Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(26): e2121987119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35749365

RESUMO

Mechanisms of defense against ferroptosis (an iron-dependent form of cell death induced by lipid peroxidation) in cellular organelles remain poorly understood, hindering our ability to target ferroptosis in disease treatment. In this study, metabolomic analyses revealed that treatment of cancer cells with glutathione peroxidase 4 (GPX4) inhibitors results in intracellular glycerol-3-phosphate (G3P) depletion. We further showed that supplementation of cancer cells with G3P attenuates ferroptosis induced by GPX4 inhibitors in a G3P dehydrogenase 2 (GPD2)-dependent manner; GPD2 deletion sensitizes cancer cells to GPX4 inhibition-induced mitochondrial lipid peroxidation and ferroptosis, and combined deletion of GPX4 and GPD2 synergistically suppresses tumor growth by inducing ferroptosis in vivo. Mechanistically, inner mitochondrial membrane-localized GPD2 couples G3P oxidation with ubiquinone reduction to ubiquinol, which acts as a radical-trapping antioxidant to suppress ferroptosis in mitochondria. Taken together, these results reveal that GPD2 participates in ferroptosis defense in mitochondria by generating ubiquinol.


Assuntos
Ferroptose , Glicerolfosfato Desidrogenase , Peroxidação de Lipídeos , Mitocôndrias , Proteínas Mitocondriais , Neoplasias , Linhagem Celular Tumoral , Ferroptose/genética , Glicerolfosfato Desidrogenase/antagonistas & inibidores , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Humanos , Peroxidação de Lipídeos/genética , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
2.
Bioengineered ; 12(1): 5279-5288, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34402724

RESUMO

Asthma occurs accompanied by the ferroptosis in bronchial epithelial cells, during which Interleukin-6 (IL-6) plays a key role. However, the associations between IL-6, ferroptosis and asthma have not been reported. Bronchial epithelial cells BEAS-2B cells were induced by different concentrations of IL-6 and cell viability was detected by MTT assay. The TBARS production rate was detected by corresponding kit. The expression of oxidative stress-related indexes was detected by ELISA. The Iron Assay Kits detected total iron levels and ferrous ion (Fe2+) levels. Labile iron pool assay was used to detect the cell unstable iron pool. The expression of ferroptosis-related proteins was detected by Western blot. To further examine the mechanism of action, ferroptosis inhibitor Ferrostatin 1 (Fer-1), antioxidant NAC, and the iron supplement Fe were added. We found that IL-6 decreased the activity, promoted lipid peroxidation, disrupted iron homeostasis of BEAS-2B cells, and induced iron death in bronchial epithelial BEAS-2B cells. However, pretreatment with Ferrostatin-1 (Fer-1) and antioxidant NAC partially reversed the effect of IL-6 on lipid peroxidation and ferroptosis in BEAS-2B cells, while Fe augmented the effect. Overall, IL-6 promotes ferroptosis in bronchial epithelial cells by inducing reactive oxygen species (ROS)-dependent lipid peroxidation and disrupting iron homeostasis.


Assuntos
Ferroptose/genética , Interleucina-6/metabolismo , Ferro/metabolismo , Peroxidação de Lipídeos/genética , Espécies Reativas de Oxigênio/metabolismo , Asma/metabolismo , Brônquios/citologia , Linhagem Celular , Sobrevivência Celular/genética , Células Epiteliais/metabolismo , Homeostase/genética , Humanos , Interleucina-6/genética , Modelos Biológicos , Estresse Oxidativo/genética
3.
Environ Mol Mutagen ; 62(3): 216-226, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33615565

RESUMO

Restriction of the sulfur amino acids methionine and cysteine has recently been proposed as potential adjuvant therapy in cancer. While cysteine depletion has been associated with ferroptotic cell death, methionine depletion has not. We hypothesized that comparing the response of melanoma cell lines to depletion of the amino acids methionine and cysteine would give us insight into the critical role in cancer of these two closely related amino acids. We analyzed the response to three conditions: methionine depletion, methionine replacement with homocysteine, and cysteine depletion. In cancer cells, the transcription factor ATF4 was induced by all three tested conditions. The replacement of methionine with homocysteine produced a strong ferroptotic gene signature. We also detected an activation of the NRF2 antioxidant pathway by both methionine and cysteine depletion. Total glutathione levels were decreased by 42% in melanoma cells grown without methionine, and by 95% in cells grown without cysteine. Lipid peroxidation was increased in cells grown without cysteine, but not in cells grown without methionine. Despite the large degree of overlap in gene expression between methionine and cysteine depletion, methionine depletion and replacement of methionine with homocysteine was associated with apoptosis while cysteine depletion was associated with ferroptosis. Glutamine depletion produced comparable gene expression patterns and was associated with a 28% decrease in glutathione. Apoptosis was detected in these cells. In this experiment, a strong ATF4-driven ferroptotic gene signature was insufficient to induce ferroptosis without a concomitant profound decrease in glutathione levels.


Assuntos
Fator 4 Ativador da Transcrição/genética , Cisteína/genética , Metionina/genética , Fator 2 Relacionado a NF-E2/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Quimioterapia Adjuvante , Cisteína/antagonistas & inibidores , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Homocisteína/genética , Humanos , Peroxidação de Lipídeos/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Metionina/antagonistas & inibidores , Transcriptoma/genética
4.
Clin Nutr ; 40(4): 2180-2187, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33051044

RESUMO

PURPOSE: To evaluate the effects of taurine supplementation associated or not with chronic exercise on body composition, mitochondrial function, and expression of genes related to mitochondrial activity and lipid oxidation in the subcutaneous white adipose tissue (scWAT) of obese women. METHODS: A randomized and double-blind trial was developed with 24 obese women (BMI 33.1 ± 2.9 kg/m2, 32.9 ± 6.3 y) randomized into three groups: Taurine supplementation group (Tau, n = 8); Exercise group (Ex, n = 8); Taurine supplementation + exercise group (TauEx, n = 8). The intervention was composed of 3 g of taurine or placebo supplementation and exercise training for eight weeks. Anthropometry, body fat composition, indirect calorimetry, scWAT biopsy for mitochondrial respiration, and gene expression related to mitochondrial activity and lipid oxidation were assessed before and after the intervention. RESULTS: No changes were observed for the anthropometric characteristics. The Ex group presented an increased resting energy expenditure rate, and the TauEx and Ex groups presented increased lipid oxidation and a decreased respiratory quotient. Both trained groups (TauEx and Ex) demonstrated improved scWAT mitochondrial respiratory capacity. Regarding mitochondrial markers, no changes were observed for the Tau group. The TauEx group had higher expression of CIDEA, PGC1a, PRDM16, UCP1, and UCP2. The genes related to fat oxidation (ACO2 and ACOX1) were increased in the Tau and Ex groups, while only the TauEx group presented increased expression of CPT1, PPARa, PPARγ, LPL, ACO1, ACO2, HSL, ACOX1, and CD36 genes. CONCLUSION: Taurine supplementation associated with exercise improved lipid metabolism through the modulation of genes related to mitochondrial activity and fatty acid oxidation, suggesting a browning effect in the scWAT of obese women.


Assuntos
Tecido Adiposo Branco/metabolismo , Exercício Físico , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Obesidade/metabolismo , Taurina/administração & dosagem , Adulto , Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais , Método Duplo-Cego , Metabolismo Energético/efeitos dos fármacos , Feminino , Expressão Gênica , Humanos , Peroxidação de Lipídeos/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Oxirredução/efeitos dos fármacos , Placebos , Gordura Subcutânea
5.
Nat Commun ; 11(1): 1775, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286299

RESUMO

The increased incidence of inflammatory bowel disease (IBD) has become a global phenomenon that could be related to adoption of a Western life-style. Westernization of dietary habits is partly characterized by enrichment with the ω-6 polyunsaturated fatty acid (PUFA) arachidonic acid (AA), which entails risk for developing IBD. Glutathione peroxidase 4 (GPX4) protects against lipid peroxidation (LPO) and cell death termed ferroptosis. We report that small intestinal epithelial cells (IECs) in Crohn's disease (CD) exhibit impaired GPX4 activity and signs of LPO. PUFAs and specifically AA trigger a cytokine response of IECs which is restricted by GPX4. While GPX4 does not control AA metabolism, cytokine production is governed by similar mechanisms as ferroptosis. A PUFA-enriched Western diet triggers focal granuloma-like neutrophilic enteritis in mice that lack one allele of Gpx4 in IECs. Our study identifies dietary PUFAs as a trigger of GPX4-restricted mucosal inflammation phenocopying aspects of human CD.


Assuntos
Doença de Crohn/metabolismo , Gorduras na Dieta/efeitos adversos , Enterite/metabolismo , Ácidos Graxos Insaturados/metabolismo , Inflamação/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Adulto , Animais , Morte Celular/genética , Morte Celular/fisiologia , Doença de Crohn/genética , Enterite/etiologia , Enterite/genética , Ácidos Graxos Insaturados/genética , Feminino , Glutationa Peroxidase/metabolismo , Humanos , Inflamação/genética , Peroxidação de Lipídeos/genética , Peroxidação de Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética
6.
Free Radic Biol Med ; 145: 349-356, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31605749

RESUMO

Appropriate diet is essential for the regulation of age-related macular degeneration (AMD). In particular the type of dietary polyunsaturated fatty acids (PUFA) and poor antioxidant status including carotenoid levels concomitantly contribute to AMD risk. Build-up of oxidative stress in AMD induces PUFA oxidation, and a mix of lipid oxidation products (LOPs) are generated. However, LOPs are not comprehensively evaluated in AMD. LOPs are considered biomarkers of oxidative stress but also contributes to inflammatory response. In this cross-sectional case-control study, plasma omega-6/omega-3 PUFA ratios and antioxidant status (glutathione, superoxide dismutase and catalase), and plasma and urinary LOPs (41 types) were determined to evaluate its odds-ratio in the risk of developing exudative AMD (n = 99) compared to age-gender-matched healthy controls (n = 198) in adults with Chinese diet. The odds ratio of developing exudative AMD increased with LOPs from omega-6 PUFA and decreased from those of omega-3 PUFA. These observations were associated with a high plasma omega-6/omega-3 PUFA ratio and low carotenoid levels. In short, poor PUFA and antioxidant status increased the production of omega-6 PUFA LOPs such as dihomo-isoprostane and dihomo-isofuran, and lowered omega-3 PUFA LOPs such as neuroprostanes due to the high omega-6/omega-3 PUFA ratios; they were also correlated to the risk of AMD development. These findings indicate the generation of specific LOPs is associated with the development of exudative AMD.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Degeneração Macular/metabolismo , Estresse Oxidativo/efeitos dos fármacos , 3-Hidroxiacil-CoA Desidrogenases/genética , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetil-CoA C-Aciltransferase/genética , Acetil-CoA C-Aciltransferase/metabolismo , Idoso , Aldeídos/administração & dosagem , Antioxidantes/administração & dosagem , Biomarcadores/sangue , Isomerases de Ligação Dupla Carbono-Carbono/genética , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Carotenoides/metabolismo , Dieta/efeitos adversos , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Feminino , Humanos , Isoprostanos/administração & dosagem , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Degeneração Macular/etiologia , Degeneração Macular/genética , Degeneração Macular/patologia , Masculino , Pessoa de Meia-Idade , Neuroprostanos/administração & dosagem , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/genética , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Fatores de Risco
7.
J Appl Toxicol ; 39(8): 1118-1131, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30883860

RESUMO

Rebaudioside A (Reb A) is a diterpenoid isolated from the leaves of Stevia rebaudiana (Bertoni) that has been shown to possess pharmacological activity, including anti-inflammatory and antioxidant properties. However, the ability of Reb A to prevent liver injury has not been evaluated. Therefore, we aimed to study the potential of Reb A (20 mg/kg; two times daily intraperitoneally) to prevent liver injury induced by thioacetamide (TAA) administration (200 mg/kg; three times per week intraperitoneally). In addition, cocultures were incubated with either lipopolysaccharide or ethanol. Antifibrotic, antioxidant and immunological responses were evaluated. Chronic TAA administration produced considerable liver damage and distorted the liver parenchyma with the presence of prominent thick bands of collagen. In addition, TAA upregulated the expression of α-smooth muscle actin, transforming growth factor-ß1, metalloproteinases 9, 2 and 13, and nuclear factor kappaB and downregulated nuclear erythroid factor 2. Reb A administration prevented all of these changes. In cocultured cells, Reb A prevented the upregulation of genes implicated in fibrotic and inflammatory processes when cells were exposed to ethanol and lipopolysaccharide. Altogether, our results suggest that Reb A prevents liver damage by blocking oxidative processes via upregulation of nuclear erythroid factor 2, exerts immunomodulatory effects by downregulating the nuclear factor-κB system and acts as an antifibrotic agent by maintaining collagen content.


Assuntos
Antioxidantes/uso terapêutico , Diterpenos do Tipo Caurano/uso terapêutico , Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Diterpenos do Tipo Caurano/isolamento & purificação , Diterpenos do Tipo Caurano/farmacologia , Expressão Gênica/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Estresse Oxidativo/genética , Ratos , Ratos Wistar , Stevia/química , Tioacetamida/toxicidade
8.
Redox Biol ; 17: 284-296, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29775960

RESUMO

The widespread detection of elevated oxidative stress levels in many medical conditions has led to numerous efforts to design interventions to reduce its effects. Efforts have been wide-ranging, from dietary changes to administration of antioxidants, supplements, e.g., omega-3-fatty acids, and many medications. However, there is still no systemic assessment of the efficacy of treatments for oxidative stress reduction across a variety of medical conditions. The goal of this meta-analysis is, by combining multiple studies, to quantitate the change in the levels of the popular oxidative stress biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) after a variety of treatment strategies in human populations. Nearly 350 unique publications with 180 distinct strategies were included in the analysis. For each strategy, the difference between pre- or placebo and post-treatment levels calculated using Hedges' g value of effect. In general, administration of antibiotics, antihyperlipidemic agents, or changes in lifestyle (g = - 0.63, - 0.54, and 0.56) had the largest effect. Administration of supplements, antioxidants, or changes in diet (g = - 0.09, - 0.28, - 0.12) had small quantitative effects. To fully interpret the effectiveness of these treatments, comparisons to the increase in g value for each medical condition is required. For example, antioxidants in populations with coronary artery disease (CAD) reduce the 8-iso-PGF2α levels by g = - 0.34 ±â€¯0.1, which is quantitatively considered a small effect. However, CAD populations, in comparison to healthy populations, have an increase in 8-iso-PGF2α levels by g = 0.38 ±â€¯0.04; therefore, the overall reduction of 8-iso-PGF2α levels is ≈ 90% by this treatment in this specific medical condition. In conclusion, 8-iso-PGF2α levels can be reduced not only by antioxidants but by many other strategies. Not all strategies are equally effective at reducing 8-iso-PGF2α levels. In addition, the effectiveness of any strategy can be assessed only in relation to the medical condition investigated.


Assuntos
Biomarcadores/sangue , Doença da Artéria Coronariana/sangue , Dinoprosta/análogos & derivados , Estresse Oxidativo/genética , Antioxidantes/uso terapêutico , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/prevenção & controle , Suplementos Nutricionais , Dinoprosta/sangue , Dinoprosta/genética , Genética Populacional , Humanos , Peroxidação de Lipídeos/genética , Oxirredução/efeitos dos fármacos
9.
J Trace Elem Med Biol ; 43: 52-57, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27916501

RESUMO

Elevated circulating ferritin has been reported to increase the risk of gestational diabetes mellitus (GDM). When high ferritin translates into high iron stores, iron excess is also a condition leading to free radical damage. We aimed to evaluate the relationship between oxidative stress (OS) induced by iron status and GDM risk in non iron-supplemented pregnant women. METHODS: This was a pilot observational study conducted on 93 non-anemic pregnant women. Iron status was assessed at the first trimester of gestation. Blood sampling was done at 24-28 weeks' gestation for oral glucose tolerance test (OGTT), insulin and biological markers of oxidative damage tests. RESULTS: A significant increase in DNA damage was found in patients who developed GDM. Women with elevated DNA damage had a six-fold increased risk of developing GDM (Exp (B)=6.851, P=0.038; 95% CI [1.108-42.375]). The serum ferritin levels at first trimester were significantly correlated to lipid peroxidation (rho=0.24, p=0.012). The stratified analysis suggests that ferritin is a modifying factor for the correlation of oxidative stress (OS) and glucose intolerance. CONCLUSION: Moderate ferritin levels due to iron intake without iron-supplement, at early pregnancy is a modifying factor for the correlation of oxidative damage and glucose intolerance in pregnant women. Larger studies to evaluate the risk of food iron intake induced increased oxidative damage in offspring are warranted to propose nutrition advice regarding iron intake in women with a high risk of GDM.


Assuntos
Diabetes Gestacional/sangue , Ferro/sangue , Adulto , Glicemia/metabolismo , Dano ao DNA/genética , Diabetes Gestacional/genética , Feminino , Ferritinas/sangue , Teste de Tolerância a Glucose , Humanos , Peroxidação de Lipídeos/genética , Estresse Oxidativo/genética , Gravidez
10.
Free Radic Res ; 50(12): 1422-1431, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27785947

RESUMO

Down syndrome (DS, trisomy 21) is the leading cause of chromosomal-related intellectual disability. At an early age, adults with DS develop with the neuropathological hallmarks of Alzheimer's disease, associated with a chronic oxidative stress. To investigate if non-protein bound iron (NPBI) can contribute to building up a pro-oxidative microenvironment, we evaluated NPBI in both plasma and erythrocytes from DS and age-matched controls, together with in vivo markers of lipid peroxidation (F2-isoprostanes, F2-dihomo-isoprostanes, F4-neuroprostanes) and in vitro reactive oxygen species (ROS) formation in erythrocytes. The serum iron panel and uric acid were also measured. Second, we explored possible correlation between NPBI, lipid peroxidation and cognitive performance. Here, we report NPBI increase in DS, which correlates with increased serum ferritin and uric acid. High levels of lipid peroxidation markers and intraerythrocyte ROS formations were also reported. Furthermore, the scores of Raven's Colored Progressive Matrices (RCPM) test, performed as a measure of current cognitive function, are inversely related to NPBI, serum uric acid, and ferritin. Likewise, ROS production, F2-isoprostanes, and F4-neuroprostanes were also inversely related to cognitive performance, whereas serum transferrin positively correlated to RCPM scores. Our data reveal that increased availability of free redox-active iron, associated with enhanced lipid peroxidation, may be involved in neurodegeneration and cognitive decline in DS. In this respect, we propose chelation therapy as a potential preventive/therapeutic tool in DS.


Assuntos
Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Síndrome de Down/complicações , Ferro/metabolismo , Peroxidação de Lipídeos/genética , Humanos , Estresse Oxidativo
11.
Molecules ; 20(11): 20240-53, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26569207

RESUMO

Global temperature change causes heat stress related disorders in humans. A constituent of red ginseng has been known the beneficial effect on the resistance to many diseases. However, the mechanism of red ginseng (RG) against heat stress still remains unclear. To determine the effect of RG on heat stress, we examined the effect of the RG on the gene expression profiles in rats subjected to environmental heat stress. We evaluated the transcripts associated with hepatic lipid accumulation and oxidative stress in rats subjected to heat stress. We also analyzed the reactive oxygen species (ROS) contents. Our results suggested RG inhibited heat stress mediated altering mRNA expressions include HSPA1, DEAF1, HMGCR, and FMO1. We also determined RG attenuated fat accumulation in the liver by altering C/EBPß expression. RG promoted to repress the heat stress mediated hepatic cell death by inhibiting of Bcl-2 expression in rats subjected to heat stress. Moreover, RG administered group during heat stress dramatically decreased the malondialdehyde (MDA) contents and ROS associated genes compared with the control group. Thus, we suggest that RG might influence inhibitory effect on environmental heat stress induced abnormal conditions in humans.


Assuntos
Meio Ambiente , Transtornos de Estresse por Calor/etiologia , Transtornos de Estresse por Calor/metabolismo , Panax/química , Extratos Vegetais/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Transtornos de Estresse por Calor/tratamento farmacológico , Temperatura Alta , Metabolismo dos Lipídeos/genética , Peroxidação de Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Transcriptoma
12.
J Exp Med ; 212(4): 555-68, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25824823

RESUMO

The selenoenzyme glutathione peroxidase 4 (Gpx4) is a major scavenger of phospholipid hydroperoxides. Although Gpx4 represents a key component of the reactive oxygen species-scavenging network, its relevance in the immune system is yet to be defined. Here, we investigated the importance of Gpx4 for physiological T cell responses by using T cell-specific Gpx4-deficient mice. Our results revealed that, despite normal thymic T cell development, CD8(+) T cells from T(ΔGpx4/ΔGpx4) mice had an intrinsic defect in maintaining homeostatic balance in the periphery. Moreover, both antigen-specific CD8(+) and CD4(+) T cells lacking Gpx4 failed to expand and to protect from acute lymphocytic choriomeningitis virus and Leishmania major parasite infections, which were rescued with diet supplementation of high dosage of vitamin E. Notably, depletion of the Gpx4 gene in the memory phase of viral infection did not affect T cell recall responses upon secondary infection. Ex vivo, Gpx4-deficient T cells rapidly accumulated membrane lipid peroxides and concomitantly underwent cell death driven by ferroptosis but not necroptosis. These studies unveil an essential role of Gpx4 for T cell immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Peroxidação de Lipídeos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Morte Celular/genética , Morte Celular/imunologia , Membrana Celular/genética , Membrana Celular/imunologia , Glutationa Peroxidase/genética , Glutationa Peroxidase/imunologia , Memória Imunológica/efeitos dos fármacos , Memória Imunológica/genética , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/patologia , Peroxidação de Lipídeos/genética , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/patologia , Camundongos , Camundongos Knockout , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Timo/imunologia , Timo/patologia , Vitamina E/farmacologia , Vitaminas/farmacologia
13.
Mar Drugs ; 12(12): 5944-59, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25501796

RESUMO

Gamma tocopherol (gT) exhibits beneficial cardiovascular effects partly due to its anti-inflammatory activity. Important sources of gT are vegetable oils. However, little is known to what extent gT can be transferred into marine animal species such as Atlantic salmon by feeding. Therefore, in this study we have investigated the transfer of dietary gT into salmon. To this end, fish were fed a diet supplemented with 170 ppm gT for 16 weeks whereby alpha tocopherol levels were adjusted to 190 ppm in this and the control diet. Feeding gT-rich diets resulted in a three-fold increase in gT concentrations in the liver and fillet compared to non-gT-supplemented controls. Tissue alpha tocopherol levels were not decreased indicating no antagonistic interaction between gamma- and alpha tocopherol in salmon. The concentration of total omega 3 fatty acids slightly increased in response to dietary gT. Furthermore, dietary gT significantly decreased malondialdehyde in the fillet, determined as a biomarker of lipid peroxidation. In the liver of gT fed salmon we observed an overall down-regulation of genes involved in lipid homeostasis. Additionally, gT improved the antioxidant capacity by up-regulating Gpx4a gene expression in the pyloric caeca. We suggest that Atlantic salmon may provide a marine functional source capable of enriching gT for human consumption.


Assuntos
Salmo salar/metabolismo , gama-Tocoferol/metabolismo , Ração Animal , Animais , Dieta/métodos , Suplementos Nutricionais , Regulação para Baixo/fisiologia , Ácidos Graxos Ômega-3/metabolismo , Peroxidação de Lipídeos/genética , Lipídeos/genética , Fígado , Malondialdeído/metabolismo , alfa-Tocoferol/metabolismo
14.
PLoS One ; 9(10): e107299, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25330300

RESUMO

Methotrexate (MTX) is a folic acid antagonist used in high doses as an anti-cancer treatment and in low doses for the treatment of some autoimmune diseases. MTX use has been linked to oxidative imbalance, which may cause multi-organ toxicities that can be attenuated by antioxidant supplementation. Despite the oxidative effect of MTX, the influence of antioxidant gene polymorphisms on MTX toxicity is not well studied. Therefore, we analyzed here whether a genetic imbalance of the manganese-dependent superoxide dismutase (SOD2) gene could have some impact on the MTX cytotoxic response. An in vitro study using human peripheral blood mononuclear cells (PBMCs) obtained from carriers with different Ala16Val-SOD2 genotypes (AA, VV and AV) was carried out, and the effect on cell viability and proliferation was analyzed, as well as the effect on oxidative, inflammatory and apoptotic markers. AA-PBMCs that present higher SOD2 efficiencies were more resistance to high MTX doses (10 and 100 µM) than were the VV and AV genotypes. Both lipoperoxidation and ROS levels increased significantly in PBMCs exposed to MTX independent of Ala16Val-SOD2 genotypes, whereas increased protein carbonylation was observed only in PBMCs from V allele carriers. The AA-PBMCs exposed to MTX showed decreasing SOD2 activity, but a concomitant up regulation of the SOD2 gene was observed. A significant increase in glutathione peroxidase (GPX) levels was observed in all PBMCs exposed to MTX. However, this effect was more intense in AA-PBMCs. Caspase-8 and -3 levels were increased in cells exposed to MTX, but the modulation of these genes, as well as that of the Bax and Bcl-2 genes involved in the apoptosis pathway, presented a modulation that was dependent on the SOD2 genotype. MTX at a concentration of 10 µM also increased inflammatory cytokines (IL-1ß, IL-6, TNFα and Igγ) and decreased the level of IL-10 anti-inflammatory cytokine, independent of SOD2 genetic background. The results suggest that potential pharmacogenetic effect on the cytotoxic response to MTX due differential redox status of cells carriers different SOD2 genotypes.


Assuntos
Metotrexato/farmacologia , Polimorfismo de Nucleotídeo Único , Superóxido Dismutase/genética , Antioxidantes/metabolismo , Caspases/genética , Caspases/metabolismo , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Fluoresceínas/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Carbonilação Proteica/efeitos dos fármacos , Carbonilação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Int J Mol Sci ; 14(10): 20614-34, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24132150

RESUMO

Pinellia ternata is an important traditional Chinese medicinal plant. The growth of P. ternata is sensitive to high temperatures. To gain a better understanding of heat stress responses in P. ternata, we performed a comparative proteomic analysis. P. ternata seedlings were subjected to a temperature of 38 °C and samples were collected 24 h after treatment. Increased relative ion leakage and lipid peroxidation suggested that oxidative stress was frequently generated in rice leaves exposed to high temperature. Two-dimensional electrophoresis (2-DE) was used to analyze heat-responsive proteins. More than 600 protein spots were reproducibly detected on each gel; of these spots, 20 were up-regulated, and 7 were down-regulated. A total of 24 proteins and protein species were successfully identified by MALDI-TOF/TOF MS. These proteins and protein species were found to be primarily small heat shock proteins (58%) as well as proteins involved in RNA processing (17%), photosynthesis (13%), chlorophyll biosynthetic processes (4%), protein degradation (4%) and defense (4%). Using 2-DE Western blot analysis, we confirmed the identities of the cytosolic class II small heat shock protein (sHSPs-CII) identified by MS. The expression levels of four different proteins [cytosolic class I small heat shock protein (sHSPs-CI), sHSPs-CII, mitochondrial small heat shock protein (sHSPs-MIT), glycine-rich RNA-binding protein (GRP)] were analyzed at the transcriptional level by quantitative real-time PCR. The mRNA levels of three sHSPs correlated with the corresponding protein levels. However, GRP was down-regulated at the beginning of heat stress but then increased substantially to reach a peak after 24 h of heat stress. Our study provides valuable new insight into the responses of P. ternata to heat stress.


Assuntos
Pinellia/genética , Pinellia/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteoma/genética , Proteoma/metabolismo , Estresse Fisiológico/genética , Clorofila/biossíntese , Regulação para Baixo/genética , Expressão Gênica/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Peroxidação de Lipídeos/genética , Estresse Oxidativo/genética , Fotossíntese/genética , Proteólise , Proteômica/métodos , Processamento Pós-Transcricional do RNA/genética , Regulação para Cima/genética
16.
Age (Dordr) ; 35(4): 1133-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22653297

RESUMO

Curcumin is a polyphenolic bioactive compound in turmeric. We examined if antioxidant effects of curcumin are associated with lifespan extension in Drosophila. In this experiment, females and males of Drosophila were fed diets either containing no curcumin (C0) or supplemented with curcumin at 0.5 (C1) and 1.0 (C2) mg/g of diet. The levels of malondialdehyde (MDA), enzyme activity of superoxide dismutase (SOD), and expression of seven age-related genes in females and males were analyzed. We found that C1 and C2 increased mean lifespan by 6.2 % and 25.8 % in females, and by 15.5 % and 12.6 % in males, respectively. Meanwhile, C1 and C2 significantly decreased MDA levels and increased SOD activity in both genders. Diets C1 in females and C2 in males are effective in extending mean lifespan and improving levels of two physiological and biochemical measures related to aging in Drosophila. Lifespan extension of curcumin in Drosophila was associated with the up-regulation of Mn-SOD and CuZn-SOD genes, and the down-regulation of dInR, ATTD, Def, CecB, and DptB genes. The present results suggest that curcumin increases mean lifespan of Drosophila via regulating gene expression of the key enzyme SOD and reducing accumulation of MDA and lipid peroxidation. This study provided new insights for understanding the anti-aging mechanism of curcumin in Drosophila.


Assuntos
Envelhecimento/genética , Curcumina/farmacologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Longevidade/genética , RNA/genética , Superóxido Dismutase/genética , Envelhecimento/efeitos dos fármacos , Animais , Cromatografia Líquida de Alta Pressão , Suplementos Nutricionais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/enzimologia , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Longevidade/efeitos dos fármacos , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase/biossíntese
17.
FEMS Yeast Res ; 12(8): 871-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22846157

RESUMO

High hydrostatic pressure (HHP) interferes with cellular membrane structure. The orientation of lipid molecules is changed, especially in the vicinity of proteins, leading to decreased membrane fluidity. Adaptation to HHP requires increased membrane fluidity, often achieved through a rise in the proportion of unsaturated fatty acids. In this work, a desaturase-deficient Saccharomyces cerevisiae mutant strain (OLE1 gene deletion) was grown in media supplemented with fatty acids differing in size and number of unsaturations and submitted to pressure up to 200 MPa for 30 min. Desaturase-deficient yeast supplemented with palmitoleic acid demonstrated increased sensitivity to pressure compared to cells supplemented with oleic acid or a proportionate mixture of both acids. In contrast, yeast cells grown with linoleic and linolenic acids were more piezoresistant than cells treated with oleic acid. Furthermore, growth with palmitoleic acid led to higher levels of lipid peroxidation. Intracellular trehalose during HHP treatment increased cell tolerance to pressure. However, when trehalose remained extracellular cells were sensitised to pressure. Therefore, fatty acid composition and trehalose content might play a role in the protection of the cell membrane from oxidative damage produced by HHP, confirming that alteration in cell membrane fluidity is correlated with pressure resistance in yeast.


Assuntos
Membrana Celular/metabolismo , Ácido Linoleico/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Estresse Fisiológico , Ácido alfa-Linolênico/metabolismo , Meios de Cultura/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Monoinsaturados/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Pressão Hidrostática , Peroxidação de Lipídeos/genética , Ácido Oleico/metabolismo , Saccharomyces cerevisiae/genética , Estearoil-CoA Dessaturase , Trealose/metabolismo
18.
Biosci Biotechnol Biochem ; 76(5): 993-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22738972

RESUMO

We investigated the mechanism of selenium (Se) tolerance using an Arabidopsis thaliana knockout mutant of a sulfate transporter, sultr1;2. Se stress inhibited plant growth, decreased chlorophyll contents, and increased protein oxidation and lipid peroxidation in the wild type, whereas the sultr1;2 mutation mitigated damage of these forms, indicating that sultr1;2 is more tolerant of Se than the wild type is. The accumulation of symplastic Se was suppressed in sultr1;2 as compared to the wild type, and the chemical speciation of Se in the mutant was different from that in the wild type. Regardless of Se stress, the activities of ascorbate peroxidase, catalase, and peroxidase in the mutant were higher than in the wild type, while the activity of superoxide dismutase in the mutant was the same as in the wild type. These results suggest that the sultr1;2 mutation confers Se tolerance on Arabidopsis by decreasing symplastic Se and maintaining antioxidant enzyme activities.


Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Raízes de Plantas/genética , Tolerância ao Sal/genética , Compostos de Selênio/farmacologia , Selênio/farmacologia , Adaptação Fisiológica/genética , Proteínas de Transporte de Ânions/deficiência , Antioxidantes/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Técnicas de Inativação de Genes , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Mutação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Peroxidases/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Ácido Selênico , Selênio/metabolismo , Compostos de Selênio/metabolismo , Estresse Fisiológico/genética , Superóxido Dismutase/metabolismo
19.
Chemosphere ; 89(5): 615-22, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22727896

RESUMO

Silver (Ag) nanoparticles are used as antimicrobial adjuvant in various products such as clothes and medical devices where the release of nano-Ag could contaminate the environment and harm wildlife. The purpose of this study was to examine the sublethal effects of nano-Ag and dissolved Ag on Oncorhynchus mykiss rainbow trout. Hepatic Ag contents and changes in gene expression were monitored to provide insights on bioavailability and mode of action of both forms of silver. Fish were exposed to increasing concentrations (0.06, 0.6 and 6 µg L(-1)) of nano-Ag (20 nm) and silver nitrate (AgNO(3)) for 96 h at 15°C. A gene expression analysis was performed in the liver using a DNA microarray of 207 stress-related genes followed by a quantitative polymerase chain reaction on a selection of genes for validation. The biochemical markers consisted of the determination of labile zinc, metallothioneins, DNA strand breaks, lipid peroxidation (LPO) and vitellogenin-like proteins. The analysis of total Ag in the aquarium water revealed that nano-Ag was mostly aggregated, with 1% of the total Ag being dissolved. Nevertheless, hepatic Ag content was significantly increased in exposed fish. Indeed, dissolved Ag was significantly more bioavailable than nano-Ag only at the highest concentration with 38 ± 10 and 11 ± 3 ng Ag mg(-1) proteins for dissolved and nano-Ag respectively. Exposure to both forms of Ag led to significant changes in gene expression for 13% of tested gene targets. About 12% of genes responded specifically to nano-Ag, while 10% of total gene targets responded specifically to dissolved Ag. The levels of vitellogenin-like proteins and DNA strand breaks were significantly reduced by both forms of Ag, but DNA break levels were lower with nano-Ag and could not be explained by the presence of ionic Ag. Labile zinc and the oxidized fraction of metallothioneins were increased by both forms of Ag, but LPO was significantly induced by nano-Ag only. A discriminant function analysis revealed that the responses obtained by biochemical markers and a selection of ten target genes were able to discriminate completely (100%) the effects of both forms of Ag. Exposure to nano-Ag involved genes in inflammation and dissolved Ag involved oxidative stress and protein stability. Hence, the toxicity of Ag will differ depending on the presence of Ag nanoparticles and aggregates.


Assuntos
Nanopartículas Metálicas/toxicidade , Oncorhynchus mykiss/genética , Prata/química , Prata/toxicidade , Toxicogenética , Animais , Biomarcadores/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Metalotioneína/genética , Metalotioneína/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/fisiologia , Tamanho da Partícula , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo , Zinco/metabolismo
20.
J Agric Food Chem ; 59(20): 10927-33, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21913675

RESUMO

The physiological effects of the hydrolysates of white rice protein (WRP), brown rice protein (BRP), and soy protein (SP) hydrolyzed by the food grade enzyme, alcalase2.4 L, were compared to the original protein source. Male Syrian Golden hamsters were fed high-fat diets containing either 20% casein (control) or 20% extracted proteins or their hydrolysates as the protein source for 3 weeks. The brown rice protein hydrolysate (BRPH) diet group reduced weight gain 76% compared with the control. Animals fed the BRPH supplemented diet also had lower final body weight, liver weight, very low density lipoprotein cholesterol (VLDL-C), and liver cholesterol, and higher fecal fat and bile acid excretion than the control. Expression levels of hepatic genes for lipid oxidation, PPARα, ACOX1, and CPT1, were highest for hamsters fed the BRPH supplemented diet. Expression of CYP7A1, the gene regulating bile acid synthesis, was higher in all test groups. Expression of CYP51, a gene coding for an enzyme involved in cholesterol synthesis, was highest in the BRPH diet group. The results suggest that BRPH includes unique peptides that reduce weight gain and hepatic cholesterol synthesis.


Assuntos
Gorduras na Dieta/administração & dosagem , Fígado/química , Proteínas de Plantas/administração & dosagem , Hidrolisados de Proteína/administração & dosagem , Aumento de Peso/efeitos dos fármacos , Animais , Colesterol/análise , Colesterol/biossíntese , Colesterol/sangue , Cricetinae , Suplementos Nutricionais , Fezes/química , Expressão Gênica , Peroxidação de Lipídeos/genética , Lipídeos/análise , Lipídeos/sangue , Fígado/anatomia & histologia , Fígado/metabolismo , Masculino , Mesocricetus , Tamanho do Órgão/efeitos dos fármacos , Oryza/química , Sementes/química , Proteínas de Soja/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA