type I/II ROS production to promote antitumor immune response and accomplish effective tumor eradication, consequently offering molecular guidelines for building high-efficiency ICD inducers.


Assuntos
Antineoplásicos , Imidas , Nanopartículas , Neoplasias , Perileno , Perileno/análogos & derivados , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio , Perileno/química , Perileno/uso terapêutico , Estudos Prospectivos , Nanopartículas/química , Fototerapia , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Linhagem Celular Tumoral , Microambiente Tumoral
2.
J Nat Prod ; 85(11): 2667-2674, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36346918

RESUMO

Chromatographic separation on the liquid-state fermented products produced by the fungal strain Alternaria alstroemeriae Km2286 isolated from the littoral medicinal herb Atriplex maximowicziana Makino resulted in the isolation of compounds 1-9. Structures were determined by spectroscopic analysis as four undescribed perylenequinones, altertromins A-D (1-4), along with altertoxin IV (5), altertoxin VIII (6), stemphyperylenol (7), tenuazonic acid (8), and allo-tenuazonic acid (9). Compounds 1-6 exhibited antiviral activities against Epstein-Barr virus (EBV) with EC50 values ranging from 0.17 ± 0.07 to 3.13 ± 0.31 µM and selectivity indices higher than 10. In an anti-neuroinflammatory assay, compounds 1-4, 6, and 7 showed inhibitory activity of nitric oxide production in lipopolysaccharide-induced microglial BV-2 cells, with IC50 values ranging from 0.33 ± 0.04 to 4.08 ± 0.53 µM without significant cytotoxicity. This is the first report to describe perylenequinone-type compounds with potent anti-EBV and anti-neuroinflammatory activities.


Assuntos
Alternaria , Anti-Inflamatórios , Antivirais , Atriplex , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Perileno , Plantas Medicinais , Quinonas , Humanos , Alternaria/química , Alternaria/isolamento & purificação , Atriplex/microbiologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/efeitos dos fármacos , Estrutura Molecular , Perileno/química , Perileno/isolamento & purificação , Perileno/farmacologia , Plantas Medicinais/microbiologia , Quinonas/química , Quinonas/isolamento & purificação , Quinonas/farmacologia , Ácido Tenuazônico/química , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/farmacologia
3.
J Colloid Interface Sci ; 628(Pt A): 924-934, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35963177

RESUMO

HYPOTHESIS: The droplet-medium interfaces of petroleum emulsions are often stabilized by the indigenous surface-active compounds (e.g., asphaltenes), causing undesired issues. While demulsification by electric field is a promising technique, fundamental study on the droplet-medium interface influenced by electric field is limited. Molecular dynamics (MD) simulations are expected to provide microscopic insights into the nano-scaled water/oil interface. METHODS: MD simulations are conducted to study the adsorption of model asphaltene molecules (represented by N-(1-hexylheptyl)-N'-(5-carboxylicpentyl) perylene-3,4,9,10-tetracarboxylic bisimide (C5Pe)) on a water-toluene interface under various strengths of electric field. The adsorption amount and structural feature of C5Pe molecules at water-toluene interface are investigated, and the effects of electric field and salt are discussed. FINDINGS: C5Pe molecules tend to adsorb on the water-oil interface. As the electric field strength increases, the adsorption amount first slightly increases (or remains constant) and then decreases. The electric field disrupts the compact π-π stacking between C5Pe molecules and increases their mobility, causing a dispersed distribution of the molecules with a wide range of orientations relative to the interface. Within the studied range, the addition of salt ions appears to stabilize the interface at high electric field. These results provide useful insights into the mechanism and feasibility of demulsification under electric field.


Assuntos
Perileno , Petróleo , Simulação de Dinâmica Molecular , Óleos/química , Perileno/química , Hidrocarbonetos Policíclicos Aromáticos , Tolueno , Água/química
4.
Angew Chem Int Ed Engl ; 61(8): e202114919, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34931419

RESUMO

Medicinal phytochemicals, such as artemisinin and taxol, have impacted the world, and hypericin might do so if its availability issue could be addressed. Hypericin is the hallmark component of Saint John's wort (Hypericum perforatum L.), an approved depression alleviator documented in the US, European, and British pharmacopoeias with its additional effectiveness against diverse cancers and viruses. However, the academia-to-industry transition of hypericin remain hampered by its low in planta abundance, unfeasible bulk chemical synthesis, and unclear biosynthetic mechanism. Here, we present a strategy consisting of the hypericin-structure-centered modification and reorganization of microbial biosynthetic steps in the repurposed cells that have been tamed to enable the designed consecutive reactions to afford hypericin (43.1 mg L-1 ), without acquiring its biosynthetic knowledge in native plants. The study provides a synthetic biology route to hypericin and establishes a platform for biosustainable access to medicinal phytochemicals.


Assuntos
Antracenos/metabolismo , Fungos/metabolismo , Hypericum/química , Perileno/análogos & derivados , Compostos Fitoquímicos/biossíntese , Antracenos/química , Fungos/química , Estrutura Molecular , Perileno/química , Perileno/metabolismo , Compostos Fitoquímicos/química
5.
J Ethnopharmacol ; 284: 114767, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710555

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hypericum perforatum L. is a traditional Chinese medicine used to sooth the liver, relieve depression, reduce body temperature, reduce sweating, and stimulate lactation. HP was extracted from Hypericum perforatum L. AIM OF STUDY: The antifatigue effects of hypericin were assessed in a series of experiments. MATERIALS AND METHODS: Six-to eight-week-old male ICR mice were raised in our lab. Mice were subjected to swimming training for 2 h, 6 days/week for 6 weeks. One hour prior to each swimming session, intraperitoneal injection of saline or HP (2 or 4 mg/kg) was performed. RESULTS: Compared with the fatigue model control group, HP was found to significantly increase the swimming time in forced swimming tests. The molecular mechanisms underlying the antifatigue effects were further revealed by analysing energy metabolism, the oxidant-antioxidant system and the inflammatory response. HP normalized changes in BLA, LDH, BUN, and CK, LG in the liver. In addition, multiple assays have confirmed that HP improved the MDA, T-AOC, GSH-PX and SOD activity, and the relevant signalling pathways involved in the antifatigue effects were clarified. Furthermore, HP improves the expression of pro- and anti-inflammatory cytokines in skeletal muscle. CONCLUSION: These results suggested that the anti-chronic fatigue effects of HP are likely achieved by normalizing energy metabolism and attenuating oxidative and inflammatory responses. Consequently, this study supports HP use in the clinic to alleviate chronic fatigue.


Assuntos
Antracenos/farmacologia , Fadiga/tratamento farmacológico , Hypericum/química , Perileno/análogos & derivados , Fitoterapia , Acetilcolina/metabolismo , Animais , Antracenos/química , Linhagem Celular , Sobrevivência Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mioblastos/efeitos dos fármacos , Estresse Oxidativo , Perileno/química , Perileno/farmacologia , Condicionamento Físico Animal , Distribuição Aleatória , Natação
6.
Mar Drugs ; 19(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34436285

RESUMO

Two new water-soluble phenanthroperylene quinones, gymnochrome H (2) and monosulfated gymnochrome A (3), as well as the known compounds gymnochrome A (4) and monosulfated gymnochrome D (5) were isolated from the deep-sea crinoid Hypalocrinus naresianus, which had been collected in the deep sea of Japan. The structures of the compounds were elucidated by spectroscopic analysis including HRMS, 1D 1H and 13C NMR, and 2D NMR. The absolute configuration was determined by ECD spectroscopy, analysis of J-couplings and ROE contacts, and DFT calculations. The configuration of the axial chirality of all isolated phenanthroperylene quinones (2-5) was determined to be (P). For gymnochrome H (2) and monosulfated gymnochrome A (3), a (2'S,2″R) configuration was determined, whereas for monosulfated gymnochrome D (5) a (2'R,2″R), configuration was determined. Acetylated quinones are unusual among natural products from an echinoderm and gymnochrome H (2) together with the recently reported gymnochrome G (1) represent the first isolated acetylated phenanthroperylene quinones.


Assuntos
Corantes/química , Equinodermos , Perileno/química , Animais , Organismos Aquáticos , Humanos , Japão , Espectroscopia de Ressonância Magnética , Oceanos e Mares , Fitoterapia
7.
Angew Chem Int Ed Engl ; 60(21): 11758-11762, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33724623

RESUMO

Extensive recent efforts have been put on the design of high-performance organic near-infrared (NIR) photothermal agents (PTAs), especially over NIR-II bio-window (1000-1350 nm). So far, the development is mainly limited by the rarity of molecules with good NIR-II response. Here, we report organic nanoparticles of intermolecular charge-transfer complexes (CTCs) with easily programmable optical absorption. By employing different common donor and acceptor molecules to form CTC nanoparticles (CT NPs), absorption peaks of CT NPs can be controllably tuned from the NIR-I to NIR-II region. Notably, CT NPs formed with perylene and TCNQ have a considerably red-shifted absorption peak at 1040 nm and achieves a good photothermal conversion efficiency of 42 % under 1064 nm excitation. These nanoparticles were used for antibacterial application with effective activity towards both Gram-negative and Gram-positive bacteria. This work opens a new avenue into the development of efficient PTAs.


Assuntos
Antibacterianos/farmacologia , Nanopartículas/química , Antibacterianos/química , Antibacterianos/efeitos da radiação , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Derivados de Benzeno/efeitos da radiação , Escherichia coli/efeitos dos fármacos , Raios Infravermelhos , Testes de Sensibilidade Microbiana , Nanopartículas/efeitos da radiação , Nitrilas/química , Nitrilas/farmacologia , Nitrilas/efeitos da radiação , Perileno/química , Perileno/farmacologia , Perileno/efeitos da radiação , Compostos Policíclicos/química , Compostos Policíclicos/farmacologia , Compostos Policíclicos/efeitos da radiação , Solubilidade , Staphylococcus aureus/efeitos dos fármacos , Eletricidade Estática/efeitos adversos , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Compostos de Sulfidrila/efeitos da radiação , Água/química
8.
Sci Rep ; 11(1): 3989, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597594

RESUMO

The polyphenol content and antioxidant capacity of hyperforin and hypericin-standardized H. perforatum L. extracts may vary due to the harvest time. In this work, ethanol and ethanol-water extracts of air-dried and lyophilized flowers of H. perforatum L., collected throughout a vegetation season in central Poland, were studied. Air-dried flowers extracts had higher polyphenol (371 mg GAE/g) and flavonoid (160 mg CAE/g) content, DPPH radical scavenging (1672 mg DPPH/g), ORAC (5214 µmol TE/g) and FRAP (2.54 mmol Fe2+/g) than lyophilized flowers extracts (238 mg GAE/g, 107 mg CAE/g, 1287 mg DPPH/g, 3313 µmol TE/g and 0.31 mmol Fe2+/g, respectively). Principal component analysis showed that the collection date influenced the flavonoid and polyphenol contents and FRAP of ethanol extracts, and DPPH and ORAC values of ethanol-water extracts. The ethanol extracts with the highest polyphenol and flavonoid content protected human erythrocytes against bisphenol A-induced damage. Both high field and benchtop NMR spectra of selected extracts, revealed differences in composition caused by extraction solvent and raw material collection date. Moreover, we have shown that benchtop NMR can be used to detect the compositional variation of extracts if the assignment of signals is done previously.


Assuntos
Antioxidantes/química , Flavonoides/química , Flores/química , Hypericum/química , Extratos Vegetais/química , Polifenóis/química , Antracenos/química , Antioxidantes/farmacologia , Compostos Benzidrílicos/química , Etanol/química , Humanos , Perileno/análogos & derivados , Perileno/química , Fenóis/química , Floroglucinol/análogos & derivados , Floroglucinol/química , Extratos Vegetais/farmacologia , Polônia , Polifenóis/farmacologia , Análise de Componente Principal , Terpenos/química
9.
ACS Appl Bio Mater ; 4(6): 5008-5015, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35007049

RESUMO

The design and synthesis of water-soluble phototherapeutic agents with near-infrared (NIR) fluorescence emission is highly desirable for cancer diagnosis and treatment. Here, we report the construction of an amphiphilic perylene-derived photosensitizer, AP. AP shows NIR emission with large Stokes shift (130 nm) and high 1O2 quantum yield (22%). It can self-assemble into nanoparticles in aqueous solution with quenched fluorescence emission due to aggregation-induced quenching. Upon membrane anchoring, AP is able to disassemble into free monomer molecules and specifically "light up" the cell membrane without the usually required washing procedures. Furthermore, AP is subsequently used for the efficient photodynamic therapy against cancer cells and solid tumors. The in vitro and in vivo experiments clearly indicate that AP is suitable for biological imaging and can serve as a promising photosensitizer for tumor suppression.


Assuntos
Corantes Fluorescentes , Nanopartículas , Perileno , Fármacos Fotossensibilizantes , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Embrião não Mamífero , Fluorescência , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Humanos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias/tratamento farmacológico , Imagem Óptica , Perileno/administração & dosagem , Perileno/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Superóxidos/metabolismo , Peixe-Zebra
10.
ACS Appl Bio Mater ; 4(4): 3658-3669, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35014451

RESUMO

The use of nanocarriers for intracellular transport of actives has been extensively studied in recent years and represents a central area of nanomedicine. The main novelty of this paper lies on the use of nanogels formed by a low-molecular-weight gelator (1). Here, non-polymeric, molecular nanogels are successfully used for intracellular transport of two photodynamic therapy (PDT) agents, Rose Bengal (RB) and hypericin (HYP). The two photosensitizers (PSs) exhibit different drawbacks for their use in clinical applications. HYP is poorly water-soluble, while the cellular uptake of RB is hindered due to its dianionic character at physiological pH values. Additionally, both PSs tend to aggregate precluding an effective PDT. Despite the different nature of these PSs, nanogels from gelator 1 provide, in both cases, an efficient intracellular transport into human colon adenocarcinoma cells (HT-29) and a notably improved PDT efficiency, as assessed by confocal laser scanning microscopy and flow cytometry. Furthermore, no significant dark toxicity of the nanogels is observed, supporting the biocompatibility of the delivery system. The developed nanogels are highly reproducible due to their non-polymeric nature, and their synthesis is easily scaled up. The results presented here thus confirm the potential of molecular nanogels as valuable nanocarriers, capable of entrapping both hydrophobic and hydrophilic actives, for PDT of cancer.


Assuntos
Antracenos/química , Nanogéis/química , Perileno/análogos & derivados , Fármacos Fotossensibilizantes/química , Rosa Bengala/química , Antracenos/metabolismo , Antracenos/farmacologia , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Humanos , Luz , Microscopia Confocal , Perileno/química , Perileno/metabolismo , Perileno/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Rosa Bengala/metabolismo , Rosa Bengala/farmacologia , Oxigênio Singlete/metabolismo
11.
Chem Asian J ; 15(21): 3462-3468, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32909355

RESUMO

Hypocrellin B (HB) derived from naturally produced hypocrellins has attracted considerable attention in photodynamic therapy (PDT) because of its excellent photosensitive properties. However, the weak absorption within a "phototherapy window" (600-900 nm) and poor water solubility of HB have limited its clinical application. In this study, two HB derivatives (i. e., HE and HF) were designed and synthesized for the first time by introducing two different substituent groups into the HB structure. The obtained derivatives showed a broad absorption band covering the near-infrared (NIR) region, NIR emission (peaked at 805 nm), and singlet oxygen quantum yields of 0.27/0.31. HE-PEG-NPs were also prepared using 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-mPEG2000) to achieve excellent dispersion in water and further explored their practical applications. HE-PEG-NPs not only retained their 1 O2 -generating ability, but also exhibited a photothermal conversion efficiency of 25.9%. In vitro and in vivo therapeutic results revealed that the synergetic effect of HE-PEG-NPs on PDT and photothermal therapy (PTT) could achieve a good performance. Therefore, HE-PEG-NPs could be regarded as a promising phototheranostic agent.


Assuntos
Antineoplásicos/farmacologia , Perileno/análogos & derivados , Fenol/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Terapia Fototérmica , Quinonas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Raios Infravermelhos , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Camundongos , Imagem Óptica , Perileno/síntese química , Perileno/química , Perileno/farmacologia , Fenol/síntese química , Fenol/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Quinonas/síntese química , Quinonas/química , Nanomedicina Teranóstica
12.
Anal Biochem ; 607: 113835, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32739347

RESUMO

A reversible fluorescence probe for acetylcholinesterase activity detection was developed based on water soluble perylene derivative, N,N'-di(2-aspartic acid)-perylene-3,4,9,10-tetracarboxylic diimide (PASP). Based on the photo-induced electron transfer (PET), PASP fluorescence in aqueous is quenched after combining with copper ions (Cu2+). Acetylcholinesterase (AChE) is well known to catalyze the hydrolysis of acetylcholine (ATCh) to produce thiocholine, whose affinity is strong enough to capture Cu2+ by thiol (-SH) group from the complex PASP-Cu, resulting in the fluorescence signal of PASP recovers up to 90%. This optical switch is highly sensitive depended on the coordination and dissociation between PASP and Cu2+. We proposed its application for AChE activity detection, as well as its inhibitor screening. According to the change of fluorescence intensity, quantifying the detection limit of AChE was 1.78 mU·mL-1. Classical inhibitors, tacrine and organophosphate pesticide diazinon, were further evaluated for drug screening. The IC50 value of tacrine was calculated to be 0.43 µM, and the detection limit of diazinon was 0.22 µM. Both of these performances were much better than previous results, revealing our probe is sensitive and reversible for screening applications.


Assuntos
Acetilcolinesterase/análise , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Diazinon/química , Diazinon/metabolismo , Corantes Fluorescentes/química , Perileno/química , Tacrina/química , Tacrina/metabolismo , Ligação Competitiva , Inibidores da Colinesterase/farmacologia , Diazinon/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Espectrometria de Fluorescência , Especificidade por Substrato , Tacrina/farmacologia
13.
Photochem Photobiol Sci ; 19(5): 620-630, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32248218

RESUMO

Hypericin (Hyp) is considered a promising photosensitizer for Photodynamic Therapy (PDT), due to its high hydrophobicity, affinity for cell membranes, low toxicity and high photooxidation activity. In this study, Hyp photophysical properties and photodynamic activity against melanoma B16-F10 cells were optimized using DPPC liposomes (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) as a drug delivery system. This nanoparticle is used as a cell membrane biomimetic model and solubilizes hydrophobic drugs. Hyp oxygen singlet lifetime (τ) in DPPC was approximately two-fold larger than that in P-123 micelles (Pluronic™ surfactants), reflecting a more hydrophobic environment provided by the DPPC liposome. On the other hand, singlet oxygen quantum yield values (ΦΔ1O2) in DPPC and P-123 were similar; Hyp molecules were preserved as monomers. The Hyp/DPPC liposome aqueous dispersion was stable during fluorescence emission and the liposome diameter remained stable for at least five days at 30 °C. However, the liposomes collapsed after the lyophilization/rehydration process, which was resolved by adding the lyoprotectant Trehalose to the liposome dispersion before lyophilization. Cell viability of the Hyp/DPPC formulation was assessed against healthy HaCat cells and high-metastatic melanoma B16-F10 cells. Hyp incorporated into the DPPC carrier presented a higher selectivity index than the Hyp sample previously solubilized in ethanol under the illumination effect. Moreover, the IC50 was lower for Hyp in DPPC than for Hyp pre-solubilized in ethanol. These results indicate the potential of the formulation of Hyp/DPPC for future biomedical applications in PDT treatment.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Perileno/análogos & derivados , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , 1,2-Dipalmitoilfosfatidilcolina/química , Antracenos , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Composição de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Humanos , Hypericum/química , Lipossomos/química , Melanoma/patologia , Estrutura Molecular , Perileno/síntese química , Perileno/química , Perileno/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Células Tumorais Cultivadas
14.
Chem Biodivers ; 17(1): e1900596, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31782894

RESUMO

Within Sicilian flora, the genus Hypericum (Guttiferae) includes 10 native species, the most popular of which is H. perforatum. Hypericum's most investigated active compounds belong to naphtodianthrones (hypericin, pseudohypericin) and phloroglucinols (hyperforin, adhyperforin), and the commercial value of the drug is graded according to its total hypericin content. Ethnobotanical sources attribute the therapeutic properties recognized for H. perforatum, also to other Hypericum species. However, their smaller distribution inside the territory suggests that an industrial use of such species, when collected from the wild, would result in an unacceptable depletion of their natural stands. This study investigated about the potential pharmacological properties of 48 accessions from six native species of Hypericum, including H. perforatum and five 'minor' species, also comparing, when possible, wild and cultivated sources. The variability in the content of active metabolites was remarkably high, and the differences within the species were often comparable to the differences among species. No difference was enlightened between wild and cultivated plants. A carefully planned cultivation of Hypericum seems the best option to achieve high and steady biomass yields, but there is a need for phytochemical studies, aimed to identify for multiplication the genotypes with the highest content of the active metabolites.


Assuntos
Hypericum/química , Perileno/análogos & derivados , Floroglucinol/análogos & derivados , Terpenos/química , Antracenos , Hypericum/metabolismo , Perileno/química , Perileno/metabolismo , Floroglucinol/química , Floroglucinol/metabolismo , Sicília , Especificidade da Espécie , Terpenos/metabolismo
15.
Mater Sci Eng C Mater Biol Appl ; 106: 110230, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31753349

RESUMO

There is an urgent need for new antibacterial strategies to overcome the emergence of antibiotic resistance. Antibacterial photodynamic therapy (APDT) may be an effective method to deliver photosensitizers for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. Here, we report that the photosensitizer hypocrellin A (HA) loaded into lipase-sensitive methoxy poly (ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) micelles showed high anti-MRSA activity in vitro and in vivo by PDT. Once the micelles come into contact with bacteria that secrete lipase, the PCL is degraded to release HA. Our results showed that the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of mPEG-PCL/HA micelles after light irradiation were 0.69 and 1.38 mg/L (HA concentration), respectively. In the dark, the MIC and MBC of the micelles were 250 and 500 mg/L (HA concentration), respectively. The fluorescent stain results further demonstrated the photodynamic antibacterial activity of mPEG-PCL/HA micelles. The survival rate of mice subjected to experimental acute peritonitis increased to 86% after treated with the micelles. The polymeric micelles showed low hemolytic activity and biocompatibility, simultaneously preventing aggregation in vivo and enhancing the water solubility of HA. Thus, the photosensitizer HA loaded micelles could be used as APDT for infections caused by bacteria without antibiotic resistance.


Assuntos
Lipase/química , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Perileno/análogos & derivados , Polímeros/química , Quinonas/química , Quinonas/uso terapêutico , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Portadores de Fármacos/química , Feminino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Micelas , Testes de Sensibilidade Microbiana , Perileno/química , Perileno/uso terapêutico , Fenol , Fotoquimioterapia
16.
ACS Appl Mater Interfaces ; 11(48): 44989-44998, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31755268

RESUMO

Tumor hypoxia severely limits the therapeutic efficacy of solid tumors in photodynamic therapy. One strategy is to develop photosensitizers with simultaneously high efficiency in photodynamic (PDT) and photothermal therapies (PTT) in a single natural-origin phototheranostic agent to overcome this problem. However, less attention has been paid to the natural-origin phototheranostic agent with high PDT and PTT efficiencies even though they have negligible side effects and are environmentally sustainable in comparison with many reported phototheranostic agents. In addition, almost all clinical applied photosensitizers are of natural origin so far. Herein, we synthesized a natural product-based hypocrellin derivative (AETHB), with a high singlet oxygen quantum yield of 0.64 as an efficient photosensitizer different from commercially available porphyrin-based photosensitizers. AETHB is further assembled with human serum albumin to construct nanoparticles (HSA-AETHB NPs) with a high photothermal conversion efficiency (more than 50%). As-prepared HSA-AETHB NPs have shown good water solubility and biocompatibility, pH and light stability, wide absorption (400-750 nm), and NIR emission centered at 710 nm. More importantly, HSA-AETHB NPs can be applied for fluorescent/photoacoustic dual-mode imaging and simultaneously highly efficient PDT/PTT in hypoxic solid tumors. Therefore, this natural-origin multifunctional phototheranostic agent is showing very promising for effective, precise, and safe cancer therapy in clinical applications.


Assuntos
Hipertermia Induzida , Neoplasias/terapia , Perileno/análogos & derivados , Fotoquimioterapia , Quinonas/química , Albumina Sérica/química , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Raios Infravermelhos , Camundongos , Camundongos Nus , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Perileno/administração & dosagem , Perileno/química , Fenol , Quinonas/administração & dosagem , Nanomedicina Teranóstica
17.
Int J Mol Sci ; 20(12)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248208

RESUMO

Photodynamic therapy with hypericin (HY-PDT) and hyperforin (HP) could be treatment modalities for colorectal cancer (CRC), but evidence of their effect on angiogenic factors in CRC is missing. Convenient experimental model utilization is essential for angiogenesis research. Therefore, not only 2D cell models, but also 3D cell models and micro-tumors were used and compared. The micro-tumor extent and interconnection with the chorioallantoic membrane (CAM) was determined by histological analyses. The presence of proliferating cells and HY penetration into the tumor mass were detected by fluorescence microscopy. The metabolic activity status was assessed by an colorimetric assay for assessing cell metabolic activity (MTT assay) and HY accumulation was determined by flow cytometry. Pro-angiogenic factor expression was determined by Western blot and quantitative real-time polymerase chain reaction (RT-qPCR). We confirmed the cytotoxic effect of HY-PDT and HP and showed that their effect is influenced by structural characteristics of the experimental model. We have pioneered a method for analyzing the effect of HP and cellular targeted HY-PDT on pro-angiogenic factor expression in CRC micro-tumors. Despite the inhibitory effect of HY-PDT and HP on CRC, the increased expression of some pro-angiogenic factors was observed. We also showed that CRC experimental micro-tumors created on quail CAM could be utilized for analyses of gene and protein expression.


Assuntos
Indutores da Angiogênese/farmacologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neovascularização Patológica/metabolismo , Perileno/análogos & derivados , Floroglucinol/análogos & derivados , Fotoquimioterapia , Terpenos/farmacologia , Indutores da Angiogênese/química , Animais , Antracenos , Biomarcadores , Linhagem Celular Tumoral , Embrião de Galinha , Membrana Corioalantoide/patologia , Neoplasias Colorretais/terapia , Modelos Animais de Doenças , Expressão Gênica , Humanos , Neovascularização Patológica/terapia , Perileno/química , Perileno/farmacologia , Floroglucinol/química , Floroglucinol/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Terpenos/química
18.
J Microencapsul ; 36(6): 513-522, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31190600

RESUMO

The purpose of this study was to assess the antioxidant and anti-inflammatory potential of liposomal formulations enriched with Hypericum hookerianum (Hyp) aqueous extracts. Cotyledon segments derived from protocorms of H. hookerianum were cultured on Murashige and Skoog (MS) media supplemented with Kinetin (KN, 1 mgl-1) and Naphthalene acetic acid (NAA, 0.1 mgl-1) to induce hypericin-rich red shoots (HypR, 0.87 mg/G DW). Highly stable liposomes (-29.4 mV) were successfully developed which encapsulated 63 ± 0.8% Hyp extracts, respectively. MTT assay subsequently confirmed the biocompatibility of liposome compositions using fibroblast cell lines. This work also evaluated acute toxicity of L-HypR and L-HypG formulations using Danio rerio (Zebrafish) embryos for 96 hpf. The expression of antioxidant and anti-inflammatory genes were found to be upregulated for L-HypR than L-HypG (green shoots without hypericin) formulations. These properties of L-HypR may be extremely useful for incorporating lipophilic substances into the food or pharmaceutical industry.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Hypericum/química , Perileno/análogos & derivados , Extratos Vegetais/farmacologia , Animais , Antracenos , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Antioxidantes/administração & dosagem , Antioxidantes/química , Linhagem Celular , Humanos , Hypericum/crescimento & desenvolvimento , Lipossomos/química , Perileno/administração & dosagem , Perileno/química , Perileno/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Peixe-Zebra/embriologia
19.
Langmuir ; 35(25): 8228-8237, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31140812

RESUMO

Photodynamic therapy (PDT) of hypericin (Hyp) is hampered by poor water solubility and photostability. Incorporation of photosensitizers into nanocarriers has been designed to solve these issues. Herein, SWNH-Hyps nanohybrids were first fabricated by loading hypericin on the surface of single-walled carbon nanohorns (SWNHs) through ??? interaction and exhibited high solubility and stability in aqueous water. SWNH-Hyps could be utilized for a single platform for cancer therapy because it could simultaneously generate enough reactive oxygen species and hyperthermia using light irradiation. Moreover, the SWNHs not only improved water solubility, photostability, and therapy effects of Hyp but also protected it from light degradation. SWNH-Hyps could effectively ablate 4T1 cells by photodynamic/photothermal synergistic therapy upon 590 and 808 nm light irradiations compared with PDT. Furthermore, remarkable tumor cell death as well as tumor growth inhibition was proved via photothermal therapy and PDT of SWNH-Hyps under 590 and 808 nm light irradiations, which demonstrated that synergistic anticancer ability of SWNH-Hyps was better than that of free Hyp in vivo. Such a simple and facile adsorption method improved water solubility of Hyp and then enhanced its therapy effect, which displays that SWNHs can be hopefully used in medicines in the future.


Assuntos
Carbono/química , Nanopartículas/química , Perileno/análogos & derivados , Fotoquimioterapia/métodos , Antracenos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Hipertermia Induzida , Nanopartículas/efeitos adversos , Perileno/química , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo
20.
Int J Biol Macromol ; 134: 622-630, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31047931

RESUMO

Thrombin, a multifunctional serine protease responsible for the proteolytic hydrolysis of soluble fibrinogen, plays a pivotal role in the blood coagulation cascade. Currently, thrombin inhibitor therapy has been recognized as an effective therapeutic strategy for the prevention and treatment of thrombotic diseases. In this study, the inhibitory effects of natural constituents in St. John's Wort against human thrombin are carefully investigated by a fluorescence-based biochemical assay. The results clearly demonstrate that most of naphthodianthrones, flavonoids and biflavones exhibit strong to moderate inhibition on human thrombin. Among all tested compounds, hypericin shows the most potent inhibitory capability against thrombin, with the IC50 value of 3.00 µM. Further investigation on inhibition kinetics demonstrates that hypericin is a potent and reversible inhibitor against thrombin-mediated Z-GGRAMC acetate hydrolysis, with the Ki value of 2.58 µM. Inhibition kinetic analyses demonstrate that hypericin inhibits thrombin-mediated Z-GGRAMC acetate hydrolysis in a mixed manner, which agrees well with the results from docking simulations that hypericin can bind on both catalytic cavity and anion binding exosites. All these findings suggest that hypericin is a natural thrombin inhibitor with a unique dianthrone skeleton, which can be used as a good candidate to develop novel thrombin inhibitors with improved properties.


Assuntos
Fibrinolíticos/química , Fibrinolíticos/farmacologia , Hypericum/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antracenos , Relação Dose-Resposta a Droga , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Perileno/análogos & derivados , Perileno/química , Perileno/farmacologia , Proteólise , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA