Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(12)2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38136959

RESUMO

Red perilla is an important medicinal plant used in Kampo medicine. The development of elite varieties of this species is urgently required. Medicinal compounds are generally considered target traits in medicinal plant breeding; however, selection based on compound phenotypes (i.e., conventional selection) is expensive and time consuming. Here, we propose genomic selection (GS) and marker-assisted selection (MAS), which use marker information for selection, as suitable selection methods for medicinal plants, and we evaluate the effectiveness of these methods in perilla breeding. Three breeding populations generated from crosses between one red and three green perilla genotypes were used to elucidate the genetic mechanisms underlying the production of major medicinal compounds using quantitative trait locus analysis and evaluating the accuracy of genomic prediction (GP). We found that GP had a sufficiently high accuracy for all traits, confirming that GS is an effective method for perilla breeding. Moreover, the three populations showed varying degrees of segregation, suggesting that using these populations in breeding may simultaneously enhance multiple target traits. This study contributes to research on the genetic mechanisms of the major medicinal compounds of red perilla, as well as the breeding efficiency of this medicinal plant.


Assuntos
Perilla , Plantas Medicinais , Locos de Características Quantitativas , Perilla/genética , Melhoramento Vegetal/métodos , Fenótipo , Genômica/métodos
2.
Molecules ; 28(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959704

RESUMO

The flavonoids from Perilla leaves were extracted using flash extraction assisted by ultrasonic extraction with ethanol. Subsequently, macroporous resin was employed for the isolation and purification of these flavonoids, followed by an investigation into their antioxidant activity. The process conditions for the extraction of flavonoids from Perilla leaves were designed and optimized using a one-way experiment combined with a response surface methodology. The optimal extraction conditions were determined as follows: the liquid-solid ratio was 20:1, ethanol volume fraction of 60%, ultrasound temperature of 60 °C, ultrasound time of 10 min and flash evaporation time of 60 s. The optimal extraction rate of flavonoids is 9.8 mg/g. In terms of separation and purification, a high-performance macroporous resin (HPD450 resin) with high purification efficiency was selected through static analysis and adsorption experiments. The optimal enrichment conditions were as follows: loading concentration of 0.06 mg/mL, optimal loading concentration of 20 mL, elution concentration of 70% and 76 mL, providing a reference for the further development and utilization of Perilla leaf flavonoids.


Assuntos
Flavonoides , Perilla , Antioxidantes/farmacologia , Folhas de Planta , Extratos Vegetais , Etanol
3.
Molecules ; 28(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37894678

RESUMO

Perilla frutescens leaves are hypothesized to possess antioxidant and amyloid-ß (Aß) aggregation inhibitory properties primarily due to their polyphenol-type compounds. While these bioactivities fluctuate daily, the traditional methods for quantifying constituent contents and functional properties are both laborious and impractical for immediate field assessments. To address this limitation, the present study introduces an expedient approach for on-site analysis, employing fluorescence spectra obtained through excitation light irradiation of perilla leaves. Standard analytical techniques were employed to evaluate various constituent contents (chlorophyl (Chl), total polyphenol content (TPC), total flavonoid content (TFC), and rosmarinic acid (RA)) and functional attributes (DPPH radical scavenging activity, ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and Aß aggregation inhibitory activity). Correlations between the fluorescence spectra and these parameters were examined using normalized difference spectral index (NDSI), ratio spectral index (RSI), and difference spectral index (DSI) analyses. The resulting predictive model exhibited a high coefficient of determination, with R2 values equal to or greater than 0.57 for constituent contents and 0.49 for functional properties. This approach facilitates the convenient, simultaneous, and nondestructive monitoring of both the chemical constituents and the functional capabilities of perilla leaves, thereby simplifying the determination of optimal harvest times. The model derived from this method holds promise for real-time assessments, indicating its potential for the simultaneous evaluation of both constituents and functionalities in perilla leaves.


Assuntos
Perilla frutescens , Perilla , Perilla frutescens/química , Antioxidantes/química , Perilla/química , Polifenóis/análise , Extratos Vegetais/química , Peptídeos beta-Amiloides/análise , Folhas de Planta/química
4.
Genes (Basel) ; 14(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37895247

RESUMO

Perilla is a key component of Korean food. It contains several plant-specialized metabolites that provide medical benefits. In response to an increased interest in healthy supplement food from the public, people are focusing on the properties of Perilla. Nevertheless, unlike rice and soybeans, there are few studies based on molecular genetics on Perilla, so it is difficult to systematically study the molecular breed. The wild Perilla, Perilla citriodora 'Jeju17', was identified a decade ago on the Korean island of Jeju. Using short-reads, long-reads, and Hi-C, a chromosome-scale genome spanning 676 Mbp, with high contiguity, was assembled. Aligning the 'Jeju17' genome to the 'PC002' Chinese species revealed significant collinearity with respect to the total length. A total of 31,769 coding sequences were predicted, among which 3331 were 'Jeju17'-specific. Gene enrichment of the species-specific gene repertoire highlighted environment adaptation, fatty acid metabolism, and plant-specialized metabolite biosynthesis. Using a homology-based approach, genes involved in fatty acid and lipid triacylglycerol biosynthesis were identified. A total of 22 fatty acid desaturases were found and comprehensively characterized. Expression of the FAD genes in 'Jeju17' was examined at the seed level, and hormone signaling factors were identified. The results showed that the expression of FAD genes in 'Jeju17' at the seed level was high 25 days after flowering, and their responses of hormones and stress were mainly associated with hormone signal transduction and abiotic stress via cis-elements patterns. This study presents a chromosome-level genome assembly of P. citriodora 'Jeju17', the first wild Perilla to be sequenced from the Korean island of Jeju. The analyses provided can be useful in designing ALA-enhanced Perilla genotypes in the future.


Assuntos
Perilla , Humanos , Perilla/genética , Perilla/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Melhoramento Vegetal , Hormônios , República da Coreia
5.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834377

RESUMO

The herbal medicine perilla leaf extract (PLE) exhibits various pharmacological properties. We showed that PLE inhibits the viability of oral squamous cell carcinoma (OSCC) cells. HPLC analysis revealed that caffeic acid (CA) and rosmarinic acid (RA) are the two main phenols in PLE, and reduced OSCC cell viability in a dose-dependent manner. The optimal CA/RA combination ratio was 1:2 at concentrations of 300-500 µM but had no synergistic inhibitory effect on the viability of OSCC cells. CA, RA, or their combination effectively suppressed interleukin (IL)-1ß secretion by OSCC OC3 cells. Long-term treatment with CA and CA/RA mixtures, respectively, induced EGFR activation, which might cause OC3 cells to become EGFR-dependent and consequently increased the sensitivity of OC3 cells to a low dose (5 µM) of the EGFR tyrosine kinase inhibitor gefitinib. Chronic treatment with CA, RA, or their combination exhibited an inhibitory effect more potent than that of low-dose (1 µM) cisplatin on the colony formation ability of OSCC cells; this may be attributed to the induction of apoptosis by these treatments. These findings suggest that perilla phenols, particularly CA and RA, can be used as adjuvant therapies to improve the efficacy of chemotherapy and EGFR-targeted therapy in OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Perilla , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Receptores ErbB , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
6.
Gene ; 889: 147808, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37722611

RESUMO

Perilla (Perilla frutescens) is a potential specific oilseed crop with an extremely high α-linolenic acid (ALA) content in its seeds. AP2/ERF transcription factors (TFs) play important roles in multiple biological processes. However, limited information is known about the regulatory mechanism of the AP2/ERF family in perilla's oil accumulation. In this research, we identified 212 AP2/ERF family members in the genome of perilla, and their domain characteristics, collinearity, and sub-genome differentiation were comprehensively analyzed. Transcriptome sequencing revealed that genes encoding key enzymes involved in oil biosynthesis (e.g., ACCs, KASII, GPAT, PDAT and LPAAT) were up-regulated in the high-oil variety. Moreover, the endoplasmic reticulum-localized FAD2 and FAD3 were significantly up-regulated in the high-ALA variety. To investigate the roles of AP2/ERFs in lipid biosynthesis, we conducted a correlation analysis between non-redundant AP2/ERFs and key lipid metabolism genes using WGCNA. A significant correlation was found between 36 AP2/ERFs and 90 lipid metabolism genes. Among them, 12 AP2/ERFs were identified as hub genes and showed significant correlation with lipid synthase genes (e.g., FADs, GPAT and ACSL) and key regulatory TFs (e.g., LEC2, IAA, MYB, UPL3). Furthermore, gene expression analysis identified three AP2/ERFs (WRI, ABI4, and RAVI) potentially playing an important role in the regulation of oil accumulation in perilla. Our study suggests that PfAP2/ERFs are important regulatory TFs in the lipid biosynthesis pathway, providing a foundation for the molecular understanding of oil accumulation in perilla and other oilseed crops.


Assuntos
Perilla frutescens , Perilla , Perilla frutescens/genética , Perilla frutescens/metabolismo , Perilla/genética , Perilla/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Sementes/genética , Família Multigênica , Óleos de Plantas , Lipídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
7.
Molecules ; 28(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37570851

RESUMO

Perilla frutescens is an annual herb of the Labiatae family and is widely grown in several countries in Asia. Perilla frutescens is a plant that is used medicinally in its entirety, as seen in its subdivision into perilla seeds, perilla stalks, and perilla leaves, which vary more markedly in their chemical composition. Several studies have shown that Perilla frutescens has a variety of pharmacological effects, including anti-inflammatory, antibacterial, detoxifying, antioxidant, and hepatoprotective. In the absence of a review of Perilla frutescens for the treatment of cancer. This review provides an overview of the chemical composition and molecular mechanisms of Perilla frutescens for cancer treatment. It was found that the main active components of Perilla frutescens producing cancer therapeutic effects were perilla aldehyde (PAH), rosmarinic acid (Ros A), lignan, and isoestrogen (IK). In addition to these, extracts of the leaves and fruits of Perilla frutescens are also included. Among these, perilla seed oil (PSO) has a preventive effect against colorectal cancer due to the presence of omega-3 polyunsaturated fatty acids. This review also provides new ideas and thoughts for scientific innovation and clinical applications related to Perilla frutescens.


Assuntos
Ácidos Graxos Ômega-3 , Neoplasias , Perilla frutescens , Perilla , Perilla frutescens/química , Perilla/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes , Folhas de Planta , Neoplasias/tratamento farmacológico
8.
Eur J Nutr ; 62(6): 2509-2525, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37160801

RESUMO

PURPOSE: Obesity has become a serious public health problem with its alarmingly increasing prevalence worldwide, prompting researchers to create and develop several anti-obesity drugs. Here, we aimed to investigate the protective effects of perilla seed oil (PSO), sunflower oil (SFO), and tea seed oil (TSO) against obesity through the modulation of the gut microbiota composition and related metabolic changes in mice fed a high-fat diet (HFD). METHODS: Mice were divided into six equal groups: ND (normal diet); HFD; ORL (HFD supplemented with 20 mg/kg body weight of orlistat); PSO, SFO, and TSO (HFD supplemented with 2 g/kg body weight of PSO, SFO, and TSO, respectively). RESULTS: Our findings showed that PSO, SFO, and TSO supplementation significantly reduced body weight, organ weight, blood glucose, lipopolysaccharides (LPS), insulin resistance, and improved serum lipid levels (TG, TC, LDL-C, and HDL-C). Meanwhile, the three treatments alleviated oxidative stress and hepatic steatosis and reduced liver lipid accumulation. Relative mRNA expression levels of inflammatory cytokines (TNF-α, IL-1ß, IL-6, and MCP-1) and lipid synthesis-related genes (PPAR-γ, FAS, and SREBP-1) were down-regulated, while ß-oxidation-related genes (PPAR-α, CPT1a, and CPT1b) were up-regulated in the liver tissue of treated mice. Besides, dietary oil supplementation alleviated HFD-induced gut microbiota dysbiosis by promoting gut microbiota richness and diversity, decreasing the Firmicutes-to-Bacteroidetes ratio, and boosting the abundance of some healthy bacteria, like Akkermansia. CONCLUSIONS: PSO, SFO, and TSO supplementation could alleviate inflammation, oxidative stress, and hepatic steatosis, likely by modulating the gut microbiota composition in HFD-fed mice.


Assuntos
Microbioma Gastrointestinal , Helianthus , Perilla , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Receptores Ativados por Proliferador de Peroxissomo , Obesidade/metabolismo , Suplementos Nutricionais , Óleos de Plantas/farmacologia , Chá , Camundongos Endogâmicos C57BL
9.
J Nat Med ; 77(2): 412-420, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640243

RESUMO

Techniques for identifying varieties of crops used as spices and food additives have important implications for the safety of food production, prevention of false labeling, protection of breeders' rights, and prevention of theft or outflow to other countries. Presently, there are 16 varieties of Perilla frutescens in the variety registration system of the Ministry of Agriculture, Forestry and Fishes in Japan (Ministry of Agriculture, Forestry and Fisheries. Variety registration data search. http://www.hinshu2.maff.go.jp/ . Accessed 03 Nov 2022). One such variety is "Shimoadachi," which contains citral as a main essential oil component and has a lemon-like smell. To our knowledge, no other cultivars with similar characteristics in P. frutescens have been identified. Additionally, the registered variety "per-001" contains high contents of perillaldehyde and rosmarinic acid, with practical applications for herbal medicines and functional foods. Therefore, the development of variety identification techniques is necessary for stable production and protection. In this study, we investigated microsatellite loci for the accurate identification of registered varieties of red perilla. These loci provide a basis for breeding superior varieties of medicinal plants.


Assuntos
Óleos Voláteis , Perilla frutescens , Perilla , Plantas Medicinais , Repetições de Microssatélites
10.
DNA Res ; 30(1)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383440

RESUMO

Perilla frutescens (Lamiaceae) is an important herbal plant with hundreds of bioactive chemicals, among which perillaldehyde and rosmarinic acid are the two major bioactive compounds in the plant. The leaves of red perilla are used as traditional Kampo medicine or food ingredients. However, the medicinal and nutritional uses of this plant could be improved by enhancing the production of valuable metabolites through the manipulation of key enzymes or regulatory genes using genome editing technology. Here, we generated a high-quality genome assembly of red perilla domesticated in Japan. A near-complete chromosome-level assembly of P. frutescens was generated contigs with N50 of 41.5 Mb from PacBio HiFi reads. 99.2% of the assembly was anchored into 20 pseudochromosomes, among which seven pseudochromosomes consisted of one contig, while the rest consisted of less than six contigs. Gene annotation and prediction of the sequences successfully predicted 86,258 gene models, including 76,825 protein-coding genes. Further analysis showed that potential targets of genome editing for the engineering of anthocyanin pathways in P. frutescens are located on the late-stage pathways. Overall, our genome assembly could serve as a valuable reference for selecting target genes for genome editing of P. frutescens.


Assuntos
Lamiaceae , Perilla frutescens , Perilla , Perilla frutescens/genética , Perilla frutescens/química , Perilla frutescens/metabolismo , Perilla/genética , Perilla/química , Japão , Lamiaceae/genética , Anotação de Sequência Molecular
11.
J Sci Food Agric ; 103(6): 3006-3016, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36397264

RESUMO

BACKGROUND: As potent antioxidants, anthocyanins can protect the body from free radicals. However, the traditional solvent extraction method has the disadvantages of requiring a high extraction temperature and long extraction time, so it is necessary to develop an efficient extraction method for anthocyanins. RESULTS: In this study, the technique of natural deep eutectic solvents (DESs) was applied to extract anthocyanins from purple perilla leaves with the aid of microwave-ultrasonic assisted extraction (MUAE). The response surface methodology (RSM), based on the Box-Behnken design (BBD), predicted the maximum extraction yield of anthocyanins to be 619.62 mg (100 g)-1 under the following conditions: x1 (ultrasonic extraction power) = 357.25 W, x2 (time) = 25.62 min, and x3 (temperature) = 57.80 °C. The biological activity of the extract obtained was evaluated by examining its radical-scavenging effect on 1,1-diphenyl-2-picrylhydrazyl, hydroxyl radical, and superoxide anion radicals. Its bacteriostatic impact was investigated on four typical bacteria: Shewanella putrefaciens (S. putrefaciens), Pseudomonas fluorescens (P. fluorescens), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus). CONCLUSION: The integrated extraction method of DESs with MUAE was efficient, energy-saving, green, and sustainable. © 2022 Society of Chemical Industry.


Assuntos
Perilla frutescens , Perilla , Perilla frutescens/química , Solventes Eutéticos Profundos , Antocianinas , Extratos Vegetais/química , Micro-Ondas , Ultrassom , Staphylococcus aureus , Escherichia coli , Solventes/química
12.
J Nat Med ; 77(1): 207-218, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36169782

RESUMO

Perilla frutescens var. crispa (Lamiaceae) is an annual plant that is the botanical origin of the natural medicine "Soyo" listed in the Japanese Pharmacopoeia and is also used as a fragrant vegetable. Its characteristic components are essential oils and anthocyanins. Cyanogenic glycosides have also been isolated from perilla, but no reports have clarified which cyanogenic glycosides are abundant or differences in cyanogenic glycoside content according to the extent of perilla leaf growth or growth stage. Here, for the first time we determined the content and distributions of cyanogenic glycosides in perilla. The picric acid test, a common qualitative test for cyanogenic compounds, was used to quickly and semi-quantitatively detect cyanogenic compounds in perilla. Prunasin was the most abundant cyanogenic glycoside. The prunasin content per unit mass of perilla leaves varied by strain, regardless of leaf color or the main compound in the essential oils of each strain. Prunasin was higher in fresh leaves than in dried leaves and higher in young leaves than in mature leaves. When perilla was cultivated in an outdoor field, the prunasin content was initially high during the vegetative stage in summer before decreasing and then increasing until flower buds were beginning to form, and then gradually decreased again after flowering.


Assuntos
Óleos Voláteis , Perilla frutescens , Perilla , Antocianinas , Glicosídeos , Folhas de Planta
13.
Molecules ; 27(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36144834

RESUMO

Perilla frutescens (L.) Britt. (Labiatae), a medicinal plant, has been widely used for the therapy of multiple diseases since about 1800 years ago. It has been demonstrated that the extracts of P. frutescens exert significant anti-inflammatory effects. In this research, two pairs of 7,7'-cyclolignan enantiomers, possessing a cyclobutane moiety, (+)/(-)-perfrancin [(+)/(-)-1] and (+)/(-)-magnosalin [(+)/(-)-2], were separated from P. frutescens leaves. The present study achieved the chiral separation and determined the absolute configuration of (±)-1 and (±)-2. Compounds (+)-1 and (-)-1 have notable anti-inflammatory effects by reducing the secretion of pro-inflammatory factors (NO, TNF-α and IL-6) and the expression of pro-inflammatory mediators (iNOS and COX-2). These findings indicate that cyclolignans are effective substances of P. frutescens with anti-inflammatory activity. The present study partially elucidates the mechanisms underlying the effects of P. frutescens.


Assuntos
Ciclobutanos , Perilla frutescens , Perilla , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2 , Mediadores da Inflamação , Interleucina-6 , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa
14.
Genes Genomics ; 44(10): 1159-1170, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900697

RESUMO

BACKGROUND: In order to maximize the use of valuable native Perilla germplasm in South Korea, knowledge of the Perilla seed oil content and genetic variation among native Perilla germplasm resources is very important for the conservation and development of new Perilla seed oil varieties using the native Perilla germplasm accessions preserved from the Rural Development Administration Genebank (RDA-Genebank) collection from South Korea. OBJECTIVES: In this study, we studied population structure and association mapping to identify Perilla SSR markers (PSMs) associated with the five fatty acid contents and two seed characteristics of the native Korean Perilla germplasm accessions of cultivated var. frutescens of the RDA-Genebank collected in South Korea. METHODS: For an association mapping analysis to find PSMs associated with the five fatty acid contents and two seed characteristics of the Perilla germplasm accessions of cultivated var. frutescens, we evaluated the content of five fatty acids of 280 native Korean Perilla germplasm accessions and used 29 Perilla SSR primer sets to measure the genetic diversity and relationships, population structure, and association mapping of the native Korean Perilla germplasm accessions of the RDA-Genebank collected in South Korea. RESULTS: Five fatty acids of 280 native Korean Perilla accessions were identified as follows: palmitic acid (PA) (5.30-8.66%), stearic acid (SA) (1.60-4.19%), oleic acid (OA) (9.60-22.5%), linoleic acid (LA) (8.38-25.4%), and linolenic acid (LNA) (52.7-76.4%). In a correlation analysis among the five fatty acids and two seed characteristics of the 280 Perilla accessions, the combinations of PA and SA (0.794**) and SA and OA (0.724**) showed a particularly high positive correlation coefficients compare to other combinations. By using an association analysis of the 29 PSMs and the five fatty acids in the 280 Perilla accessions, we found 17 PSMs (KNUPF1, KNUPF2, KNUPF4, KNUPF10, KNUPF16, KNUPF25, KNUPF26, KNUPF28, KNUPF37, KNUPF55, KNUPF62, KNUPF71, KNUPF74, KNUPF77, KNUPF85, KNUPF89, and KNUPF118) associated with the content of the five fatty acid components and two seed characteristics. CONCLUSIONS: These PSMs are considered to be useful molecular markers related to five fatty acid components and two seed characteristics for selecting accessions from the germplasm accessions of the Perilla crop and their related weedy types through association mapping analysis and marker-assisted selection (MAS) breeding programs.


Assuntos
Perilla frutescens , Perilla , Ácidos Graxos/genética , Variação Genética , Ácidos Linoleicos , Ácidos Oleicos , Ácidos Palmíticos , Perilla/genética , Perilla frutescens/genética , Óleos de Plantas , Sementes/genética , Ácidos Esteáricos
15.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3447-3451, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850795

RESUMO

In this study, 10 PA-type Perilla germplasms were selected to detect the content of two phenolic acids, i.e., rosmarinic acid(RA) and caffeic acid(CA), and six flavonoids, including scutellarin-7-O-diglucuronoside(SDG), luteolin-7-O-diglucuronoside(LDG), apigenin-7-O-diglucuronoside(ADG), scutellarin-7-O-glucuroside(SG), luteolin-7-O-glucuroside(LG), and apigenin-7-O-glucuroside(AG) in leaves, stems, and fruits. The total content of phenolic acids and flavonoids in leaves was 3.991-12.028 mg·g~(-1) and 12.309-25.071 mg·g~(-1), respectively, which was much higher than that in stems(0.586-2.015 mg·g~(-1) and 0.879-1.413 mg·g~(-1), respectively) and fruits(0.004-2.222 mg·g~(-1) and 0.651-1.936 mg·g~(-1), respectively). RA was detected in five fruit samples, and RA content between leaves and fruits showed a significant negative correlation in the other five samples. For flavonoids, only LG and LDG could be detected in stems, and SG and SDG were not detected in fruits, while other flavonoids were not detected in some samples. The content of total flavonoids and LG in leaves and fruits was significantly positively correlated, and the content of LG in stems and fruits was significantly positively correlated. In 10 stem samples, seven met the standard that the content of RA in the stem should be not less than 0.1% specified in the Chinese Pharmacopoeia(2020 edition). Only one fruit sample reached the standard of RA content in the fruit not less than 0.25% specified in the Chinese Pharmacopoeia.


Assuntos
Flavonoides , Perilla , Apigenina , Luteolina , Fenóis , Extratos Vegetais , Folhas de Planta
16.
Biosci Biotechnol Biochem ; 86(7): 932-937, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35583245

RESUMO

UV-irradiated red perilla demonstrated promising protective effects against carbon tetrachloride-induced liver injury in mice. UV exposure significantly enhanced the accumulation of rosmarinic acid, malonylshisonin, and shisonin in red perilla, and increased 1,1-diphenyl-2-picrylhydrazyl radical scavenging capacity. The hepatoprotective effect of UV-irradiated red perilla may be attributed to the high level of its polyphenolic compounds, which exhibit antioxidant activity.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Perilla frutescens , Perilla , Animais , Tetracloreto de Carbono/toxicidade , Camundongos , Extratos Vegetais/farmacologia
17.
Nutrients ; 14(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35565689

RESUMO

This study aimed to develop perilla fruit oil (PFO)-fortified soybean milk (PFO-SM), identify its sensory acceptability, and evaluate its health outcomes. Our PFO-SM product was pasteurized, analyzed for its nutritional value, and had its acceptability assessed by an experienced and trained descriptive panel (n = 100) based on a relevant set of sensory attributes. A randomized clinical trial was conducted involving healthy subjects who were assigned to consume deionized water (DI), SM, PFO-SM, or black sesame-soybean milk (BS-SM) (n = 48 each, 180 mL/serving) daily for 30 d. Accordingly, health indices and analyzed blood biomarkers were recorded. Consequently, 1% PFO-SM (1.26 mg ALA rich) was generally associated with very high scores for overall acceptance, color, flavor, odor, taste, texture, and sweetness. We observed that PFO-SM lowered levels of serum triglycerides and erythrocyte reactive oxygen species, but increased phagocytosis and serum antioxidant activity (p < 0.05) when compared to SM and BS-SM. These findings indicate that PFO supplementation in soybean milk could enhance radical-scavenging and phagocytotic abilities in the blood of healthy persons. In this regard, it was determined to be more efficient than black sesame supplementation. We are now better positioned to recommend the consumption of PFO-SM drink for the reduction of many chronic diseases. Randomized clinical trial registration (Reference number 41389) by IRSCTN Registry.


Assuntos
Perilla , Leite de Soja , Antioxidantes , Suplementos Nutricionais/análise , Alimentos Fortificados , Frutas , Voluntários Saudáveis , Humanos , Perilla/química , Fagocitose , Triglicerídeos
18.
Molecules ; 27(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630612

RESUMO

Perilla frutescens (L.) Britt., a medicinal herb and edible plant, is very popular among East Asian countries. The perilla leaves, stems and seeds can be used as traditional medicines and foods. Polycyclic aromatic hydrocarbons (PAHs) and halogenated PAHs (HPAHs) are organic pollutants that are widely present in the environment, such as in water, air and soil, and are harmful to humans. In this study, the contents of 16 PAHs and 4 HPAHs in perilla leaves, stems and seeds were determined by gas chromatography tandem mass spectrometry (GC-MS). A total of 12 PAHs were detected in all samples, and no HPAHs were detected. The total contents of PAHs in perilla leaves, stems and seeds varied from 41.93 to 415.60 ng/g, 7.02 to 51.52 ng/g and 15.24 to 180.00 ng/g, respectively. The statistical analyses showed that there were significant differences in the distribution of PAHs in perilla leaves, stems and seeds. On the basis of the toxic equivalent quantity (TEQ) and incremental lifetime cancer risk (ILCR) model, the cancer risks of the intake of perilla leaves, stems and seeds were assessed to be from 3.30 × 10-8 to 2.11 × 10-5, 5.52 × 10-9 to 5.50 × 10-8 and 1.20 × 10-8 to 1.41 × 10-7, respectively. These were lower than 10-4 (the priority risk level of the EPA) and suggested that there may be almost no cancer risk from the intake of these traditional Chinese medicines (TCMs).


Assuntos
Neoplasias , Perilla frutescens , Perilla , Hidrocarbonetos Policíclicos Aromáticos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Perilla frutescens/química , Hidrocarbonetos Policíclicos Aromáticos/análise
19.
Food Chem ; 388: 133010, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35468463

RESUMO

This study investigated the effects of different microwave power (380 W, 540 W, 700 W) and time (0-10 min) on the minor bioactive components content and oxidative stability of perilla oil. The results indicated that fatty acids in perilla oil were slightly affected by microwave treatment. The oxidative stability of perilla oil increased with increasing microwave treatment intensity and the oil from perilla seeds treated at 700 W for 10 min had the highest oxidative stability. Compared with other microwave treatments, treatment with 700 W for 10 min resulted in significant increases in the total phytosterols content, Maillard reaction products and DPPH radical scavenging activity of perilla oil, while showed dramatic reductions in the total tocopherol content, phenolic compounds content and lipase activity. These results proved that microwave treatment of perilla seeds was an effective way to improve the quality of perilla oil.


Assuntos
Perilla , Micro-Ondas , Oxirredução , Estresse Oxidativo , Perilla/química , Óleos de Plantas/química , Sementes/química
20.
J Nat Med ; 76(2): 509-518, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34997898

RESUMO

Perilla (Perilla frutescens (L.) Britton) mericarps are known to undergo dormancy; however, this can be broken by sulfuric acid treatment and cold stratification. Cold stratification is thought to be the most effective treatment and is customarily performed for 2 weeks to induce germination of perilla mericarps. However, this procedure requires an additional 2 weeks before sowing and cultivation, thereby decreasing cultivation efficiency. To address this problem, germination experiments were conducted in this study in order to identify a shorter and more efficient pretreatment strategy for germination of perilla mericarps. Pretreatment with sulfuric acid (10 min versus 1 min) and gibberellin (8 h and 1 h versus 5 min, at a rate of 100 versus 10 ppm) were performed using mericarps from pure strains of perilla. As a result, sulfuric acid treatment tended to reduce the germination rate, while gibberellin treatment resulted in an equivalent or similar germination rate as cold stratification. Gibberellin treatment was also found to be effective in mericarps with a relatively old harvest date and low germination energy. Considering the convenience and safety of the treatment process as well as the results of the germination experiments, these findings suggest that a short period of gibberellin treatment could help shorten the process of perilla cultivation.


Assuntos
Perilla frutescens , Perilla , Giberelinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA