Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.136
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124100, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484642

RESUMO

Peroxidase (POD)-mimicking nanozymes have got great progress in the sensing field, but most nanozyme assaying systems are built with a single-signal output mode, which is vulnerable to the effect of different factors. Thus, establishment of a dual-signal output mode is necessary for acquiring dependable and durable performance. This work described an Fe doped noradrenaline-based carbon dots and Prussian blue (Fe,NA-CDs/PB) nanocomposite as a POD-like nanozyme and modified gold nanoparticles (AuNPs) for the colorimetric and surface-enhanced Raman scattering (SERS) dual-mode sensor of Pb(II) in traditional Chinese medicine samples. With 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB) as the substrates, it was found that the addition of Pb(II) inhibited the POD-like activity of Fe,NA-CDs/PB and AuNPs, so it was used for colorimetric and SERS dual-mode assays. The POD-like activity was shown to be a "ping-pong" catalytic mechanism, whereas the addition of Pb(II) produced noncompetitive inhibition with modulatory effects on Fe,NA-CDs/PB. The linear response range for colorimetric and SERS sensor detection of Pb(II) was 0.01-1.00 mg/L with the detection limit of 5 µg/L and 8 µg/L, respectively. This dual-mode detection system shows excellent selectivity. More importantly, the Pb(II) in traditional Chinese medicine samples have successfully assayed with good recovery from 90.4 to 108.9 %.


Assuntos
Colorimetria , Nanopartículas Metálicas , Ouro , Chumbo , Medicina Tradicional Chinesa , Carbono , Oxirredutases , Peroxidase , Íons , Peróxido de Hidrogênio
2.
Anal Sci ; 40(4): 701-707, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316711

RESUMO

In this work, a novel zirconium phosphonate (ZrPR1R2) was prepared by decorating both the aminoethoxy- group (R1) and the carboxypropyl- group (R2) on the zirconium phosphate layers in order to manipulate further the immobilization of the peroxidase (POD), and an antioxidant biosensor with higher sensitivity was constructed by dropping the POD/ZrPR1R2 composite onto the glassy carbon electrode surface. The activity of the POD/ZrPR1R2 composite was detected by Uv-vis spectra. The direct electrochemical behavior, the electrocatalytic response to dissolved oxygen and hydrogen peroxide, as well as the ability to detect total antioxidant capacity in tea sample were investigated by the methods of cyclic voltammetry. The results indicated that the immobilization of POD in ZrPR1R2 nanosheets matrix enhanced the enzymatic activity, and achieved the fast and direct electron transfer between POD and glassy carbon electrode. Moreover, the POD/ZrPR1R2 composite modified electrode show the electrocatalytic response to hydrogen peroxide in the linear range of 8.8×10-8 to 8.8×10-7 mol L-1, with the detection limit of 3.3×10-8 mol L-1. Attributing to the sensitive response to dissolved oxygen, the total antioxidant capacity can be detected directly in the real tea water by this POD/ZrPR1R2 composite modified electrode.


Assuntos
Antioxidantes , Técnicas Biossensoriais , Peroxidase , Peróxido de Hidrogênio/análise , Zircônio , Carbono , Eletrodos , Peroxidases , Oxigênio , Chá , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
3.
ACS Appl Mater Interfaces ; 16(9): 11251-11262, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38394459

RESUMO

Nanozyme has been proven to be an attractive and promising candidate to alleviate the current pressing medical problems. However, the unknown clinical safety and limited function beyond the catalysis of the most reported nanozymes cannot promise an ideal therapeutic outcome in further clinical application. Herein, we find that ferric maltol (FM), a clinically approved iron supplement synthesized through a facile scalable method, exhibits excellent peroxidase-like activity than natural horseradish peroxidase-like (HRP) and commonly reported Fe-based nanozymes, and also shows high antibacterial performance for methicillin-resistant Staphylococcus aureus (MRSA) elimination (100%) and wound disinfection. In addition, with added effects inherited from contained maltol, FM can accelerate skin barrier recovery. Therefore, the exploration of FM as a safe and desired nanozyme provides a timely alternative to current antibiotic therapy against drug-resistant bacteria.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pironas , Desinfecção , Compostos Férricos/farmacologia , Peroxidase do Rábano Silvestre , Catálise , Antibacterianos/farmacologia , Peróxido de Hidrogênio , Peroxidase
4.
Fish Shellfish Immunol ; 146: 109369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38220122

RESUMO

Damiana (Turnera diffusa Willd) was evaluated in vitro for antioxidant and antibacterial activities against Staphylococcus aureus and Streptococcus pyogenes (as a preliminary screening assessment) by high-performance thin-layer chromatography (HPTLC)-Direct bioautography. A study was performed in vivo to evaluate the effects of Damiana enriched diets at 0.5 % on immune parameters in mucus and serum and gene expression in Almaco Jack (Seriola rivoliana) intestine after two and four weeks; an infection with Aeromonas hydrophila at 1x107 colony forming units (CFU) followed and an ex vivo study was carried out using head-kidney leukocytes. Ferric reducing ability of plasma (FRAP) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays showed high antioxidant activities in Damiana leaves; even in the ABTS assay, Damiana at 300 µg/mL showed similar activity to ascorbic acid - the standard control. Damiana exhibited strong in vitro antimicrobial activity against S. aureus and S. pyogenes. In vivo studies showed a strong enhancement of myeloperoxidase, nitric oxide, superoxide dismutase, and catalase activities in mucus and serum of S. rivoliana supplemented with Damiana; their immunological response enhanced after infection with A. hydrophila. IL-1ß, TNF-α, and IL-10 gene expressions upregulated in the fish intestine challenged with the bacterium. Piscidin and macrophage (MARCO) receptor gene expression up-regulated at week 4 and down-regulated after infection. Intestinal histology results confirm that Damiana not cause inflammation or damage. Finally, the ex vivo study confirmed the immunostimulant and protective effects of Damiana through increased phagocytic, respiratory burst, myeloperoxidase activities and nitric oxide generation before and upon the bacterial encounter. These results support the idea that Damiana has the potential as an immunostimulant additive for diets in aquaculture by enhancing immune parameters and protecting Almaco Jack against A. hydrophila infections upon four weeks of supplementation.


Assuntos
Benzotiazóis , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Ácidos Sulfônicos , Turnera , Animais , Turnera/química , Antioxidantes/metabolismo , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/metabolismo , Óxido Nítrico/metabolismo , Staphylococcus aureus/metabolismo , Suplementos Nutricionais/análise , Dieta , Peroxidase/metabolismo , Aeromonas hydrophila , Infecções por Bactérias Gram-Negativas/veterinária , Ração Animal/análise
5.
Food Chem ; 441: 138381, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38218150

RESUMO

The accumulation of the deoxynivalenol (DON) in the human body poses a significant health risk that is often overlooked, and we urgently need an ultra-sensitive rapid detection platform. Due to the porosity of NH2-MIL-101@MoS2, an increased loading of toluidine blue (TB) serves to create a signal reference. Cobalt@carbon (CoC) derived from metal organic frameworks was combined with NH2-MIL-101(NH2-MIL-101@CoC) to form an enzyme-free Nanoprobe (Apt-pro) with significant catalytic properties. The ratio (IBQ /ITB) was changed by varying the electrochemical signal of benzoquinone (BQ) (IBQ) and the amount of TB deposition (ITB). This aptasensor was successfully applied to detect DON in malt and peach seed, which exhibited a great linear range from 1 fg/mL to 10 ng/mL and low detection limit of 0.31 fg/mL for DON.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Tricotecenos , Humanos , Estruturas Metalorgânicas/química , Peroxidase/química , Molibdênio , Corantes , Limite de Detecção , Técnicas Eletroquímicas , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química
6.
Environ Pollut ; 342: 123063, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043767

RESUMO

Uranium is causing a hazardous impact on the human population throughout the globe. Different methods of remediation have been documented but the approach of phytoremediation has been praised throughout the globe. The bioaccumulation of uranium especially as a hyper-accumulator, has been documented in limited plant species. Therefore the current studies were conducted to elaborate on the overall U accumulation, biochemical and photochemical reactions in Alternanthera philoxeroides and Eichhornia crassipes to different concentrations of Uranium. The results showed that the accumulation of U in A.philoxeroides is higher; followed by E.crassipes; with maximum amounts of roots accumulation. Overall A.philoxeroides and E.crassipes accumulate as much as 948.88 mg/kg and 801.87 mg/kg on a dry weight basis. The biochemical results showed that Superoxide dismutase (SOD) decreased in the leaves and stem of A.philoxeroides; whereas an increase has been seen in E.crassipes in response to all treatments. peroxidase (POD) and Catalase (CAT) showed irregular response to all treatments; where the main increase was observed at T3 (120 µmol/L) and 72 h up to 138 µ/g-FW (POD) and 178 µ/g-FW (CAT) in A.philoxeroides and 1870 µ/g-FW (POD) and 73 µ/g-FW (CAT) in E.crassipes, respectively. The correlation coefficient between the fluorescence ratio Fv/Fm and the concentrations of U-treatment was significantly negative. It is concluded from the results that Uranium halted the biochemical and photochemical reaction but the plants resisted its impact while accumulating a good amount of uranium which is a good prospect for future interventions for the in-situ remediation of uranium-affected sites.


Assuntos
Eichhornia , Urânio , Poluentes Químicos da Água , Humanos , Peroxidase , Superóxido Dismutase , Biodegradação Ambiental , Poluentes Químicos da Água/análise
7.
Adv Healthc Mater ; 13(2): e2302190, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37792422

RESUMO

Although low-cost nanozymes with excellent stability have demonstrated the potential to be highly beneficial for nanocatalytic therapy (NCT), their unsatisfactory catalytic activity accompanied by intricate tumor microenvironment (TME) significantly hinders the therapeutic effect of NCT. Herein, for the first time, a heterojunction (HJ)-fabricated sonoresponsive and NIR-II-photoresponsive nanozyme is reported by assembling carbon dots (CDs) onto TiCN nanosheets. The narrow bandgap and mixed valences of Ti3+ and Ti4+ endow TiCN with the capability to generate reactive oxygen species (ROS) when exposed to ultrasound (US), as well as the dual enzyme-like activities of peroxidase and glutathione peroxidase. Moreover, the catalytic activities and sonodynamic properties of the TiCN nanosheets are boosted by the formation of HJs owing to the increased speed of carrier transfer and the enhanced electron-hole separation. More importantly, the introduction of CDs with excellent NIR-II photothermal properties could achieve mild hyperthermia (43 °C) and thereby further improve the NCT and sonodynamic therapy (SDT) performances of CD/TiCN. The synergetic therapeutic efficacy of CD/TiCN through mild hyperthermia-amplified NCT and SDT could realize "three-in-one" multimodal oncotherapy to completely eliminate tumors without recurrence. This study opens a new avenue for exploring sonoresponsive and NIR-II-photoresponsive nanozymes for efficient tumor therapy based on semiconductor HJs.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Carbono , Manejo da Dor , Peroxidase , Peroxidases , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
8.
Int J Biol Macromol ; 256(Pt 1): 128429, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008137

RESUMO

Mango is a climacteric fruit that ripens quickly after harvest due to its climacteric nature. Edible coatings have been reported to delay the ripening of various harvested fruit. The efficacy of the applied edible coatings could be improved by using in combination as a layer-by-layer (LBL) approach. So, the influence of LBL application of chitosan (CH) and carboxymethyl cellulose (CMC) was studied on mangoes during postharvest storage at 15 °C for 20 days. Mangoes were coated with monolayers of CH (1 % w/v) and CMC (1 % w/v) as well as LBL application of CH and CMC and were compared with control. The treatment of mangoes with CH and CMC-based LBL treatment resulted in lower decay percentage and weight loss along with higher total chlorophyll pigments and suppressed total carotenoid accumulation. The LBL application of CH and CMC showed lower activity of chlorophyll degrading such as chlorophyllase (CPS), pheophytinase (Phe), Mg-dechalatase (MGD) and chlorophyll degrading peroxidase (Chl-POD) enzymes as well as reduced changes in b*, a* and L* along with a suppressed increase in ethylene (EP) and CO2 production (CPR) rates having higher antioxidant such as catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and superoxide dismutase (SOD) enzymes activity. In addition, mangoes coated with LBL treatment of CH and CMC exhibited lower water-soluble pectin (WSP) and higher protopectin (PP) having higher concentrations of chelate soluble (CSP) and sodium carbonate-soluble pectin (SCP). Similarly, LBL-coated mangoes showed significantly higher hemicellulose (HCLS) and cellulose (CLS) contents in contrast with control. It was observed that mangoes coated with CH and CMC-based LBL coating exhibited higher flesh firmness and showed suppressed cellulase (CS), pectin methylesterase (PME), polygalacturonase (PG) and ß-galactosidase (ß-Gal) enzymes activity. The concentrations of total soluble solids and ripening index were markedly lower and titratable acidity was higher in the LBL-based coating treatment in comparison with control. In conclusion, LBL treatment based on CH and CMC coatings could be used for the delay of ripening and softening of harvested mangoes.


Assuntos
Quitosana , Mangifera , Carboximetilcelulose Sódica/farmacologia , Quitosana/farmacologia , Frutas , Polissacarídeos/farmacologia , Pectinas/farmacologia , Peroxidase , Parede Celular , Clorofila
9.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4967-4973, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802838

RESUMO

A field experiment was conducted to measure the physiological characteristics, yield, active ingredient content, and other indicators of Carthamus tinctorius leaves undergoing 13 sowing date treatments. The principal component analysis(PCA) and redundancy analysis were used to analyze the correlation between these indicators to explore the effect of sowing date on the yield and active ingredient content of C. tinctorius in Liupanshan of Ningxia. The results illustrated that the early sowing in autumn and spring had significant effects on leaf photosynthetic parameters, SPAD value, antioxidant enzyme activity, nitrogen metabolism enzyme activity, filament yield, grain yield, and hydroxy safflower yellow A(HYSA) of C. tinctorius. Sowing in mid-November and late March had the best effect. Leaf transpiration rate, stomatal conductance, nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase increased by 44.9%, 52.4%, 15.9%, 60.8%, 10.3%, and 38.3%, respectively. The activities of superoxide dismutase, peroxidase, and catalase decreased by 10.8%, 4.1%, and 20.9%, respectively. The improvement of photosynthetic physiological characteristics promoted the dry matter accumulation and reproductive growth of C. tinctorius. The yield of filaments and seeds increased by 15.5% and 11.7%, and the yield of HYSA and kaempferol increased by 17.9% and 20.0%. In short, the suitable sowing date can promote the growth and development of C. tinctorius in Liupanshan of Ningxia, and significantly improve the yield and quality, which is conducive to the high quality and efficient production of C. tinctorius.


Assuntos
Carthamus tinctorius , Sementes , Peroxidase/metabolismo , Folhas de Planta/metabolismo , Antioxidantes
10.
Inorg Chem ; 62(29): 11291-11303, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37432268

RESUMO

A biosensor comprising crystalline CuS nanoparticles (NPs) was synthesized via a one-step simple coprecipitation route without involvement of a surfactant. The powder X-ray diffraction method has been used to evaluate the crystalline nature and different phases consist of the formation of CuS NPs. Mainly hexagonal unit cells consist of the formation of CuS NP unit cells. Most of the surfaces are covered with rhombohedral microparticles with a smooth exterior and surface clustering, examined by SEM images, and the shape of NPs was spherical, having an average size of 23 nm, as confirmed by TEM analysis. This study has focused on the peroxidase-mimicking activity, superoxide dismutase (SOD)-mimicking activity, and chemosensor-based colorimetric determination and detection of epinephrine (EP) neurotransmitters with excellent selectivity. The CuS NPs catalyzed the oxidation of the oxidase substrate 3, 3-5, 5 tetramethyl benzidine (TMB) with the help of supplementary H2O2 that followed Michaelis-Menten kinetics with excellent Km and Vmax values calculated by the Lineweaver-Burk plot. Taking advantage of the drop in absorbance upon introduction of EP for the CuS NPs-TMB/H2O2 system, a colorimetric route has been developed for selective and real-time detection of EP. The sensitivity of the new colorimetric probe was vibrant, having a linear range of 0-16 µM, and achieved a low limit of detection of 457 nM. Moreover, the present nanosystem exhibited appreciable SOD-mimicking activity which could effectively remove O2•- from commercial cigarette smoke, along with it acting as a potential radical scavenger as well. The new nanosystem effectively scavenged •OH, O2.-, and metal chelation which were investigated calorimetrically.


Assuntos
Antioxidantes , Peroxidase , Peroxidase/química , Peróxido de Hidrogênio/química , Biomimética , Epinefrina , Superóxido Dismutase , Colorimetria/métodos
11.
Nanoscale ; 15(30): 12455-12463, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37462391

RESUMO

In recent years, nanozymes have attracted enormous attention due to their effectiveness in promoting various catalytic reactions. To date, thousands of nanozymes have been discovered, including oxidase-like nanozymes, peroxidase-like nanozymes, and catalase-like nanozymes, covering noble metal, transition metal, and carbon nanomaterials. These nanozymes have been widely applied in various fields, including environmental protection, biosensing and nanomedicine. There are many reviews about this rising star being used in analytical chemistry. However, few works about nanozymes were related to cancer therapy. In this study, we comprehensively summarize the latest research advances on the strategies for cancer therapy based on different nanozymes. With traditional cancer treatment (including chemotherapy, radiotherapy, phototherapy), nanozyme catalytic therapy exhibited a synergistic effect for limiting the growth of tumors. Opportunities and trends for nanozymes in future cancer therapy are also discussed.


Assuntos
Nanoestruturas , Neoplasias , Nanoestruturas/uso terapêutico , Peroxidase , Peroxidases , Catálise , Carbono , Neoplasias/tratamento farmacológico
12.
Food Chem ; 429: 136957, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499505

RESUMO

In this study, we reported the eco-responsible synthesis of iron-doped carbon quantum dots (Fe-CQDs) from waste coffee grounds through a simple hydrothermal method. The Fe-CQDs exhibited high peroxidase-like activity, which could convert 3,3',5,5'-tetramethylbenzidine (TMB) into blue ox-TMB in the presence of H2O2. After adding ascorbic acid (AA) to above system, the blue solution faded. Based on this phenomenon, a colorimetric method for visual monitoring of H2O2 and AA was developed. Meanwhile, the fluorescence of Fe-CQDs can be quenched by the formed ox-TMB via inner filter effect (IFE), followed by the recovery upon the addition of AA. Therefore, Fe-CQDs can be acted as a fluorescent probe to detect H2O2 and AA through the "on-off-on" mode. Furthermore, the dual-recognition methods based on Fe-CQDs were used to measure AA content in beverage samples. Thus, this work would shed much light on converting waste into biomass CQDs and their potential applications in biomolecular detection.


Assuntos
Ácido Ascórbico , Pontos Quânticos , Ácido Ascórbico/análise , Café , Peroxidase , Carbono , Colorimetria/métodos , Peróxido de Hidrogênio , Antioxidantes
13.
Phytother Res ; 37(11): 5328-5340, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37500597

RESUMO

Myocardial infarction (MI) is a common disease with high morbidity and mortality. Curdione is a sesquiterpenoid from Radix Curcumae. The current study is aimed to investigate the protective effect and mechanism of curdione on ferroptosis in MI. Isoproterenol (ISO) was used to induce MI injury in mice and H9c2 cells. Curdione was orally given to mice once daily for 7 days. Echocardiography, biochemical kits, and western blotting were performed on the markers of cardiac ferroptosis. Curdione at 50 and 100 mg/kg significantly alleviated ISO-induced myocardial injury. Curdione and ferrostatin-1 significantly attenuated ISO-induced H9c2 cell injury. Curdione effectively suppressed cardiac ferroptosis, evidenced by decreasing malondialdehyde and iron contents, and increasing glutathione (GSH) level, GSH peroxidase 4 (GPX4), and ferritin heavy chain 1 expression. Importantly, drug affinity responsive target stability, molecular docking, and surface plasmon resonance technologies elucidated the direct target Keap1 of curdione. Curdione disrupted the interaction between Keap1 and thioredoxin1 (Trx1) but enhanced the Trx1/GPX4 complex. In addition, curdione-derived protection against ISO-induced myocardial ferroptosis was blocked after overexpression of Keap1, while enhanced after Keap1 silence in H9c2 cells. These findings demonstrate that curdione inhibited ferroptosis in ISO-induced MI via regulating Keap1/Trx1/GPX4 signaling pathway.


Assuntos
Ferroptose , Infarto do Miocárdio , Animais , Camundongos , Peroxidase , Isoproterenol/efeitos adversos , Proteína 1 Associada a ECH Semelhante a Kelch , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , Peroxidases , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/tratamento farmacológico , Transdução de Sinais , Glutationa
14.
Chem Biodivers ; 20(8): e202300090, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37172105

RESUMO

This work describes a unique and environmentally friendly approach for creating three-dimensional (3D) organic-inorganic flower shaped hybrid nanostructures called "nanoflower (NF)" by using Umbilicaria decussate (U. decussate) extract and copper ions (Cu2+ ). U. decussate species were collected from certain place in Antarctic and Turkey and extraction of each species were completed in methanol and water. The U. decussate extracts were used as organic components and Cu2+ acted as inorganic components for formation of U. decussate extracts based hybrid NFs. We rationally used these NFs as novel nanobiocatalyst and antimicrobial agents. These NFs exhibited peroxidase mimic, dye degradation and antimicrobial properties. The NFs were characterized with various techniques. For instance, the morphologies of the NFs were monitored by scanning electron microscope (SEM), presence of elements in the NFs were presented using Energy Dispersive X-Ray Analysis (EDX). Fourier-transform infrared spectroscopy (FT-IR) was used to elucidate corresponding bending and stretching of bonds in the NFs. The NFs acted as effective Fenton agents in the presence of hydrogen peroxide, and we demonstrated their peroxidase-like activity against guaiacol, dye degradation property towards malachite green and antimicrobial activity for Aeromonas hydrophila, Aeromonas sobria, Escherichia coli, Salmonella enterica and Staphylococcus aureus.


Assuntos
Anti-Infecciosos , Peroxidase , Peroxidase/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Cobre/química , Regiões Antárticas , Turquia , Anti-Infecciosos/farmacologia , Extratos Vegetais/química
15.
Toxicol In Vitro ; 90: 105591, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37011770

RESUMO

Consumer products containing botanicals or natural substances (BNS) are often preferred because there is a perception that 'natural' is safe. As with any product ingredient, a thorough safety assessment must be conducted, including a determination of skin sensitization potential. A modification of the Peroxidase Peptide Reactivity Assay (PPRA) was explored for screening BNS (B-PPRA) for their reactivity to a model cysteine peptide. The PPRA incorporates a horseradish peroxidase­hydrogen peroxide (+HRP/P) oxidation system for the activation of potential pre- and pro-haptens. BNS test materials contained <2% botanical constituent in either glycerin/water or propylene glycol/water. Stock solutions prepared in acetonitrile were diluted to 8 working concentrations. Direct reactivity was determined in reaction mixtures containing peptide and deferoxamine in potassium phosphate buffer. Enzyme-mediated reactivity determinations were performed with addition of +HRP/P. Initial studies demonstrated that results were reproducible and impact of carrier low. To determine the sensitivity of the assay, experiments were conducted with chamomile extract spiked with three sensitizers. Peptide depletion was observed in the +HRP/P reaction mixtures with isoeugenol spikes as low as 0.05%. The B-PPRA shows promise as a screening method for skin sensitization potential and could become part of a framework for the skin sensitization safety assessment of BNS.


Assuntos
Peptídeos , Extratos Vegetais , Estudo de Prova de Conceito , Extratos Vegetais/toxicidade , Pele , Peroxidase
16.
Microb Pathog ; 178: 106053, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36907362

RESUMO

Biotic stress deleteriously affects growth, development, and productivity in plants. Proline (Pro) plays a significant role in enhancing plant resistance to pathogen infection. However, its effects on reducing Lelliottia amnigena-induced oxidative stress in potato tubers remain unknown. The present study aims to evaluate the in vitro Pro treatment in potato tubers exposed to a newly emerging bacterium, L. amnigena. Sterilized healthy potato tubers were inoculated with 0.3 mL of L. amnigena suspension (3.69 × 107 CFU mL-1) 24 h before Pro (5.0 mM) application. The L. amnigena treatment significantly increased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the potato tubers by 80.6 and 85.6%, respectively, compared to the control. Application of proline (Pro) decreased MDA and H2O2 contents by 53.6 and 55.9%, respectively, compared to the control. Application of Pro to L. amnigena-stressed potato tubers increased the activities of NADPH oxidase (NOX), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), polyphenol oxidase (PPO), phenylalanine ammonia-lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), 4-coumaryl-CoA ligase (4CL) and cinnamate-4-hydroxylase (C4H) C4H by 94.2, 96.3, 97.3, 97.1, 96.6, 79.3, 96.4, 93.6, and 96.2%, respectively, compared to the control. In comparison to the control, the genes PAL, SOD, CAT, POD, and NOX were significantly increased in the Pro-treated tubers at 5.0 mM concentration. Tubers treated with Pro + L. amnigena increased the transcript levels of PAL, SOD, CAT, POD, and NOX by 2.3, 2.2, 2.3, 2.5, and 2.8-fold respectively, compared to the control. Our findings suggested that pretreatment of tubers with Pro might reduce lipid peroxidation and oxidative stress by enhancing enzymatic antioxidant activity and gene expression.


Assuntos
Solanum tuberosum , Prolina/metabolismo , Prolina/farmacologia , Peróxido de Hidrogênio/metabolismo , Antioxidantes/farmacologia , Superóxido Dismutase/metabolismo , Peroxidase/metabolismo
17.
Molecules ; 28(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36985734

RESUMO

In this study, chestnut honey-based silver nanoparticles (CH-AgNPs) were synthesized at different temperatures (30, 60 and 90 °C) and these nanoparticles were characterized by different techniques such as UV-vis spectrophotometer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The DPPH free radical scavenging assay was used to determine the antioxidant activity of the obtained nanoparticles. The inhibition effects of these nanoparticles for some clinically important enzymes such as myeloperoxidase and collagenase were investigated. In addition, the disk diffusion method (DDM), agar well diffusion (AWD), and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) techniques were used to determine the antibacterial activity of CH-AgNPs. In honey-based silver nanoparticle production processes using green synthesis, it was determined that the nanoparticle sizes decreased from 55 to 27 nm with an increase in temperature. In addition, it was determined that the rate of inhibition of myeloperoxidase (36.4% to 34.0%) and collagenase enzymes (74.2% to 68.7%) increased with a decrease in particle size. As a result of the antibacterial activity tests, it was observed that CH-AgNPs have antibacterial activity against all target pathogens including Gram-positive and Gram-negative bacteria. The obtained results show that CH-AgNPs produced using chestnut honey have the potential to be used in fields such as medicine, pharmacy and cosmetic technology.


Assuntos
Mel , Nanopartículas Metálicas , Antioxidantes/farmacologia , Antioxidantes/química , Antibacterianos/química , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Peroxidase , Extratos Vegetais/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Química Verde
18.
Food Res Int ; 164: 112449, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36738009

RESUMO

In this study, the browning degrees of fresh-cut potatoes of different cultivars were investigated. Fresh-cut potatoes of the 'Huangjin' cultivar exhibited a higher browning index and sensory quality deterioration over time compared with 'Minshu' potatoes. 'Huangjin' exhibited a higher activity of browning-related enzymes such as polyphenol oxidase, tyrosinase, peroxidase, phenylalanine ammonia-lyase, phospholipase D (PLD), and lipoxygenase (LOX) than 'Minshu'. Furthermore, 'Minshu' exhibited lower H2O2 and malonaldehyde (MDA) contents, lower membrane lipid degradation and peroxidation, and delayed browning, attributable to its low PLD and LOX activities. The ultrastructure of 'Minshu' cells remained intact 7 h after cutting, while that of 'Huangjin' cells was severely damaged, and 'Minshu' cells exhibited more Golgi complexes and black particles than 'Huangjin' cells. Moreover, 'Huangjin' cells exhibited numerous multivesicular bodies, which were nonexistent in 'Minshu' cells. The results show that 'Minshu' potatoes feature a lower browning-related enzyme activity than 'Huangjin', and a tough cell structure to resist post-cut browning.


Assuntos
Antioxidantes , Solanum tuberosum , Solanum tuberosum/química , Peróxido de Hidrogênio , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Catecol Oxidase/metabolismo
19.
Recent Pat Biotechnol ; 17(4): 395-404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36722474

RESUMO

BACKGROUND: Beetroot (Beta vulgaris L.) is botanically classified as a herbaceous biennial belonging to the Chenopodiaceae family and has several varieties with bulb colors ranging from yellow to red. Peroxidases are widely occurring in organisms including microorganisms, plants, and animals, and have been involved in various physiological and biochemical functions. OBJECTIVE: The study was conducted to investigate the characteristics of enzyme extracts from red beet leaves, root pulp, and peel. METHODS: The enzyme extraction involved the homogenization of the sample and filtrate in cold acetone and then the filtrate was homogenized in 0.1M sodium acetate buffer, pH 7. The protein content was determined using the Lowry assay using bovine serum albumin (BSA) as a standard protein. Then, enzymatic activity was determined by peroxidase, polyphenol oxidase, and catalase assays. The patent for biological activity of enzymes was obtained from the Office of Career Development, Haramaya University. The antioxidant activities of the enzyme extract were conducted by using DPPH and hydrogen peroxide free radical scavenging activities. RESULTS: The result indicated that the Enzymatic activity of crude enzyme extract of red beet leaf, root pulp and peel indicated that significantly the highest total soluble protein (16.68 mg/ml), peroxidase activity (PODA, 111.50 U/ml), polyphenol oxidase activity (PPOA, 170.90 U/ml), polyphenol oxidase specific activity (PPOspa, 10.25 U/mg), catalase activity (CATA, 180.50 U/ml) and catalase specific activity (CATspa, 10.82 U/mg), were recorded for red beet leaf enzyme extract. The antioxidant activity of the enzyme extracts demonstrated that significantly higher DPPH radical scavenging activity of leaf extract (59.16) and peel extract (61.92) were recorded. The Pearson correlation coefficient of enzyme activity parameters and free radical scavenging activities presented that protein content was significantly and positively correlated with CATA, PPOA, and PPOspa. Catalase- specific activity (CATspa) was significant and positively correlated only with HPSA. Peroxidase-specific activity (PODspa) was significant and positively correlated with PODA and DPPH. Based on the plot for principal component PC2 vs. PC1 for D statistics DPPH, PODA, and PODspa have close PC1 and PC2 scores (with vector angle < 90° showing similar/correlated effects. CONCLUSION: In this study, B. vulgaris has shown promising peroxidase enzyme activity. Beetroot peel contained higher antioxidant compounds thus promising a more intense utilization of the peels in food and nutraceuticals.


Assuntos
Antioxidantes , Beta vulgaris , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Catalase , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Peroxidase , Patentes como Assunto , Catecol Oxidase , Radicais Livres
20.
Biodegradation ; 34(1): 83-101, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592294

RESUMO

Oil-contaminated soil is the main challenge for oil-rich countries, and this study aimed to investigate the performance of the H2O2-stimulated slurry bioreactor for the bioremediation of real oil-contaminated soil. The effect of biomass concentration, soil to water (S/W) ratio, slurry temperature, pH, and H2O2 concentration were optimized for the removal of total petroleum hydrocarbons (TPH) from oil-contaminated soil. TPH removal efficiency, biosurfactants production, and peroxidase and dehydrogenase activities were measured. The optimum conditions for the complete biodegradation of 32 [Formula: see text] in the slurry bioreactor during 6 days were biomass of 2250 mg/L, S/W ratio of 20%, the temperature of 30 °C, pH of 7, and an H2O2 concentration of 120 mg/L. The highest peroxidase, dehydrogenase, surfactin, and rhamnolipid formation were also obtained under optimum conditions. The results pointed out that complete biodegradation of 32 g/kg of TPH in oil-contaminated soil at a short reaction time of 6 days is achievable in the developed process operated under optimum conditions. The GC/FID analysis of solid and liquid phases showed that the bioprocess completely biodegraded the different TPH fractions. H2O2 efficiently stimulated the biosurfactant-generating bacteria to produce peroxidase and thereby accelerating the bioremediation rate. Accordingly, an H2O2-mediated slurry bioreactor inoculated with biosurfactant/peroxidase-generating bacteria is a promising technique for cleaning up oil-contaminated soils.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Peróxido de Hidrogênio/análise , Metagenômica , Poluentes do Solo/metabolismo , Microbiologia do Solo , Solo , Hidrocarbonetos/metabolismo , Reatores Biológicos , Peroxidase , Peroxidases , Bactérias/genética , Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA